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Modulation of stochastic processes 

   

Let us consider a stochastic process xn(t) and a modulation signal ym(t). The target is determining the 

power spectral density (PSD) of the stochastic process z(t), obtained by multiplication of xn(t) by ym(t).  

 

 
Fig.1 Modulation of a stochastic process xn(t) by a modulation signal ym(t).  

 

Case 1: ym is a simple sinusoidal function (pure tone).  
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In this case, the output process z(t) is not stationary, since, for example, its mean square value <z2(t)> 

depends on t. In order to obtain a stationary process (necessary condition for the existence of the PSD), 

it is necessary that also ym is a stochastic process. This can be obtained by introducing a random phase 

to the signal in (1), obtaining: 
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where  is uniformly distributed in the interval [0-2]. This represent the real case, since there is no 

reason for the existence of a phase relationship (i.e. synchronization) between xn and ym. 

The autocorrelation function RZZ is given by: 
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Grouping the terns in xn: 

 

    ttAtxtxtztzR nnZZ cos)cos()()()()()(
2  (4) 

 

Since the process xn is independent of the variable , the average can be split into the product of two 

distinct averages: 
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The first average is simply the autocorrelation function of xn(t), Rxx().  

To calculate the second average, it is convenient to transform the cosine product using the identity: 
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obtaining:  
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For the linearity of the average operator:  
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It can be easily shown that:   022cos  t  since for any value of t and , the average 

obtained by varying q across the whole [0-2] interval is zero.  

Thus: 
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Finally, we obtain: 
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In the frequency domain, we obtain the following relationship between the PSDs: 
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where fm=/2is the modulation frequency. Graphically, the operation is depicted in Fig.2. 

 

 
 
Fig.2 Effect of the modulation of a stochastic process, of PSD SXn, by a simple cosine function.  
 

Case 2: ym is a sum of sinusoidal functions: 
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with Ai, i and i known values (i.e. they are not random variables). Again, the expression in (12) is a 

deterministic signal and, as such, it is not suitable to produce a stationary process z(t). Then we 

introduce a random delay, tR, representing the fact that there is no synchronization between xn(t) and 

ym(t). Then, the modulation signal that we will consider is: 
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We can repeat the passages made for the single sinusoid up to (4), exploiting the independence of xn 

and ym, obtaining: 
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Transforming the cosine product, we obtain: 
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Applying the average operator to this expression and exploiting linearity, all terms where a dependence 

on tR is present produce a zero average, since tR varies uniformly across a very wide interval, ideally 

spanning from -∞ to ∞.  

The only terms that do not produce a zero contribution to the total average are the ones that contain the 

difference i-j, for the particular case i=j, since the dependence on tR is cancelled. With simple 

passages: 
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Finally, from (14) and (18) we obtain: 
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Equation (19) shows that the effect of modulating the random xn process by a sum of sinusoidal 

functions at different frequencies, correspond to multiplication of the autocorrelation function by a sum 

of cosine functions. The phases, i , do not have any effect on the resulting PSD. 

In the frequency domain, (19) is represented by Fig.3, where an example of modulating signal 

composed by the sum of three sinusoidal waveform is considered. The coefficients placed close to each 

replica are the numbers that multiply the replicas.  

 

 
Fig.3 Effect of the modulation of a stochastic process, of PSD SXn, by a sum of three sinusoidal functions of frequencies 

fi=i/2 and peak value Ai, with i=1,2,3. 
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Frequently it is more convenient to express the sum in (12) with the complex notation: 
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where Ci are complex numbers related to Ai and i by:  
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Considering (21), it is possible to express the multiplying coefficients of the replicas as a function of Ci 

instead of Ai, obtaining Fig.4, which is analogue to Fig.3.  

 
Fig.4 Effect of the modulation of a stochastic process, of PSD SXn, by a sum of three sinusoidal functions of frequencies 

fi=i/2 and complex coefficients Ci, with i=-3,-2,-1, 1, 2, 3. 
 

A particular case of modulating signal is the periodic waveform. A periodic waveform (e.g. a square 

waveform) can be expressed in the form given by (20), with the additional condition that all angular 

frequencies are multiple of a particular angular frequency 0 (the fundamental). Furthermore, the sum 

can be infinite and include the zero order term (C0 , i.e. the DC component). The PSD of a stochastic 

process modulated by a periodic signal is obtained in the same way as the signal in (20), therefore it 

can be represented by Fig.4. The DC component, if present, gives a replica placed around the origin.  
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Relationships between discrete time (DT) and continuous time (CT) signals.  

 

DT signals assume a significant value only at instants that constitute a numerable set. Typically, the 

instants are evenly spaced, so that two successive instants are always separated by the same “sampling 

time”, that will be indicated with T. In particular: 

 

T= Sampling time 

fS=1/T= Sampling frequency.  

 

It is important to observe that a DT signal simply does not exist at instants different from the sampling 

instants. A DT signal can be thought as the result of sampling a CT signal, but this is not necessary and 

any sequence of values can be considered a DT signal. Nevertheless, since DT signal are used to 

represent CT signals, it is useful to consider the sampling process.  

Fig.5, in the upper part, shows a CT signal s(t) and its spectrum S(f) (Fourier transform). Note that S(f) 

represents the complex amplitude of the (infinitesimal) exponential into which s(t) can be decomposed. 

That is: 
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Note: in order to be able to represent all (finite energy) signals, it is necessary to include into the sum 

exponentials of frequencies, that, in terms of absolute value, span from 0 to ∞. The lower part of Fig.5 

shows a discrete signal obtained by sampling s(t). Since (22) is capable of producing the value of s(t) 

for every time t, it can also reproduce the values at the sampling instants, i.e. the DT signal: 
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Fig.5 Time domain and frequency domain transformations regarding the creation of a discrete time signal from a continuous 

time one.  
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For this reason, we could use S(f) also as a decomposition of s(nT) into an infinite sum (i.e. integral) of 

DT exponential functions: ej2pnT. But, while this decomposition is unique for s(t), this is not the case for 

the DT signal. In fact, as the spectrum in the bottom right corner of Fig.5 shows, two DT exponentials 

of frequencies f1 and f2, with f2=f1+fS, produce the same identical sequence, thus they are 

undistinguishable.  

Thus, instead of summing two contributions at frequencies f1 and f2, we can include into the integral 

only a contribution at f1 but with amplitude (S(f1)+S(f2))df. This is equivalent to summing the spectrum 

S(f) with a replica shifted by fS, as shown in Fig.6. 

 

 
 
Fig.6. This figure shows how the contributions at frequency f1 and f2 can be included into the integral as only one 

contribution at frequency f1.  

 

Clearly, the contribution at f2, included into (23) is now represented by the cumulative contribution at 

f1, thus I should not consider f2 anymore. The same consideration can be repeated for any couple of 

frequencies whose difference is a multiple of fS. As a result, I can express the DT signal s(nT) as the 

integral of exponentials with frequencies restricted only to an interval as large as fS. These exponential 

are multiplied by a function that should also include contributions from the whole [-∞, +∞] interval, at 

frequencies that can be represented in the interval of width fs with the procedure illustrated in Fig.6. 

This function is called Discrete Fourier Transform (DFT). The DFT of a DT signal obtained by 

sampling a CT signal can be obtained simply by summing replicas of the original spectrum shifted by 

all multiples of fS, as shown in Fig. 7. The sum must be evaluated only into the chosen frequency 

interval of width fS. This interval, as shown in Fig.7 is usually [-fS/2, fS/2]. It can be easily shown that 

the sum is periodical with period fS, so that choosing other intervals gives the same behavior.  

 

 
Fig.7 Procedure used to obtain the DFT from the spectrum (Fourier transform) of the original CT signal. Note that the 

resulting function is defined only in a restricted interval.  

 

Discrete time stochastic processes can be considered as the result of sampling CT stochastic processes 

with sampling interval T. The resulting DT autocorrelation function turns out to be a sampled version 

of the CT autocorrelation, with the same period T. Thus, the DT PSD (also indicated as D-PSD), can be 

obtained with the same procedure used for the DFT of deterministic signals (procedure illustrated in 
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Fig.7. Note that the mean square value of the DT signal is obtained by integrating its D-PSD only over 

the [-fS/2, fS/2] interval. 

 

Continuous time signals deriving from a sampling process.  

 

Sampling can be used also to obtain CT signals. These signals are defined for any time value of the real 

axis and are then deeply different from DT signals. In particular, their spectrum is defined over the 

whole frequency axis (i.e from f=∞ to f=+∞). A couple of signal belonging to this category that can be 

frequently useful are: 

 

1) Delta-sampled signal: the CT signal deriving from multiplying the original signal with an 

infinite periodical sequence of unity-area Dirac delta functions (“Dirac comb”). 

2) Sampled and Held (S&H) signal: the CT signal obtained by sampling the original signal and 

holding the sampled value until the next sampling instant.  

 

Both signals are CT signals. This is clear for the S&H signal. Delta-sampled signals are often 

considered DT signals. This not true since the delta-sampled signal is 0 (thus it is defined) everywhere, 

except at the sampling instants. Note that the signal is not defined in a conventional sense at the 

sampling intervals, where the delta are located. However, the delta function can be considered the limit 

of very short rectangular functions, whose duration tends to zero and amplitude to infinity, maintaining 

a unity area (integral). For this reason, the delta-sampled signal can be considered as the limit of 

conventional CT signals and then a CT signal itself.  

Figure 8 shows the transformations that are produced on the spectrum when a CT signal s(t) is sampled 

by Dirac deltas and then transformed into a S&H signal. The spectrum of the delta-sampled signal 

consist in an infinite number of replicas of the original signal. Replicas are shifted by multiples of the 

sampling frequency fS : the whole frequency axis should be considered, and not only the result on a 

restricted interval, since we are dealing with a CT signal. The delta-sampled signal does not generally 

represents a practical signal; it is used as an intermediate signal to calculate the spectrum of more 

useful signals, as the sample and held one. 

In this case, we can consider that the S&H signal is the result of the convolution of the delta-sampled 

signal by the rectangular function hR(t) shown in Fig.8. This correspond to multiplying the spectrum of 

the delta-sampled signal by the function: 
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where the “sinc” function is defined here as: 
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Then, the spectrum of the sample and held signal can be calculated by summing all the replicas 

obtained by shifting the original spectrum by multiple of fS ad then multiplying the resulting spectrum 

by the function given in (24), without the initial “T” coefficient. The latter is cancelled by the 1/T factor 

applied to the original spectrum due to the transformation into the delta-sampled signal.  

 

In the case of stochastic processes, the same modifications applies to the PSDs, with the only difference 

that the 1/T and T factors are squared. However, they still cancel each other when calculating the 
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spectrum of the sampled and held process, which is then calculated by simply summing the replicas of 

the original PSD, shifted by multiples of fS and then multiplying the result by: 
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Fig.8 Transformations of a deterministic signal spectrum (Fourier transform) after delta sampling and sample & hold 

operation.  
 


