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1 Dynamic techniques for the rejection of the offset and low 

frequency noise 

1.1 Motivations.  

The accuracy and resolution of an acquisition system is significantly degraded at DC and low 

frequencies by the presence of offset, offset drift and flicker noise. This problem has been known since 

the development of the first DC amplifiers based on vacuum tubes, designed to read the signals of 

sensors such as thermocouples and photoelectric cells, characterized by very low signal levels. In order 

to overcome this limitation, various dynamic solutions have been invented.  

The improvement of bipolar technologies and architectures lead to the introduction of instrumentation 

amplifiers with very low flicker noise densities and low offset. Very popular amplifiers such as the 

AD620 (Analog DevicesTM) are marked by offset voltages that approach 10 V and total peak-to-peak 

noise at low frequencies (e.g in the 0.1-10 Hz Bandwidth) well below 1 V.  

However, it should be observed that: 

1) Frequently, these performances are not sufficient, especially as far as offset and offset drift are 

concerned.  

2) These results require individual trimming of the amplifiers. 

3) The performance of CMOS amplifiers is at least one order of magnitude worse, even using 

exceptionally large device areas to mitigate flicker noise and improve matching. 

4) Complex CMOS analog circuit are becoming more and more important for the reduced cost of pure 

CMOS processes and the easiness of integration with digital circuits to form single chip acquisition 

systems.  

As a result, the adoption of dynamic techniques for offset cancellation and low frequency noise 

reduction has become mandatory in modern data acquisition systems and continuous research activity 

is being carried out in this field to obtain more and more performing integrated circuit.  

 

Dynamic offset cancellation techniques can be divided into the following three main categories [1]: 

 Auto-Zero (AZ) 

 Correlated Double Sampling (CDS)  

 Chopper Modulation, indicated also as Chopper Stabilization (CHS). 

In the following part of this document, we will indicate the total error voltage referred at the input of an 

amplifier with the symbol vn and, unless differently specified, we will consider that also the random 

offset is included in the vn stochastic process.  
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1.2 Auto-zero (AZ) 

The auto-zero approach is based on a simple idea: if it is possible to measure the offset of an amplifier 

then it is also possible to save it in an analog or digital memory and subtract it from the signal, 

obtaining virtually offset-free operation. This simple procedure is indeed used to compensate 

(calibrate) the offset of various instruments and can even be carried out manually. In order to read the 

offset of an amplifier it is necessary to disconnect it from the signal and insert a zero signal at the input. 

For a voltage amplifier, this means to short the input port, while for a current amplifier the input port 

should be left open.  

Unfortunately, the offset is not constant, but varies with time due to the effect of drifts. Therefore, 

offset calibration should be performed frequently. If we want also to reject low frequency noise 

contributions, the time between two calibration events gets so short that it is no more feasible to 

perform it manually.  

In the AZ amplifier, the offset is sampled at frequencies that reach several kHz, so that the resulting 

technique should be regarded as a real dynamic offset cancellation approach.  

Figure 1.1 schematically shows the two phases of an AZ amplifier, applied to a voltage amplifier. Let 

us consider that the amplifier characteristic is given by: 

  ninout vvAv   (1.1) 

1. In the Auto-Zero phase, the input is shorted to ground, so that vin=0, thus vout= Avn. The output 

noise voltage (including offset) is sampled at a certain instant tc during the AZ phase and stored 

into a memory element.  

2. After the AZ phase, the amplifier gets into the normal operation phase, where the stored output 

offset voltage is subtracted from the output signal.  
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Fig. 1.1. Schematic representation of the auto-zero operating principle 

 

The resulting output signal is given by: 
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  )()()( cnnsout tvtvtvAv   (1.2) 

In order to cancel also variable components of vn, the AZ phase is periodically repeated at a frequency 

fck (clock frequency). The corresponding timing diagram is shown in Fig.1.2, where the AZ phase 

occurs when the clock is low. The target is to make the amplifier work as much as possible as a normal 

time-continuous amplifier. For this reason the auto-zero phase is made much shorter than the normal 

operation phase. If we indicate the repetition period with T=1/fck, then we require that  

 TtAZ   (1.3) 

As far as the output waveform is concerned, a discontinuity occurs across any AZ phase since the 

stored noise value is updated and a step equal to the difference between the old and new noise value is 

applied. During the AZ phase, the output signal either go to zero, as in Fig.1.2, or is held by a track-

and-hold circuit. Since the AZ phase is generally so short to be considered instantaneous (taz0), the 

behavior of the amplifier during the AZ phase can be neglected. Thus, as far as the input signal is 

considered, application of the AZ technique does not alter the original time-continuous response of the 

amplifier. In this condition, according to (1.2), the effective residual noise is given by: 

  )()( nTvtvv nneffn   (1.4) 

where n is an integer index and the AZ phase (and offset sampling) occurs at instants (nT).   
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Fig. 1.2. Simplified output waveform of an auto-zero amplifier 

 

Clearly, if vn is a constant voltage (only the offset component is considered), a perfect cancellation is 

performed. A satisfactory cancellation will occur also for all those noise contributions that can be 

considered practically constant across a clock period, where they do not significantly differ from the 

value sampled in the previous AZ phase. This condition is satisfied by noise spectral components at 

frequencies much smaller than fck. On the contrary, for f > fck, the noise components can get 

substantially different than the last sampled value, i.e. vn(nT), and the difference in Eq.(1.4) is not 

zeroed.  
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In order to obtain a useful expression of the residual noise of the amplifier, it is necessary to calculate 

the spectral density of vn_eff. The procedure is illustrated in Fig.1.3. Let us consider a single occurence 

(i.e. a single signal) of the stochastic process, and indicate it with vn(t). In this case, vn(t) can be 

considered as a deterministic signal and can be represented, at least for now, by its Fourier transform 

(spectrum). The vn spectrum is represented on the top left of Fig.1.3. On the right, we graphically show 

how the spectrum of vn(nT) can be obtained. This is the result of sampling vn(t) and maintaining it 

(sample and hold) across all the clock period. The spectrum will then be given by: 

    
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 







k

ckn

fTj
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where sinc(x)=sin(x)/x and Vn(f) is the spectrum of vn(t). Expression (1.5) means that we have to add an 

infinite number of replicas of Vn(f), shifted by multiples of fck, and then multiply the result of this sum 

by a sinc function. Considering the difference in Eq.(1.4), the spectrum of the residual noise vn-eff is 

given by: 
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Combining the 0-order replica (that is the replica with k=0, which is not shifted along the frequency 

axis) with the Vn(f) spectrum, the following compact expression can be found.  

  

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where: 
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Fig. 1.3. Operation performed on the single signal by the auto-zero amplifier in the frequency domain 

Note that: 

1. The spectrum of vn(t) is partially cancelled by the 0-order (not shifted) replica contained in the 

sum. The cancellation occurs only at low frequencies, where the sinc function is practically 

equal to one.   

2. According to (1.7), the time domain operation applied to the noise is equivalent to (i) 

modulating the noise itself by sinusoidal signals with frequencies multiples of fck; (ii) filtering 

the results of the modulation by filters Hk(f); (iii) summing up all the components created in this 

way. Since modulating the original stochastic process with different modulation frequencies 

produces uncorrelated processes, and filtering does not alter this condition, we can obtain the 

power spectral density of the resulting process by simply summing up the spectral densities of 

each individual component. Therefore: 

  




 
k

ckvnkeffvn kffSfHfS
2

)()(  (1.9) 

where Svn is the power spectral density of the amplifier noise vn.  
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Fig. 1.4. Frequency response of functions |H0(f)|2 and |Hk(f)|2 

 

The behavior of the transfer functions |Hk(f)|
2 is shown in Fig.1.4. Function |H0(f)|

2 multiplies the 

0-order replica of the spectral density, which coincides with the original input noise spectral density of 

the amplifier. Since |H0(f)|
2 is zero for f=0 and stays close to zero for f<<fck, the amplifier offset and low 

frequency noise components are cancelled or strongly reduced. If fck>fk, where fk is the corner 

frequency of the flicker noise, we can state that the flicker noise is practically cancelled from the 

0-order replica. For frequencies f>>fck, |H0(f)|
2 tends to one, and this means that, for these frequencies, 

the amplifier power spectral density is left unchanged. Now we have to consider the contribution of all 

the other replicas. These replicas are added up and then they are multiplied by |Hk(f)|
2, which is 

practically equal to one around the origin (f<<fck) and rapidly tends to zero for higher frequencies. 

Therefore, these replicas will affect only the amplifier noise in an interval around the origin, or, more 

precisely, at frequencies f<fck. In addition, we should consider that a k-order replica (that is a replica 

shifted by kfck) would shift the offset and flicker noise component around the frequency kfck. 

Fortunately, |Hk(f)|
2 is zero for all multiples of fck, so that these contributions are effectively cancelled.  

Considering the graphical representation of Fig.1.3 and supposing that fck>fk, it can be easily 

understood that the contribution of all replicas (except for the 0-order replica) at f<<fck is only given by 

the SBB component. Fig.1.5 shows the contributions of the various replicas, considering only replicas 

that are shifted towards the positive frequencies. For the reasons expressed above, we are interested 

only to the contributions in an interval close to the origin. Furthermore, we have not represented the 

flicker component since, as previously discussed, it gives no significant contribution. Considering the 

finite bandwidth of the amplifier (and thus, of the noise density), the number of replicas that give a 

contribution is B/fck. Repeating this operation for the negative shifts, the total contribution around the 

origin is: 
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Fig. 1.5. Illustration of the fold-over mechanism 

A simplified picture of the resulting spectral density is shown in Fig.1.6 and can be summarized in the 

following way: 

1) In the frequency interval from DC to roughly fck: the flicker noise and offset are no more 

present, but they are substituted by an almost flat spectral density equal to 2B/fck times SBB. This 

phenomenon, which is due to aliasing of the noise density replicas, is called “noise foldover” or 

“noise-foldback”.  

2) At frequencies f>fck, only the 0-order replica, weighted by |H0(f)|
2 is present. Due to the 

behavior of |H0(f)|
2 , the resulting noise density is similar to that of the original amplifier, apart 

from some oscillations (see Fig.1.4), which we have neglected in Fig.1.6. 

SBB

SBB

B

2B
fck

fck  

Fig. 1.6. Simplified residual noise of an auto-zero amplifier 

1.3 Correlated Double Sampling (CDS) 

The CDS technique differs from the AZ in the fact that also the signal, and not only the noise, is 

sampled. Since we cannot sample the signal without sampling also the noise/offset (otherwise we 

would not need offset cancellation techniques at all!), the noise/offset is sampled two times. In 

particular, the CDS is composed of two phases: 

Phase 1: The signal is removed from the input of the system, so that only the offset is present. The 

offset is sampled (first sample).  
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Phase 2: The signal is connected at the input of the system and the result is sampled (second sample). 

Obviously, this second sample includes both the signal and the offset/noise. The difference between the 

first and second sample is the output of CDS. 

Note that phase 1 is identical to the first phase of the AZ technique. The difference is that, in the 

following phase, the AZ amplifier behaves like a time continuous system, while, in the CDS, this never 

happens and the result will be available only at the end of the second phase, when the second sample is 

taken. A system that uses CDS for offset cancellation should be considered a real sampled data system.  

The expression of the CDS output is then given by the following expression: 

  )()()()( Rnnsout tnTvnTvnTvAnTv   (1.11) 

where tR is the time lapse from the first and second sample. As for the AZ, we will indicate both the 

noise and offset component with vn, and we will refer to both with simply the term “noise”. Note that 

both the noise and the output signal are treated as discrete time functions, produced by sampling the 

corresponding time continuous functions.  

The result of CDS is that all noise components that remain practically constant across the time lapse tR 

give the same contribution to the two noise samples and then are cancelled. The contributions that do 

not change significantly across the two samples can be considered “correlated”. The fact that the CDS 

technique is effective for noise components that are correlated across the given time lapse inspired the 

adjective “correlated” for the technique.  

Very often tR is half the clock period, that is tR=T/2. By this consideration, the residual noise is given 

by: 

 )
2

()()(
T

nTvnTvnTv nneffn   (1.12) 

It is important do calculate the DPSD (Discrete Power Spectral Density) of vn-eff(nT). To do this, we can 

refer to the model shown in Fig.1.7, valid only for the noise components.  

The transfer function (in the Fourier domain) from vn to the time continuous signal vtc, is given by: 
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Then, considering that vn(t) is a stochastic process of power spectral density (PSD) Svn(f), the PSD of 

vtc(t) will be: 
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Fig. 1.7. Equivalent block diagram valid only to determine the effective noise.  

 

The effect is weighting the original power spectrum by a sin2 function, as shown in Fig.1.8.. The 

desirable effect is the cancellation of the offset component and the strong reduction of the low 

frequency noise contributions. If fck>>fk, then a complete flicker noise cancellation can be assumed.  
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Fig. 1.8. Multiplication of the original amplifier noise PSD (top) by function |H(f)|2, (bottom) gives the PSD of Vtc.  

The final discrete time noise sequence, vn-eff(nT) is obtained by sampling the vtc(t) noise. As a result, 

replicas of the Svtc(f) PSD are produced and summed up to form the Svn-eff(f) DPSD. Since we are 

dealing with discrete time signals, we are interested only to the result of this sum in the interval 

[-fck/2, fck/2]. For the reasons expressed above, we can consider that the power spectral density of Vtc is 

practically equal to: 
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In addition, consider the following property of sin2, when a shift by an even or odd multiple of fck is 

applied: 
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This property is graphically shown in Fig.1.9. Combining two replicas obtained by an even shift and an 

odd shift gives a 4SBBsin2+4SBBcos2 term, which becomes frequency independent and equal to 4SBB. As 

in the AZ the total number of replicas that gives a contribution at low frequencies is 2B/fck. Since in the 

CDS every couple of replicas (odd+even) gives the contribution 4SBB, the final DPSD will be: 

 
BB

ck

effvn S
f

B
fS 4)( 

 (1.17) 

fck
2fck

3fck
4fck

5fck-fck 0

4SBB

odd shift

even shift: 4S sin ( fT/2)BB
2


odd shift: 4S cos ( fT/2)BB
2


even shift

 

Fig. 1.9. Replicas generated by the final sampling of vtc, producing the effective noise vn-eff 

1.4 Chopper Modulation (CHS). 

Modulation can be used to obtain a virtually offset-free amplifier. The scheme is shown in Fig.1.10. 

The signal, including DC components, is shifted to higher frequencies by means of multiplication by a 

sinusoidal signal. At this point, it can be processed by the amplifier “A” in a frequency interval that 

does not include DC and flicker noise.  

A

V sin( t)M w

vs
voutLPF

 

Fig. 1.10. Possible modulation approach base on sinusoidal function (not practical).   

Demodulation is operated on the amplified signal by multiplication by the same sinusoidal signal. The 

demodulator (second multiplication) shits the offset and flicker noise of the amplifier to high 
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frequencies, where it is suppressed by the low pass filter (LPF). To improve offset cancellation, the 

amplifier can be an AC coupled amplifier.  

This technique is not suitable to be implemented in the form proposed in Fig.1.10. The main problem is 

the modulator: analog multipliers (e.g. Gilbert cells) are blocks that introduce additional offset and 

noise. They are suitable for being placed at the output of the amplifier, where the signals are larger and 

their offset and noise contributions can be neglected, but completely unsuitable to be placed at the 

input.  

In order to overcome these limitations, the sinusoidal modulating and demodulating signal is replaced 

by a square waveform, as shown in the block diagram of Fig.1.11. This kind of modulation is called 

“chopper modulation”. The advantage is that chopper modulation can be obtained using only switches, 

which add minimal noise and offset. Amplifiers that incorporate chopper modulation are called 

“chopper amplifiers” or “CHopper Stabilized amplifiers” (CHS). The term “stabilized” derives from 

the fact that chopper modulation, like CDS and AZ, eliminates offset and also offset temperature drifts. 

Indeed, the latter generate output voltage variations that reflect local temperature fluctuations, giving 

the impression that the amplifier is not stable. Application of CHS stops this output signal 

“wandering”, so that it was originally seen as a sort of “stabilization”. Examples of circuits that 

perform chopper modulation will be described later. Here, we will analyze the effect of chopper 

modulation on signal and noise. The action of switch-based chopper modulators is equivalent to 

multiplying the signal by a dimensionless square-waveform of unity amplitude, indicated with m(t) in 

Fig.1.11.  

Avs
voutLPF

m(t)

1

-1

0 m(t)

voA vdmviA

T=1/fck

modulator demodulator

 

Fig. 1.11. Block diagram of a chopper amplifier (top) and m(t) dimensionless square waveform (bottom)  

 

To understand the operation of the scheme of Fig.1.11, we start by considering a constant input signal. 

As a first approximation, we will suppose that the amplifier has an infinite bandwidth, so that its 

transfer function is simply a multiplication by the gain A. The output of the amplifier, indicated with 

VoA, is a square wave of amplitude AVs. The demodulator multiplies this square wave by the same m(t) 

signal. As Fig.1.12 clearly shows, the result is simply an amplified replica of the signal. It can be easily 
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demonstrated that, whatever signal we have at the input, the succession of modulation and 

demodulation does not alter the signal itself, which is then simply amplified.  

On the other hand, the input offset voltage of the amplifier is not modulated by the input modulator: it 

appears at the output of the amplifier, amplified by gain A. The amplified offset (-Avio) is processed 

only by the demodulator, which produces a square waveform of amplitude Avio and zero mean value. 

This square wave deriving from offset modulation (called “offset ripple”, “chopper ripple” or “chopped 

offset”) includes only frequency components at fck or above, where fck is the frequency of the 

modulating waveform m(t). The output low pass filter LPF is designed to have a cut-off frequency 

fH<fck  in order to reject the offset ripple.  

In summary, the signal is modulated and demodulated, while the offset (and noise ) is only processed 

by the demodulator that shifts it to high frequencies so that it can  be rejected by the LPF.  

To better understand the transformations operated by the chopper modulation on signal and noise, it is 

convenient to use the frequency domain representation. The square waveform m(t) can be decomposed 

into a Fourier series as: 
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Fig. 1.12. Diagrams illustrating the operations performed on a dc signal by the chopper amplifier 

 

Therefore, the modulator shifts the signal spectrum (Fourier transform) across all odd multiples of 

frequency fck. The replica shifted at kfck is multiplied by Ck. This process is graphically represented in 

Fig.1.13. The signal is then amplified by A and finally demodulated. Demodulation consists in shifting 

again the spectrum by odd multiples of fck and multiplying the replicas by the corresponding Ck 

coefficients. Looking at Fig.1.13, it can be easily seen that a replica that was shifted at kfck by the 
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modulator, goes back into the baseband (in the original position) by the shift –kfck applied by the 

demodulator. In this sequence, the replica is multiplied by CkAC-k. Since: 

 *

kk CC   (1.19) 

then, the spectrum in the baseband at the output of the demodulator is given by: 
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The sum of the |Ck|
2 is the power of the waveform m(t), which is equal to one. Therefore Eq.(1.20) 

states the signals is simply amplified by A. 
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Fig. 1.13. Operations performed on the signal in the frequency domain 

Let us consider what happens to the amplifier noise. This is graphically shown in Fig.1.14. The noise 

power spectral density at the output of the amplifier is shown on top of the figure. This stochastic 

process is processed by the demodulator, that produces replicas of the noise for each component of the 

m(t) square waveform spectrum. Note that m(t) has zero mean value, so that the component at zero 

frequency is also zero. Therefore, there is not a replica with zero frequency shift. For this reason, the 

offset and flicker noise components do not affect the baseband region. Supposing that fck>>fk, all 

replicas give only a baseband contribution proportional to A2SBB. In particular, a replica shifted by kfck 

gives a baseband contribution equal to A2|Ck|
2SBB.  
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As a result, the residual baseband noise is given by: 

 
BBBB

k

kvout SASCAfS
222

)(  




 (1.21) 

Note that Eq.(1.21) gives only the contribution in the baseband, while, at the demodulator output, offset 

and flicker noise peaks are still present around fck, 3fck, 5fck, etc. Elimination of these out-of band noise 

components is the purpose of the LPF, which, as shown in Fig.1.14, limits the bandwidth to frequencies 

f<fck. It is important to observe that the LPF limits also the signal bandwidth.   
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Fig. 1.14. Operations performed on the noise PSD by the chopper amplifier 

For most applications, the quantity of interest is not the output noise but the input referred noise. 

Indicating the input referred noise spectral density with Svn-eff,  then Svn-eff= Sout /A
2. Therefore: 

 BBeffvn SfS  )(  (1.22) 

So far, we have considered that the amplifier bandwidth is infinite. This simplifying assumption is 

clearly not realistic since, in all real cases, the amplifier will be characterized by a finite bandwidth B. 

We will suppose that the amplifier has a low-pass frequency response. As far as the signal is 

concerned, the amplifier filters the spectrum at the output of the modulator. The result, represented in 

Fig.1.15, is that replicas at f>B are rejected.  
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Fig. 1.15. Effect of the finite bandwidth on the signal spectrum 

 

Therefore, the maximum multiple of fck that gives a replica within the amplifier bandwidth is B/fck. The 

number of replicas that the demodulator can bring back to baseband is then finite.  As a result, Eq. 

(1.20) becomes: 

 
















 

 ck

s

N

Nk

kout
f

B
NfVCAfV with )()(

2
 (1.23) 

In practice, this means that the actual amplifier gain is given by: 

 1with '
2









 



N

Nk

kCAA  (1.24) 

The net effect is then a reduction of the actual amplifier gain. This phenomenon can be understood also 

in the time domain, if we consider a constant input signal of value VS. Figure 1.16 is analogous to 

Fig.1.12, but with the hypothesis of infinite amplifier bandwidth removed. The modulator applies a 

square waveform of amplitude VS to the amplifier input. Due to the finite bandwidth, the amplifier 

settles to the final value after a transient, which can be roughly considered 1/B long. The result is 

sketched in Fig.1.16 (signal VoA). The demodulator multiplies this signal by m(t), producing the signal 

Vdm(t). Differently form the case of infinite bandwidth (Fig.1.12), this signal is not constant but 

includes impulses that reach –AVS and repeat with frequency 2fck . The filter LPF cuts all frequency 

components for f>fH, where fH is made smaller than fck, to reject out-of-band noise, as explained earlier. 

Therefore, Vout is constant and equal to the mean value of Vdm. Due to the negative impulses, the mean 

value is smaller than AVS, demonstrating that the actual amplifier gain is A’<A.  
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Fig. 1.16. Illustration of the effect of a finite bandwidth in the time domain for an input dc signal 

 

The finite bandwidth of the amplifier slightly affects also the noise. Considering the difference for a 

case of finite bandwidth is that the noise spectrum SoA(f), taken at the amplifier output port, drops to 

zero for f>B. As a result, replicas with a frequency shift kfck>B do not give contribution in the 

baseband. Therefore, also for noise, the maximum k value is B/fck. Equation (1.21) becomes:  

 







 

 ck

BB

N

Nk

kvout
f

B
NSCAfS with )(

22
 (1.25) 

The input referred noise density will be obtained by dividing Svout by the effective gain (squared), 

which, for a finite bandwidth is A’=A, is given in Eq.(1.24). Then: 

 BB
vout

effvn S
A

fS
fS







1)(
)(

22
 (1.26) 

Since <1, in the case of finite bandwidth the Svn-eff is slightly higher than SBB. This effect is generally 

considered negligible since, even for the minimum required bandwidth (fck=B), 1/ is only equal to 

1.23. Therefore Svn-eff  is only 23 % higher than SBB. For B>10 fck the difference with respect of the ideal 

case is less than 5%. 

An important aspect of the chopper amplifier architecture shown in Fig.1.11 is that the amplifier gain 

cannot be too large. If the input signal vs, is zero, the signal at the amplifier input (viA in  ) is also zero, 

so that the amplifier output VoA is equal to Avn. This signal includes a large constant term, due to the 
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amplifier offset, and given by Avio. The demodulator transforms it in a zero-mean square waveform 

(chopper ripple) which is rejected by the LPF. However, it is necessary that -Avio is not too large, 

otherwise the amplifier output saturates and, when we apply a non-zero input signals, it does not 

respond to it as required. Even if the amplifier does not saturate, the offset can shift the zero-signal 

output voltage to a value close to the output range limit, reducing the swing available for the signal. 

Therefore, the gain of the amplifier should not exceed a maximum value that, for the maximum offset 

predicted for that amplifier, excessively reduces the signal range. For example, for a maximum input 

offset of 2 mV and a maximum output swing of 1 V, an amplifier gain of 100 would result in a 

maximum output offset of 200 mV, producing a 20 % reduction of the available output swing for the 

signal.  

1.5 Examples of circuits implementing the offset cancellation techniques.  

The described offset cancellation (and flicker noise reduction) techniques can be implemented with a 

huge variety of different circuits. Due to the importance of this subject, the research activity on offset 

cancellation techniques is still intense, leading to an ever-growing number of different architectures. In 

this paragraph, we will limit to very basic circuits. We will start from a time continuous 

instrumentation amplifier and we will apply the various techniques to it in order to cancel its offset and 

low frequency noise.  

Fig.1.17 shows a method that can be used to apply AZ or CDS to the amplifier A. The numbers close to 

the switches (1 or 2) indicate the phase where they are closed.  

 

A

S1

S2

S3
C1

2

1

vs vout

voA

 

Fig. 1.17. Simple implementation of the auto-zero technique 

The configurations of the circuit in the two phases are shown in Fig.1.18. In the first phase the 

amplifier input is shorted to gnd, so that, considering Eq.(1.1), the amplifier output signal VoA is equal 

to )1(

nAv , where vn is the input voltage error, including noise and offset, and the superscript (1) means 

that this signal refer to phase 1. Since Vout is also shorted to ground, the VoA value is stored into 

capacitor C.  
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Fig. 1.18. Signals in the two phases of the circuit in Fig.1.17. 

 

In phase 2 the amplifier is connected to the input signal and the output voltage Vout is given by: 

       )1()1()2(
)()()()( nnsnnsout vtvtvAAvtvtvAv   (1.27) 

During the whole phase 2 the circuit behaves like a time continuous amplifier with an effective input 

noise given by )1(
)( nn vtv  . Considering that phase 1 and 2 are the AZ and normal operation phases, 

respectively, and noting that )1(

nv  is the noise voltage sampled at the end of phase 1, we conclude that 

Eq.(1.27) is equivalent to Eq.(1.2), proving that the circuit of Fig.1.17 actually performs the auto-zero 

procedure.  

CDS can be also obtained with the circuit of Fig.1.17, by simply adding a block that samples Vout at the 

end of phase 2. In this case, Eq.(1.27) becomes:  

   )1()2()2()2(

nnsout vvvAv   (1.28) 

where the superscript (2) indicates a quantity sampled at the end of phase 2. Since )1(

nv is sampled at the 

end of phase 1, Eq. (1.28) clearly represents CDS operation.  

Possible timing for the clock that controls the switches is shown in Fig.1.19, where phase 1 and 2 are 

coded by a clock state of 0 and 1, respectively. Note that, in the case of AZ, it is necessary that phase 1 

(i.e. the AZ phase) lasts much less than phase 2. On the contrary, this restriction does not apply to the 

CDS, in which phase 1 and 2 may have similar duration. CDS also requires the output signal to be 

sampled at the end of phase 2, as indicated in the figure. Sampling can be followed by analog-to-digital 

conversion, producing a discrete time signal or by a circuit that keep the sampled value constant until 

the next sample producing a “piece-wise constant” time continuous signal (sample and hold).  
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Fig. 1.19. Clock signals for the circuit in Fig.1.17 implementing AZ (top) and CDS (bottom) 

 

The scheme of a simple chopper amplifier is shown in Fig.1.20. Both the modulator and demodulator 

are implemented with a switch matrix called “chopper modulator”. Considering the modulator at the 

amplifier input, we observe that in phase 1 vin=vs, while in phase 2, vin=vs. This is equivalent to 

multiplying vs by the waveform m(t), assuming that m(t) is 1 in phase 1 and 1 in phase 2. Similarly, 

the demodulator, which is identical to the modulator, multiplies the amplifier output signal by m(t). 

Therefore, the circuit of Fig.1.20 is equivalent to the block diagram of Fig.1.11. The advantage of this 

circuit is that the modulator and demodulator are composed only by switches, which can be easily 

implemented with pass transistors or pass-gates in CMOS technology. Note that the structure of the 

chopper modulators requires the signals to be differential. Since this requirement applies to both the 

input and output of the amplifier, fully-differential architectures are necessary. Single-ended 

architectures are also possible but they are based on different switch/amplifier configurations that 

exhibit poorer performances.  
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Fig. 1.20. Simplified block diagram of a chopper amplifier 
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1.6 Comparison between AZ, CDS and CHS. .  

First, it should be observed that, in practical use, there is a certain degree of confusion among these 

terms. Indeed, AZ is often used to indicate also CDS, since, as we have seen, CDS can be obtained by 

properly sampling the output of an AZ amplifier. Furthermore, the term “chopper” is used also for AZ 

and CDS, since it was inspired by the operation of the switches that, with their continuous opening and 

closing, seem to be “chopping” the signal. This impression was enforced by early chopper amplifiers 

(developed in late ‘40s), which used electromechanical switches (relays), whose operation resembled 

the movement of a cutting tool, such as an axe. Since all the tree techniques use switches, they are often 

incorrectly referred to as “chopper”. This confusion even involves datasheets and technical notes of 

integrated circuits.  

In spite of this, it is important to keep these techniques well distinguished, since they have peculiar 

characteristics that should be kept in mind when choosing which one is optimal for a particular 

application. The main characteristics of the three techniques are summarized in Table 1.1.  

 

Method 
Signal 

bandwidth (BS) 

Residual baseband noise 

(f<fck/2) 

fck 

constraints 
Particular characteristics 

AZ BS=B BB

ck

S
f

B2
 fck<<B 

Maintains the original time 

continuous frequency 

response of the amplifier.  

CDS BS< fck/2 BB

ck

S
f

B4
 fck<B/3 Fully sampled data system.  

CHS BS<fck SBB fck+BS<B 

Requires fully-differential 

architecture and the 

presence of an effective 

low pass filter.  

Table 1.1. Characteristics of the three techniques compared 

 

Many of these characteristics have been already discussed in previous paragraphs. The limitations on 

the signal bandwidth imposed by the CDS technique are simply due to the fact that also the signal is 

sampled, so that BS<fck/2 to avoid signal aliasing. In the case of chopper amplifiers, the BS limit is 

imposed by the LPF, whose upper band limit should be lower than the clock frequency, to reject the 

offset and flicker noise shifted at higher frequencies by the demodulator. Considerations about the filter 

implementation indicate that in practical cases BS<<fck.  

As far as the frequency constraints are concerned, we have to observe that an amplifier responds to an 

input step in a time that is roughly equal to 1/B. In AZ and CDS circuits, the amplifier input is shifted 

from zero (phase 1) to the input signal (phase 2) and back in any clock cycle. For correct operation, it is 

necessary that the amplifier have enough time to settle to the final value after each commutation. In 
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AZ, the critical phase is phase 1, since it is the shorter one. Since the settling time is roughly equal to 

1/B, we can write for AZ: 

 Tt
B

AZ 
1

 (1.29) 

Since T=1/fck, we can easily obtain that fck should be much lower than the amplifier bandwidth.  

In the case of CDS, the two phases can be of the same duration. Therefore, the amplifier settling time 

should be shorter than T/2. Thus, we have to impose: 1/B<T/2, which leads to fck<2B. This is a 

theoretical limit. We have indicated fck<3B in Table 1.1 to allow a greater margin, as derived by 

common practice.  

In the case of chopper amplifiers, the limitation indicated in Table 1.1 is due to the fact the amplifier 

bandwidth should include at least the first replica of the input signals produced by the modulator.  

Finally, we will consider the residual noise in the base-band region. In this respect, the solution that 

performs better is the CHS amplifier, since it does not suffer from noise fold-over phenomena, so that 

the residual noise density is simply SBB. In the case of AZ and CDS, it could seem that the CDS 

residual noise density is twice that of AZ. However, for the limitation of the clock frequency, B/fck is 

much greater than one (up to 1000) in AZ while it can be as small as 3 in CDS. For these reasons, the 

residual noise density is generally much higher in AZ than in CDS.  

This limitation of the AZ amplifier can be circumvented using a so-called “ping-pong” architecture[2]. 

A simplified representation of a ping-pong AZ amplifier is shown in Fig.1.21.  

 

 

 

Fig. 1.21. Principle of operation of the ping-pong auto-zero amplifier 

In practice, the circuit is formed by two nominally identical structures, indicated as “ping” stage and 

“pong” stage. Each stage is a complete AZ amplifier. The ping and pong stages are clocked in a 

complementary way, so that when the ping stage is in the auto-zero phase, the pong stage is active (i.e. 
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it amplifies the signal) and vice versa. In this way, each stage can spend much more time in the AZ 

phase (up to T/2), since the signal is handled by the other stage and a continuous-time path from the 

input to the output is provided in the whole clock period. With the ping-pong architecture, the AZ 

amplifiers do not need to respect condition (1.28), so that the bandwidth and clock frequency are 

subject to the same (more relaxed) limitations as the CDS  

In conclusion, AZ techniques are to be preferred if we want to obtain an amplifier that can be used as a 

normal time-continuous circuit. AZ is particularly suitable for operational amplifiers since the original 

frequency response is maintained and the amplifier can be used in closed loop application with 

unaltered phase margin. This is paid with a relatively large baseband noise density. A better noise 

performance can be obtained by using ping-pong architectures, which, on the other hand, need 

duplication of the AZ stage, resulting in greater silicon area occupation and power consumption.  

CDS offers a better noise performance but it is a sampled data approach. This is the technique to be 

preferred when the input signal is already sampled, as it happens in switched capacitor circuits. If we 

apply the CDS technique to a time-continuous amplifier, designed to read a time continuous signal, we 

should be aware that the circuit does not sample only the signal but also the noise of the source (e.g. 

thermal noise associated to the source resistance). Even in the case that the signal is band-limited for its 

nature, an anti-aliasing filter is necessary to limit the noise bandwidth, which, otherwise, would be 

aliased and replicated several times in the base-band.  

Finally, CHS is by far the most effective technique in terms of residual noise. On the down side, it 

imposes similar restrictions to the signal bandwidth as the CDS, since it deeply changes the original 

amplifier frequency response, mainly due to the required output LP filter. In addition, fully-differential 

architectures are recommended for the implementation of chopper modulation amplifiers, resulting in 

increased topological complexity. Another important drawback of chopper amplifiers is that 

implementation of the LPF using only integrated components (capacitors and resistors) is challenging 

and involves large silicon area occupation.   
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