
Exercise: Opamp Design

Process parameters

Parametro	n-MOS	p-MOS
$\mu_n Cox, \mu_p Cox$	240×10 ⁻⁶ A/V ²	50×10 ⁻⁶ A/V ²
V _{tn} ,V _{tp}	0.43 V	-0.56 V
γ (effetto body)	0.44 V ^{1/2}	0.59 V ^{1/2}
k _λ	50 V/µm	50 V/µm
α (coeff. termico della Vt)	-1 mV / °C	1 mV / °C
$N_{\text{fn}}, N_{\text{fp}}$ (fattore rumore flicker)	6×10 ⁻¹⁰ V ² μm ²	2×10 ⁻¹⁰ V ² µm ²
C _{Vt} (matching Vt)	8.5 mV·μm	8.5 mV·μm
C_{β} (matching beta)	0.03 µm	0.03 μm
C _{OX}	6.2 fF/ μm ²	6.2 fF/ μm ²
L _C (lunghezza minima D/S)	1.2 μm	1.2 μm
CJ	1.8 fF/µm ²	1.8 fF/µm ²
Cgdo	0.6 fF/µm	0.6 fF/µm
t _{ox}	5.6 nm	5.6 nm

Specifications

- An offset voltage (absolute value) smaller than 3 mV
- A GBW of **10 MHz** for a load capacitance (C_L) up to **10 pF**.
- A phase margin around **70°** in unity gain configuration

Offset specification

• An offset voltage (absolute value) smaller than 3 mV

$$3\sigma_{vio} = 3 \text{ mV} \implies \sigma_{vio} = 1 \text{ mV}$$

$$\sigma_{vio}^{2} = \frac{A}{W_{1}L_{1}} + \frac{B}{W_{3}L_{3}} \qquad A = C_{Vtp}^{2} + \left[\frac{(V_{GS} - V_{t})_{1}}{2}C_{\beta p}\right]^{2} \qquad B = F^{2}C_{Vtn}^{2} + \left[\frac{(V_{GS} - V_{t})_{1}}{2}C_{\beta n}\right]^{2}$$

$$C_{Vtp} = C_{Vtn} = 8.5 \text{ mV} \cdot \mu \text{m}$$
$$C_{\beta p} = C_{\beta n} = 0.03 \mu \text{m}$$

In order to reduce A and B and then the total area, we choose:

$$|V_{GS} - V_t|_1 = 100 \text{ mV}$$
$$F = \frac{g_{m3}}{g_{m1}} = \frac{|V_{GS} - V_t|_1}{(V_{GS} - V_t)_3} = \frac{1}{3}$$

Offset specification

$$|V_{GS} - V_{l}|_{1} = 100 \text{ mV}$$

$$F = \frac{g_{m3}}{g_{m1}} = \frac{|V_{GS} - V_{l}|_{1}}{(V_{GS} - V_{l})_{3}} = \frac{1}{3} \qquad (V_{GS} - V_{l})_{3} = (V_{GS} - V_{l})_{5} = 300 \text{ mV}$$

$$A = C_{Vtp}^{2} + \left[\frac{(V_{GS} - V_{l})_{1}}{2}C_{\beta p}\right]^{2} \qquad B = (FC_{Vtn})^{2} + \left[\frac{(V_{GS} - V_{l})_{1}}{2}C_{\beta n}\right]^{2}$$

$$C_{Vtp} = C_{Vtn} = 8.5 \text{ mV} \cdot \mu \text{m}$$

$$FC_{Vtn} = 2.83 \text{ mV} \cdot \mu \text{m}$$

$$C_{\beta p} = C_{\beta n} = 0.03 \ \mu \text{m}$$

$$A = 74.5 \times 10^{-6} \text{ V}^{2} \mu \text{m}^{2}$$

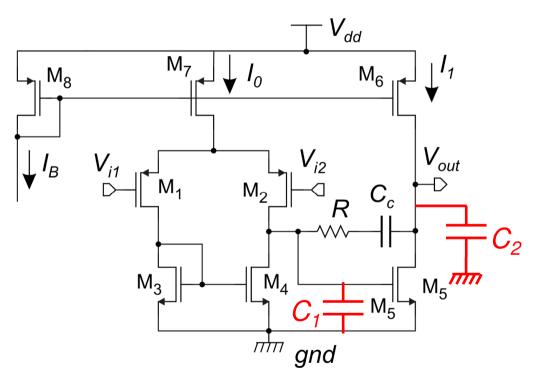
$$B = 10.3 \times 10^{-6} \text{ V}^{2} \mu \text{m}^{2}$$

Offset specification

A=74.5×10⁻⁶ V² μ m² B=10.3×10⁻⁶ V² μ m²

Optimum area distribution between differential pair and current mirror

$$a_{opt} = \left(\frac{W_3 L_3}{W_1 L_1}\right)_{opt} = \sqrt{\frac{B}{A}} = 0.37$$


$$W_1 L_1 = \frac{1}{\sigma_{vio}^2} \left(A + \frac{B}{a_{opt}} \right) \cong 102 \ \mu \text{m}^2$$
$$W_3 L_3 = a_{opt} W_1 L_1 \cong 38 \ \mu \text{m}^2$$

With only the offset specification, we cannot determine other amplifier parameters.

Adding the GBW - phase margin specification we can go further into the amplifier design

GBW and phase margin

- A GBW of 10 MHz for a load capacitance (C₁) up to 10 pF.
- A phase margin around 70° in unity gain configuration

guration

$$\sigma = \frac{\omega_2}{\omega_0} = 3$$
Hypotheses:
$$\begin{cases} C_1 << C_c, C_2 \\ C_2 = C'_2 + C_L \cong C_L \end{cases}$$

$$g_{m5} = 2\pi\sigma C_L \cdot GBW \cong 1.88 \text{ mS}$$

$$g_{m1} = \frac{1}{\sigma} \frac{C_C}{C_L} g_{m5} \qquad \text{Using the rule of thumb } C_C = C_L \end{cases}$$

$$g_{m1} = \frac{g_{m5}}{\sigma} \cong 0.63 \text{ mS}$$

P. Bruschi – Design of Mixed Signal Circuits

 σ

Calculation of device aspect ratios

$$g_{m5} \equiv 1.88 \text{ mS } g_{m1} \equiv 0.63 \text{ mS}$$

$$g_{m5} = \mu_n C_{OX} \frac{W_5}{L_5} (V_{GS} - V_t)_5 \implies \frac{W_5}{L_5} = \frac{g_{m5}}{\mu_n C_{OX} (V_{GS} - V_t)_5} = 26.1$$

$$\mu_n C_{ox} = 240 \times 10^{-6} \text{ A / V}^2 \qquad 300 \text{ mV}$$

$$\frac{W_1}{L_1} = \frac{g_{m1}}{\mu_p C_{OX} (V_{GS} - V_t)_1} = 126$$

$$\mu_p C_{ox} = 50 \times 10^{-6} \text{ A / V}^2 \qquad 100 \text{ mV}$$

$$g_{m3} = F \cdot g_{m1} = 0.21 \text{ \mu S} \qquad \frac{W_3}{L_3} = \frac{g_{m3}}{\mu_n C_{OX} (V_{GS} - V_t)_3} = 2.92$$

$$300 \text{ mV}$$

Determination of M1, M3 and M5 size

From offset
specification

$$W_{1}L_{1} = 102 \ \mu\text{m}^{2}$$

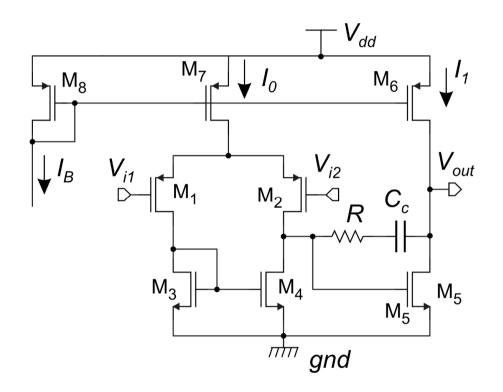
$$\Rightarrow W_{1} = \sqrt{W_{1}L_{1} \cdot \frac{W_{1}}{L_{1}}} \cong 114 \ \mu\text{m}$$

$$L_{1} = W_{1} \cdot \left(\frac{W_{1}}{L_{1}}\right)^{-1} \cong 0.9 \ \mu\text{m}$$
From GBW
specification

$$W_{3}L_{3} = 38 \ \mu\text{m}^{2}$$
From F=3

$$\frac{W_{3}}{L_{3}} = 2.92$$

$$\Rightarrow W_{3} = \sqrt{W_{3}L_{3}\frac{W_{3}}{L_{3}}} \cong 10.5 \ \mu\text{m}$$

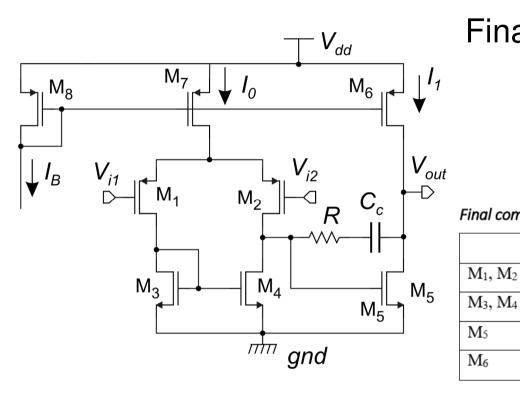

$$L_{3} = W_{3} \cdot \left(\frac{W_{3}}{L_{3}}\right)^{-1} \cong 3.6 \ \mu\text{m}$$
From L₅=L₃
arbitrary constraint
From GBW
specification

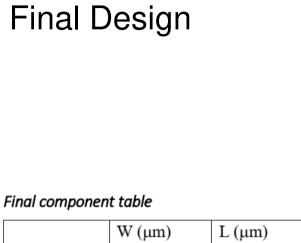
$$\frac{W_{5}}{L_{5}} = 26.1$$

$$\Rightarrow W_{5} \cong 94 \ \mu\text{m}$$

Determination of M6 and M7 size $I_{D6} = I_{D5}$ $|V_{GS} - V_t|_6 = (V_{GS} - V_t)_5 \quad \text{(Arbitrary constraint)}$ $I_D = \frac{\beta}{2} \left(V_{GS} - V_t \right)^2$ $\beta_6 = \beta_5$ $\mu_p C_{OX} \frac{W_6}{L_6} = \mu_n C_{OX} \frac{W_5}{L_5} \implies \frac{W_6}{L_6} = \frac{\mu_n C_{OX}}{\mu_p C_{OX}} \frac{W_5}{L_5} \cong 125$ In order to introduce the penalization in the gain we can set: In order to introduce no penalization in terms of DC L₆=L₅=3.6 μm $L_7 = L_6 = 3.6 \ \mu m$ (Arbitrary constraint) $W_6 = L_6 \left(\frac{W_6}{L_c}\right) = 450 \quad \mu m$

Bias and supply currents




$$I_{0} = 2I_{D1} \cong 2g_{m1}V_{TE1} = 2g_{m1}\frac{(V_{GS} - V_{t})_{1}}{2} \cong 63 \ \mu\text{A}$$
$$I_{1} \cong g_{m5}V_{TE5} = g_{m5}\frac{(V_{GS} - V_{t})_{5}}{2} \cong 282 \ \mu\text{A}$$

In order to simplify the design:

$$I_B = I_0 = 63 \ \mu A \implies M8 = M7$$

Total supply current (including I_B): $I_0 + I_1 + I_B \cong 408 \ \mu A$

0.9

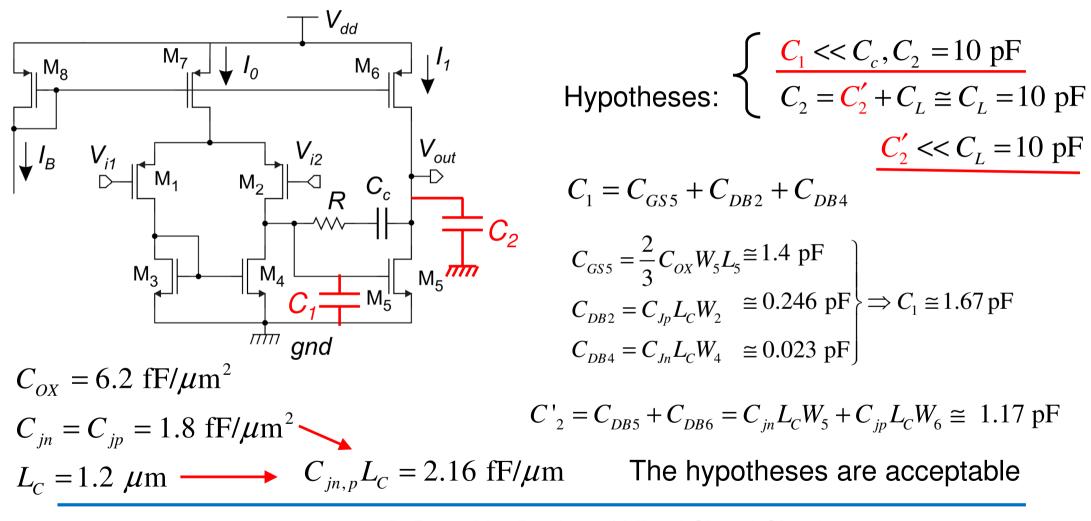
3.6

3.6

3.6

114

10.5


94

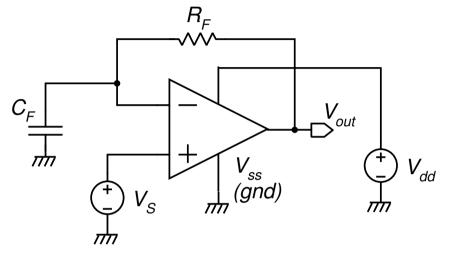
450

$$V_{dd} = 2.5 \text{ V}$$

 $C_C = C_L = 10 \text{ pF}$
 $R_C = \frac{1}{G_{m2}} = \frac{1}{g_{m5}} = 532 \Omega$

M7	101	3.6
M8	101	3.6
R	532 Ω	
Cc	10 pF	
I _B	63 µA	

Check of initial hypothesis validity


Other performance parameters

$$S_{Vth} \cong 2\frac{8}{3}kT\frac{1}{g_{m1}}(1+F) \cong 4.5 \times 10^{-17} V^2 / H_z \quad (6.7 \text{ nV} / \sqrt{\text{Hz}})$$

$$N_{fn} = 6 \times 10^{-10} V^2 \mu \text{m}^2 N_{fp} = 2 \times 10^{-10} V^2 \mu \text{m}^2$$
Flicker corner frequency
$$k_F = 2\left(\frac{N_{fp}}{W_1 L_1} + F^2 \frac{N_{fn}}{W_3 L_3}\right) \cong 7.42 \times 10^{-12} V^2$$
at $f_k \Rightarrow S_{vF} = \frac{k_F}{f} = S_{VTh}$
Slew rate:
$$s_R = \frac{I_0}{C} = 6.3 \text{ V/\mus}$$

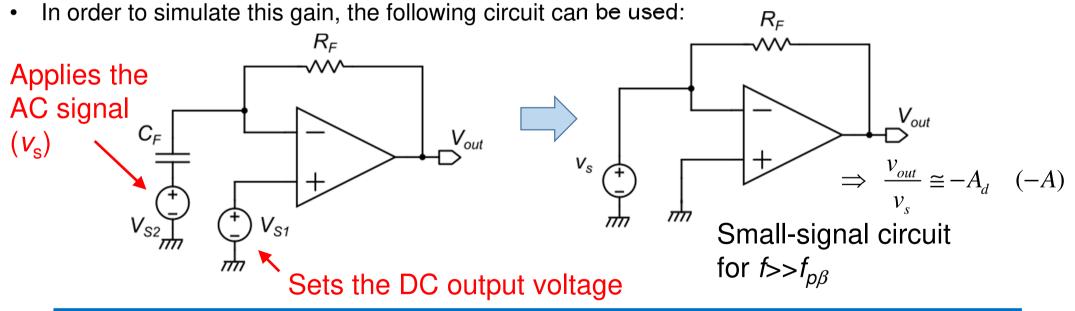
 C_{c}

Test-Bench for frequency response

In DC: $V_{out} = V_S$. Setting a proper DC value for V_{S} we can set a correct operating point (e.g. $V_{\rm S} = V_{\rm dd}/2$)

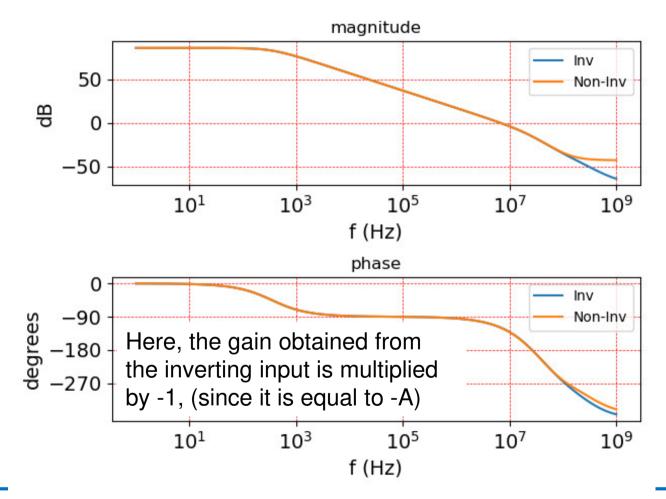
 $R_F = 1 \text{ G}\Omega$ Example: $C_F = 1 \text{ F}$

$$\Rightarrow f_{p\beta} = 1.59 \times 10^{-10} \text{ Hz}$$


if, for all frequencies of interest, $|\beta A| \ll 1$, then: we can consider that the feedback is not present, thus in terms of small signal: RF Vout ΠП

$$v_{s} \bigoplus_{mm} \qquad \text{if } R_{F} \gg R_{out}$$

$$\text{and } A_{C} \text{ is } \ll A_{D} \qquad \Rightarrow \frac{v_{out}}{v_{s}} \cong A_{d} \quad (A)$$


Amplification from the inverting terminal to the output

- The open-loop gain that we have found with the testbench of previous slide was not strictly the differential mode gain.
- That was the gain from the non-inverting input to the output, which is actually a combination of the differential mode and common mode gains.
- Often, the gain that matters for the stability, is the gain from the <u>inverting input</u> and the output, since in most closed-loop circuits the feedback signal stimulates only the inverting input.

P. Bruschi – Design of Mixed Signal Circuits

Difference between the gains measured from the inverting and non-inverting terminals for the op-amp that we have designed (from simulations)

The difference occurs only at frequencies $>> f_0$. Then, to study the stability, we can use one or the other gain, indifferently

The difference is due to the different impact of the first-stage singularities (mirror pole, tail pole)

For different designs (different topologies, different specifications, etc.), the differences may be more important.

P. Bruschi – Design of Mixed Signal Circuits