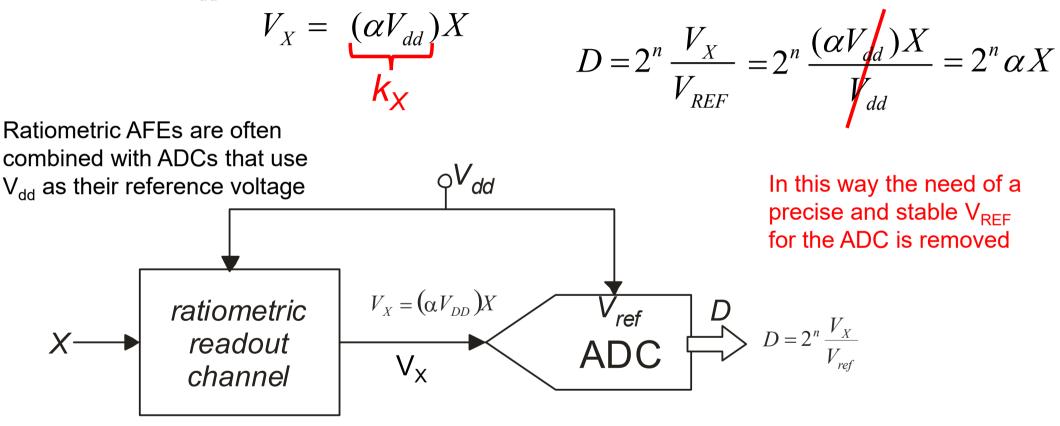

SC charge amplifier design

Sensor: 80 fF $\leq C_X \leq 180$ fF C_R =80 fF ΔC_{FS} =100 fF


Design choices:

 $V_R = V_{dd} = 3.3 \text{ V} \text{ (ratiometric)}$ $C_2 = \Delta C_{FS} = 100 \text{ fF}$

$$V_{out}^{(2)} = \frac{\Delta C}{C_2} V_R$$
$$0 \le V_{out}^{(2)} \le V_{dd}$$

Ratiometric systems

In a ratiometric system, the sensitivity is proportional to the supply voltage $V_{\rm dd}.$

Dynamic range (only *kT/C* contribution is analyzed)

$$DR = \frac{V_R}{4\sqrt{kT/\Delta C_{FS}}} \sqrt{\frac{\Delta C_{FS}}{(C_2 + C_X + C_R)}} = 2174 \quad (66.7 \text{ dB}, 11.1 \text{ bit})$$

$$4125 \qquad 0.527 \qquad \text{worst case: } C_X = 180 \text{ fF}$$

$$4\sqrt{\frac{kT}{\Delta C_{FS}}} \cong 4\sqrt{\frac{4 \times 10^{-21} \text{ J}}{100 \times 10^{-15} \text{ F}}} = 0.8 \text{ mV}$$

Capacitance resolution

$$\Delta C_n = \frac{\Delta C_{FS}}{DR} = \frac{100 \text{ fF}}{2174} = 0.045 \text{ fF} = 45 \text{ aF}$$

Example: a pressure sensor with linear response, such that:

$$\Delta C = 0 \Rightarrow p = 0 \text{ Pa (0 mBar)}$$

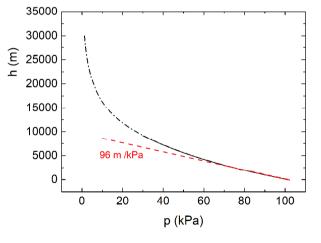
$$\Delta C = 100 \text{ } fF \Rightarrow p = 200 \text{ kPa (2 Bar)}$$

pressure resolution = $\delta p = \frac{\Delta p_{FS}}{DR} = \frac{200 \text{ kPa}}{2174} \cong 90 \text{ Pa} (0.9 \text{ mBar})$

If we have a sensor with all capacitances scaled up by a factor of 10:

0.8 pF
$$\leq C_{X} \leq 1.8$$
 pF
Sensor: $C_{R}=0.8$ pF
 $\Delta C_{FS}=1$ pF
 $DR = \frac{V_{R}}{4\sqrt{kT/\Delta C_{FS}}} \sqrt{\frac{\Delta C_{FS}}{(C_{2} + C_{X} + C_{R})}} = 6956$ (76.8 dB)
 $4\sqrt{\frac{kT}{\Delta C_{FS}}} \approx 4\sqrt{\frac{4 \times 10^{-21} \text{ J}}{1 \times 10^{-12} \text{ F}}} \approx 0.25 \text{ mV}$
capacitance resolution $= \Delta C_{n} = \frac{\Delta C_{FS}}{DR} = \frac{1 \text{ pF}}{6956} = 0.140 \text{ fF} = 140 \text{ aF}$

Use of an absolute pressure sensor as an altimeter


Altitude resolution:

$$h_e = p_e \frac{\partial h}{\partial p} = 8.64 \text{ m}$$

96 m /kPa
0.090 kPa

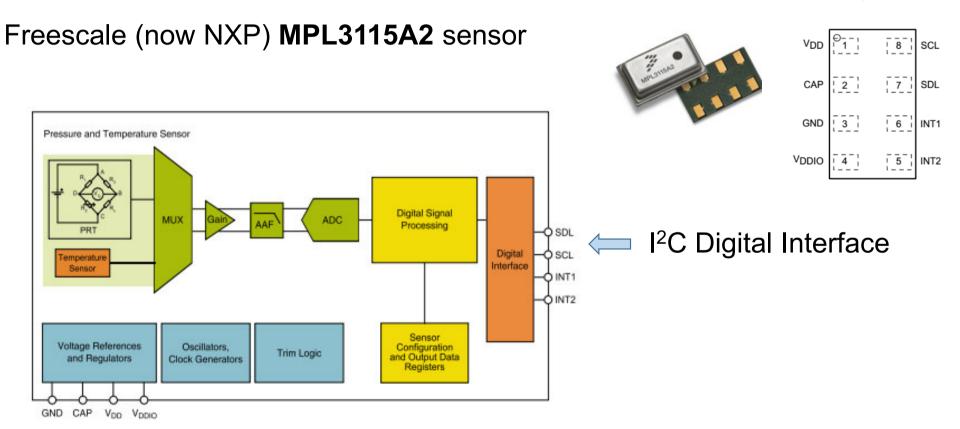
$$\frac{dp}{dh} = -\rho(p,T)g$$

USA National Oceanic and Atmospheric Administration

$$h \cong 44307.69 \left[1 - \left(\frac{p}{102325} \right)^{0.190284} \right]$$

Example of commercial capacitive pressure sensor

DPS310 - Digital Pressure Sensor


Infineon DPS 310 - Specifications

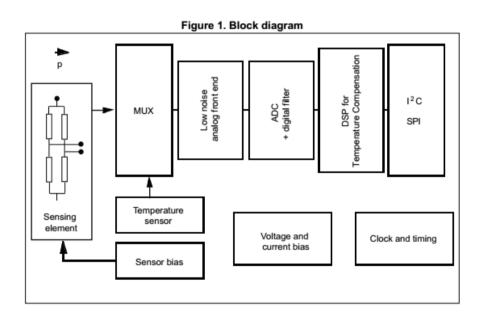
- Operation range: Pressure: 300 -1200 hPa. Temperature: -40 85 °C.
- Pressure sensor precision: ± 0.005 hPa (or ±0.05 m) (high precision mode).
- Relative accuracy: ± 0.06 hPa (or ±0.5 m)
- Absolute accuracy: ±1 hPa (or ±8 m)
- Temperature accuracy: ± 0.5°C.
- Pressure temperature sensitivity: 0.5Pa/K
- Measurement time: Typical: 27.6 ms for standard mode (16x). Minimum: 3.6 ms for low precision mode.
- Average current consumption: 1.7 μA for Pressure Measurement, 1.5uA for Temperature measurement @1Hz sampling rate, Standby: 0.5 μA.
- Supply voltage: VDDIO: 1.2 3.6 V, VDD: 1.7 3.6 V.

Typical Applications

- Indoor Navigation (floor detection e.g. in shopping malls and parking garages)
- Health and Sports (accurate elevation gain and vertical speed)
- Outdoor Navigation (GPS start-up time and accuracy improvement, dead-reckoning e.g. in tunnels)
- Weather Station('Micro-weather' and local forecasts)
- · HDD drivers, (leak rate detection in hard disk drives)
- Drones (flight stability and height control)

Example of piezoresistive pressure sensor

Top View


MPL3115A2 Specifications

128 samples are averaged to reduce noise

Accuracy is much worse than resolution, since it dependes also on the offset and other quasi-static errors

Parameter Symbol Test Conditions Тур Unit Min Max 1x Oversample⁽²⁾ 19 Pa RMS Pressure Reading Noise 128x Oversample⁽²⁾ Pa RMS 1.5 Calibrated Range 50 110 kPa P_{FS} Measurement Range Operational Range 20 110 kPa Barometer Mode 0.25 1.5 Pa Pressure/Altitude Resolution⁽³⁾⁽⁴⁾⁽⁵⁾ Altimeter Mode 0.0625 0.3 m 50 to 110 kPa -0.4 0.4 over 0 °C to 50 °C Pressure Absolute Accuracy kPa 50 to 110 kPa ±0.4 over -10 °C to 70 °C Operating Supply Voltage 1.95 V V_{DD} 2.5 3.6

HLGA 8L 2.0 x 2.5 x 0.8 (max) mm

Example of Piezoresistive sensor: STMicroelectronics LPS225HB

Applications

- Altimeters and barometers for portable devices
- GPS applications
- Weather station equipment
- Sport watches

Features

- 26 to 126 kPa absolute pressure range
- · High-resolution mode: 1 Pa RMS
- Low-power mode: 3.5 Pa RMS
- Current consumption down to 4 µA
- High overpressure capability: 20x full scale
- Embedded temperature compensation
- Embedded 24-bit ADC
- ODR from 1 Hz to 75 Hz
- SPI and I²C interfaces