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Analog Filter Design

Part. 5: Analog Discrete Time Filters:
Switched Capacitor Filters



First SC circuits: simulations of resistances
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 In integrated RC active filters, the resistances may be the largest 

components, especially when low frequency singularities are required, 

as in audio analog processors.

 Singularities in RC filters are proportional to 1/RC factors. Since R and 

C are marked by non-correlated process variations, the spread in filter 

characteristic frequencies can be very large (up to 20 %).  

 Resistances simulated with switches and capacitors are given by 

expressions like:
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where fck is the clock frequency. With the small capacitors available 

on chip it is possible to obtain very large resistors.



Switched Capacitor resistance: principle
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Simple integrator based on SC resistor
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Simple SC integrator

Equivalent

CT Integrator

 Important: The unity gain angular frequency of the integrator (0) depends only 

on capacitance ratios and the clock frequency. Ratios can be fabricated with 

high precision and accurate frequencies can be obtained from crystal oscillators       

 Filter with precise corner frequencies can be obtained. 



Effect of parasitic capacitances 
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Parasitic capacitances are not well

predictable and generally non linear

Inaccuracy of the corner frequencies

Distortion



Parasitic Insensitive (PI) SC integrator
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 Parasitic Insensitive SC resistors

Positive SC resistor
Negative SC resistor

Example: Integrator

with negative SC Res.
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Parasitic Insensitive (PI) SC integrator

 Integrator with negative resistor: phases
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Equivalent currents
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Parasitic Insensitive (PI) SC integrator
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PI-SC resistors: symbols used in this course
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Example 1: versatile integrator
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Example 2 First order filter
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Example 3: Universal SC Biquad Filter

P. Bruschi - Analog Filter Design 13

4

3
1

4

3
2

2

1
1

C

C
k

C

C
f

C

C
f F

Fckck 

2

1
21




 PP Q



Discrete time nature of SC filters: Integrator
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Discrete time nature of SC filters: Integrator
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Compare with:



First order filter: discrete time nature
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First order LP filter: frequency response
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fp=10 kHz
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Filter synthesis by means of LC ladder network 
simulation with SC integrators
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 Advantage: low sensitivity with respect to component value variations

Example
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Example: ladder LC network simulation 
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-) Indicated values represent numerical identities

(dimensions are not relevant)

-) Resistors are implemented with either 

positive or negative parasitic insensitive 

switched capacitors resistances. 



SC Filters that do not require the equivalent resistance 
approximation
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 These filters are obtained by direct implementation of the H(z) transfer 

function.

 The H(z) can be obtained by means of:

-) conversion of a CT transfer function into the DT domain, by substituting

“s” with a proper rational function of “z” (e.g. bilinear transformation);

-) synthesis with the typical approaches of  digital filters (e.g. FIR filters) 



Example: synthesis of a bilinear integrator
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Example: synthesis of a bilinear integrator
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Direct synthesis

P. Bruschi - Analog Filter Design 23

N

N

M

M

zazaza

zbzbzbb
zH










....1

...
)(

2

2

1

1

2

2

1

10

Delay lines and adders (summing amplifiers)

are necessary



Direct synthesis: analog DT delay lines
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Half-period delay line

with return to zero in phase 2

Sample and Hold 

(zero tracking time)
z-1



Summing amplifier
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Phase 1

Simplified case: single input



Summing amplifier: analysis
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Multipath filters
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 The target is obtaining a band-pass filter with a very narrow band (i.e. an high Q=B/f0) i.e. a very 

selective filters.

 Synthesis of very selective Band-Pass filters by means of traditional techniques is very difficult due 

to component inaccuracy and active element non-idealities (e.g. amplifier gain)

 Multipath filters uses N low pass filters (in this example N=3) fed with decimated sample 

sequences, in order to explicitly produce aliasing. 

Low pass filters (nominally identical). 

Each filter receive samples at frequemcy fS-single=fS-global/3



Multipath Filters
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• Due to aliasing, the low pass response is duplicated around fS-single. 

• This would be meaningless for a single filter, since signals around fS-single

are beyond the Nyquist limit

• Using all the three filters together with delayed phases is equivalent to 

sampling at fS-global. Now, signals at fS-single are within the Nyquist limit

• The replica of the response around fS-single can be made very narrow, by 

simply reducing the bandwidth of the individual low pass filters. 

Nyquist interval

for the overall system

Nyquist interval

for the single path


