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Analog Filter Design

Part. 5: Analog Discrete Time Filters:
Switched Capacitor Filters



First SC circuits: simulations of resistances
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 In integrated RC active filters, the resistances may be the largest 

components, especially when low frequency singularities are required, 

as in audio analog processors.

 Singularities in RC filters are proportional to 1/RC factors. Since R and 

C are marked by non-correlated process variations, the spread in filter 

characteristic frequencies can be very large (up to 20 %).  

 Resistances simulated with switches and capacitors are given by 

expressions like:
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where fck is the clock frequency. With the small capacitors available 

on chip it is possible to obtain very large resistors.



Switched Capacitor resistance: principle
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Simple integrator based on SC resistor
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Simple SC integrator

Equivalent

CT Integrator

 Important: The unity gain angular frequency of the integrator (0) depends only 

on capacitance ratios and the clock frequency. Ratios can be fabricated with 

high precision and accurate frequencies can be obtained from crystal oscillators       

 Filter with precise corner frequencies can be obtained. 



Effect of parasitic capacitances 
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Parasitic capacitances are not well

predictable and generally non linear

Inaccuracy of the corner frequencies

Distortion



Parasitic Insensitive (PI) SC integrator
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 Parasitic Insensitive SC resistors

Positive SC resistor
Negative SC resistor

Example: Integrator

with negative SC Res.
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Parasitic Insensitive (PI) SC integrator

 Integrator with negative resistor: phases
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Equivalent currents
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Parasitic Insensitive (PI) SC integrator
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PI-SC resistors: symbols used in this course
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Example 1: versatile integrator
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Example 2 First order filter
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Example 3: Universal SC Biquad Filter
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Discrete time nature of SC filters: Integrator
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Discrete time nature of SC filters: Integrator
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(delayed form)

Compare with:



First order filter: discrete time nature
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always stable !

always monotonic !



First order LP filter: frequency response
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fp=10 kHz

ideal (CT)
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Filter synthesis by means of LC ladder network 
simulation with SC integrators
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 Advantage: low sensitivity with respect to component value variations

Example
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In order to obtain

an homogeneous 

variable set, it is

convenient to define:



Example: ladder LC network simulation 
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-) Indicated values represent numerical identities

(dimensions are not relevant)

-) Resistors are implemented with either 

positive or negative parasitic insensitive 

switched capacitors resistances. 



SC Filters that do not require the equivalent resistance 
approximation
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 These filters are obtained by direct implementation of the H(z) transfer 

function.

 The H(z) can be obtained by means of:

-) conversion of a CT transfer function into the DT domain, by substituting

“s” with a proper rational function of “z” (e.g. bilinear transformation);

-) synthesis with the typical approaches of  digital filters (e.g. FIR filters) 



Example: synthesis of a bilinear integrator
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Example: synthesis of a bilinear integrator
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Direct synthesis
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Delay lines and adders (summing amplifiers)

are necessary



Direct synthesis: analog DT delay lines
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Half-period delay line

with return to zero in phase 2

Sample and Hold 

(zero tracking time)
z-1



Summing amplifier
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Phase 1

Simplified case: single input



Summing amplifier: analysis
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If vin does not change much across a period, the

output voltage is maintained in phase 1



Multipath filters
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 The target is obtaining a band-pass filter with a very narrow band (i.e. an high Q=B/f0) i.e. a very 

selective filters.

 Synthesis of very selective Band-Pass filters by means of traditional techniques is very difficult due 

to component inaccuracy and active element non-idealities (e.g. amplifier gain)

 Multipath filters uses N low pass filters (in this example N=3) fed with decimated sample 

sequences, in order to explicitly produce aliasing. 

Low pass filters (nominally identical). 

Each filter receive samples at frequemcy fS-single=fS-global/3



Multipath Filters

P. Bruschi - Analog Filter Design 28

• Due to aliasing, the low pass response is duplicated around fS-single. 

• This would be meaningless for a single filter, since signals around fS-single

are beyond the Nyquist limit

• Using all the three filters together with delayed phases is equivalent to 

sampling at fS-global. Now, signals at fS-single are within the Nyquist limit

• The replica of the response around fS-single can be made very narrow, by 

simply reducing the bandwidth of the individual low pass filters. 

Nyquist interval

for the overall system

Nyquist interval

for the single path


