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Analog Filter Design

Part. 4: Discrete time filters
Sect. 4-a: General methods



Discrete time (DT) signals and sequences
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 A discrete time signal is defined only on a “countable set” of time instants. 

The set, or time series, can be either finite or infinite.

 Definition of a discrete time signal can also disregard the actual times at 

which each value corresponds. In this way we have a pure, ordered 

sequence of values.

Discrete time signal: x(tn)

Pure sequence:         x(n)

 A discrete time signal may be the result of sampling a Continuous Time 

(CT)signal. Sampling is generally considered to be uniform. Generally, we 

are interested to DT signals for their capability to represent CT signals.



Discrete Time Signals (DTS): Linear operators
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 As with CT signals, while dealing with DT signals we are interested in 

Linear, Time Invariant, Causal systems. 

 In DT signals the derivative operator is substituted by the difference 

operator:

dt

tdx )(
)1()(  nxnx

CT domain DT domain

 More generally, the base operator in DT signal is the unity delay operator:

)1()(  nxnx “ T ” operator



Difference Equations
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 In the DT domain, differential equations are substituted by difference 

equations, where difference between elements of the sequences taken 

with different indexes (e.g. n, n-1, n-2 etc.) appears.
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First () and second (2) difference definitions (non causal operators)

 Strictly speaking, difference equations are a particular case of recurrence 

equations:
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Analysis tool: Z transform

P. Bruschi - Analog Filter Design 5

 In the case of linear, time invariant and causa recurrence equations, a 

powerful approach is using the Z-transform,  which is the analogue of the 

Laplace transform.  

 With the Z-transform, the unity delay operator is transformed into 

multiplication by Z-1 : recurrence equations becomes algebraic equations. 
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Common Z-Transform pairs
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Note that u(n)an is an exponential

function:

Exponential functions are 

eigenvectors of the delay

operator



P. Bruschi - Analog Filter Design 7

Z-Transform applied to LTI

LTI (Linear Time Invariant) system representation in the DT domain: 
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Z-Transform: a few properties
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Final value theorem
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Stability: for all poles (D(z) roots) zi:

|zi|≤1



DT signals: Discrete-Time Fourier Transform (DTFT)
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Decomposition of x(nT) into 

an integral of complex exponential

functions

The frequecy domain is only fc wide since the exponential sequences are invariant for 

a frequency shift of kfc

We consider a signal that is sampled with:

Sampling frequency fc = 1/T, where T is the sampling interval
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With this definition the DTFT is periodical

with period= fc. Then, only the [–fc/2, fc/2] 

domain is considered.  



DT filters used to replace CT filters
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H(ejwT) Mathematical 

representation of the 

reconstruction process

Anti-alias filter



DT Filters synthesis (Ideal block diagrams)

 Start from a CT state variable filter and 
replace the CT integrator with DT integrator

 Start from a CT transfer function, HCT(s), and 
transform it into a DT transfer function H(z)         

 Use synthesis approaches that do not need 
an analog filter as a starting point: use the 
delayed impulse response properly windowed
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IIR 

IIR 

FIR 

IIR: Infinite Impulse Response FIR: Finite Impulse Response



Method 1: simulate CT state variable filters
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Forward Euler Integration 

Time continuous Integral approximation



Forward and Backward Euler Integrators
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Simulation of CT state variable filters: result
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Forward Euler Approx. 

Time continuous filter

Discrete time approximation of the CT filter



Example: Transform a 1st order low pass filter
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Method 2: z -> s direct substitution
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A more precise formula for z-to-s substitution 
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The Bilinear Transformation

Trapezoidal integration



Bilinear transform: characteristics
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 Maintains stability

 all s=jw are mapped to z belonging 

to the unit circle

 “Features” of the CT frequency 

response (e.g. peaks, notches are 

preserved

 Pre-warping of the CT singularities 

is necessary for close matching 

CT     DT 

i
iT

T
w







 w

2
tan

2Design the CT filter with modified 

characteristic frequencies

Integrators compared

Pre-warping



DT filter design from the impulse response
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target filter (zero phase)
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window 

reduce samples to M+1
flat 

Blackman

Windowed response 

M = filter order

Delay by M/2 to obtain causality
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DT filter design from the impulse response

Impulse response 

(filter kernel)

h(n)

convolution

Obtained filter

Input signal

Linear phase delay

(MT/2 delay time)
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Effect of windowing
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No window

(flat)
Blackman

window



High pass and band-pass from low-pass
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High pass

Band pass



Architecture of a generic DT filter             
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Direct structure
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Coefficients bi and ai are called the “taps” 

of the filter and correspond to the coefficients of

the numerator and denominator of H(z), according to:

In a FIR filter the coefficients ai are all equal to zero,

that is the denominator is = 1 


