Analog Filter Design

Part. 4: Discrete Time Filters **□** Sect. 4-c: Optional Subjects

Summary of analog filters

Pure electronic / electric filters

- **RCL passive filters**
- **Active RC filters**
- **Active Gm-C filters**
- Current mode filters*
- **Switched-Capacitor filters**

Electro-mechanical filters

- SAW (surface acoustic wave) filters*
- BAW (Bulk acoustic wave) filters*
-

• MEMS resonators* * * Not covered in this course

Filter synthesis by means of LC ladder network simulation with SC integrators

 \triangleright Advantage: low sensitivity with respect to component value variations

In order to obtain an homogeneous variable set, it is convenient to define:

$$
v_2 \equiv R_{S} i_2
$$

 \mathbb{R}^n

Example: ladder LC network simulation

- -) Indicated values represent numerical identities (dimensions are not relevant)
- -) Resistors are implemented with either positive or negative parasitic insensitive switched capacitors resistances.

SC Filters that do not require the equivalent resistance approximation

- \triangleright These filters are obtained by direct implementation of the H(z) transfer function.
- \triangleright The H(z) can be obtained by means of:
	- **-)** conversion of a CT transfer function into the DT domain, by substituting *"s"* with a proper rational function of "*z"* (e.g. bilinear transformation);
	- **-)** synthesis with the typical approaches of digital filters (e.g. FIR filters)
- \triangleright Analog implementation of the H(z) can be obtained using:
	- **-)** Conventional SC integrators cascades
	- **-)** Bilinear integrators
	- **-)** Direct implementation of the one-cycle delay function

Exact H(z) synthesis by means of SC Euler integrators

Example: biquad function

 $(z) = -\frac{(1-z^{-1})^2}{z}$ 1- $\left(1-z^{-1}\right)^2$ 1-0 $\mathbf{0}$ 1 λ^2 $1 - 7^{-1}$ 2 $0 \qquad \qquad 0$ 1 λ^2 $1 - 7$ 1 1 $\left(1-z^{-1}\right)^2$ $1-z^{-1}$ 1 $\left(1-z^{-1}\right)^2$ $1-z^{-1}$ *b b b* $\left(\frac{z}{z} \right)$ $1-z$ $H(z) =$ a_{\circ} *a a a* $\left(\frac{z}{z} \right)$ $1-z$ -1 λ^2 $1 - 7^{-1}$ -1 λ^2 $1 - 7^{-1}$ $+$ $+$ b_{2} $-\overline{z}$ $1-\overline{z}$ = ---------- $+$ $+$ \bf{l} $-\zeta$ $1-\zeta$

Equivalent block diagram of an SC biquad. We consider that X is maintained constant across the whole ck period (an input Sample & Hold circuit is required.

$$
a_0 = k_1 k_0
$$
 $a_1 = k_1$
\n $b_0 = c_0 a_0$ $b_1 = c_1 a_1$ $b_2 = c_2$

Exact H(z) synthesis by means of SC Euler integrators

$$
H(z) = -\frac{\frac{b_0}{(1-z^{-1})^2} + \frac{b_1}{1-z^{-1}} + b_2}{\frac{a_0}{(1-z^{-1})^2} + \frac{a_1}{1-z^{-1}} + 1} = \frac{b_0 + b_1(1-z^{-1}) + b_2(1-z^{-1})^2}{a_0 + a_1(1-z^{-1}) + (1-z^{-1})^2}
$$

$$
H(z) = \frac{b_2 z^{-2} + (-b_1 - 2b_2) z^{-1} + (b_0 + b_1 + b_2)}{z^{-2} + (-a_1 - 2) z^{-1} + (a_0 + a_1 + 1)}
$$

The cascade of two simple SC integrators can implement an arbitrary 2nd order transfer function with a proper choice of the integrator coefficients (i.e. capacitance ratios).

Example: synthesis of a bilinear integrator

Example: synthesis of a bilinear integrator

P. Bruschi - Analog Filter Design P. Bruschi - 9

Direct synthesis

$$
H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^N}
$$

 $1 + a_1 z^{-1} + a_2 z^{-2} + + a_N z^N$

Delay lines and adders (summing amplifiers

are necessary

P. Bruschi - Analog Filter Design Delay lines and adders (summing amplifiers) are necessary

Direct synthesis: analog DT delay lines

Half-period delay line with return to zero in phase 2

Sample and Hold (zero tracking time)

Summing amplifier

Simplified case: single input

Phase 1

Summing amplifier: analysis

$$
\Delta Q_1 = C_1 v_{in}^{(1)}
$$

$$
v_{out}^{(2)} = \frac{C_1}{C_2} v_{in}^{(1)}
$$

If v_{in} does not change much across a period, the output voltage is maintained in phase 1

Multipath filters

- The target is obtaining a band-pass filter with a very narrow band (i.e. an high *Q=B/f⁰*) i.e. a very selective filters.
- \triangleright Synthesis of very selective Band-Pass filters by means of traditional techniques is very difficult due to component inaccuracy and active element non-idealities (e.g. amplifier gain)
- \triangleright Multipath filters uses N low pass filters (in this example N=3) fed with decimated sample sequences, in order to explicitly produce aliasing.

Multipath Filters

- Due to aliasing, the low pass response is duplicated around *fS-single*.
- This would be meaningless for a single filter, since signals around *fS-single* are beyond the Nyquist limit
- Using all the three filters together with delayed phases is equivalent to sampling at f_{S-global.} Now, signals at $f_{S-single}$ are within the Nyquist limit
- The replica of the response around $f_{S-single}$ can be made very narrow, by simply reducing the bandwidth of the individual low pass filters.

SAW and BAW filters

BAW device with Bragg reflector FBAR (Film Bulk Acoustic Resonator)

MEMS resonators: examples

MEMS with capacitive actuation: principle of operation

A resonator designed at the DII – Unipi (F. Pieri)

Examples of recently proposed integrated filters

The LP filter topology shown in Fig. 5.5.2 is derived from a 3rdorder, doubly terminated Butterworth LC ladder prototype using gyrator synthesis [1].

 -10

 $\frac{16}{271}$ = -30

 -40 -1.5 -2.5 -50

 -60

20M

50M

Min BW $\frac{1}{2}$

100M

J. Lechevallier et. al, "A Forward-Body-Bias Tuned 450MHz GmC 3 rd-Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply" ISSCC 2015