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Analog Filter Design

Part. 3: Time Continuous (TC) Filter 
Implementation

Sect. 3-a: Active Filters



Motivations

• Inductors are generally difficult to miniaturize
L ~ (coil area) x (number of coils)2 x (magnetic permeability)
Integrated inductors limited to a few nH (max)
Stray magnetic field cause unwanted coupling

• Resistors and capacitors can be easily integrated: feasible 
ranges are much wider than for inductors

• Active Filters Target: Synthesis of arbitrary transfer functions 
using only resistors, capacitors and active elements.
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Design approaches for active TC filters

• Cascade of Biquadratic  (Biquad) and Bilinear cells

• State Variable Filters (MLF: Multiple Loop Feedback circuits)

• Simulation of LC filters with active RC networks
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System-level architectures

Circuit-level architectures

Op-amp based

OTA (Operational transconductance amplifier) – based



Cascade of Biquad (Bilinear) functions
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 Biquad Transfer Function
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b2,b0 : 0, 1

b1: 0, ±1

 Bilinear Transfer Function

b1 : 0, 1

b0: 0, ±1

“Bits” b2,b1,b0 determine 

which terms are present in 

the numerator 



Poles vs. Biquad coefficients
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For a 2nd order polynomial with complex roots:

Biquads can be easily 

extracted from "zpk" output 

of python or Matlab filter

synthesis functions

For the zeroes, identical rules apply, with the exception of :

 Zeros in the origin, s2 or s term only (b0=0)

 Zeros to infinity, only constant term is present (b1,b2=0)



Notable cases
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Low pass High pass Band pass Band Stop 

All pass 

(phase equalizer) 

All these biquads have

unity gain in their

respective pass-bands



Sequencing criteria for biquad cascades
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Requirement: Zout<<Zin

Degrees of Freedom:

 Poles – Zeroes pairing (when zeroes are present)

 Physical position of each biquad in the cascade 

 Pass-Band gain of each individual element of the cascade
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Sequencing criteria: Targets and Rules of Thumb

 Pairing: couple together poles and zeroes which are closer in the s-plane 

(flatter response, less component spread)

 Position: Place the biquads with lower Q closer to the inputs

Keep biquads with similar frequency of maximum as far away as 

possible

If possible, place LP Biquads first and HP or BP Biquads last

 Gain distribution: balance the signal amplitude over the various biquads

Targets

 Maximize the Dynamic Range (DR)

 Minimize the transmission sensitivity (to component variations)

 Minimize the pass-band attenuation

Rules



Biquad implementations 
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 Op-amp Based:

 SAB (Single Opamp Biquad)

Finite Gain SABs – positive feedback

 Finite Gain SABs – negative feedback

Infinite Gain SABs

 Multiple op-amp Biquads (e.g. MFL )

 OTA based (Gm-C filters)



SABs
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Example: Sallen-Key Biquads
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SK General configuration SK- Low pass filter


in

out

V

V

(R.P. Sallen, E.L. Key – MIT Labs, 1955)



Example II: SAB with infinite amplifier gain
and "bridged-T" network
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Bridged –T network

For infinite (negarive) amplifier gain:



Band-pass Delyannis-Friend Biquad
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Multiple Feedback Loop Filters
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 Cascaded Biquads: Feedback exist only inside blocks

 MFL Filters: Feedback involve all stages together

More Interaction: less sensitivity to component variations

“Follow the Leader Filter” (FLF) architecture”

Ti(s) can be:

• Integrators

• Lossy Integrators

• Biquads

coefficients



Integral representation of  transfer functions
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State variable filters
(MFL filters based on Integrators)
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Multi Feedback – Multi Feed Forward 
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Integrators: Op-amp based solution
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Example: State variable Filter with Op-amp Integrators
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Inverting amplifiers 

are required to cope 

with the inverting function

of the OA based Integrators 

Opamp integrators

(inverting) 

Resistor values 

(inverse of 

summing

coefficients)



MLF: Example Universal 2nd order Filter 
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Kerwin-Huelsman-Newcomb (KHN) filter
(Produces LP, BP and HP outputs: Single Input – Multiple Output)



OTA: definitions and basic circuits
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Typical non-idealities:

 Finite Rout

 Input Capacitance

 Frequency dependence of Gm

 Input/Output ranges

 21 vvGi mout 
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Ota-Based summing circuits 
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Summing amplifier

(inverting / non-inverting)

Summing Integrator

(inverting / non-inverting)
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Gm-C integrator with feed-forward input
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Gm-C integrator cascade
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Two signals with opposite signs

can be added at each internal

node of the cascade



State variable filters – alternative solution
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Differently from the FL filter (Follow the Leader), where all the integrator outputs are fed back to the first 

integrator and fed forward to the summing node, here the output voltage is fed back to the input of each 

integrator where also the input signal is fed forward. This architecture is more suitable for Gm-C 

implementations, where summing several inputs would require several OTAs

Target f.d.t.



Gm-C state variable filter: coefficients
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Example: First order high pass / low pass filters
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Example: State variable Gm-C biquad
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State variable Flexible Biquad – OTA implementation
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Simulation of Ladder Filters with OTAs
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 Simulation of the inductor: application of the OTA 

based Gyrator

 Simulation of the nodal equations by means of OTAs 

(signal flow path) May require inductor simulation, 

depending on the transfer function to synthesize and/or 

architecture



Gyrator
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Y-parameters equivalent circuit



Inductance simulation by means of a gyrator and a capacitor. 
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Generic Impedance Inversion 
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OTA Based Gyrators
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Inductor simulation with OTAs
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Inductor simulation with OTAs - Example

Initial passive filter
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L1,L3: floating inductors

L2: grounded inductor

Same filter, with simulated inductors



Signal flow simulation of ladder (LC) networks with OTAs 
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Network Equations



Variable transformations
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Target: Transform current variables (I1,I3,I5) 

into voltage variables
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Leap-Frog architecture
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Homogeneous equivalent equations



OTA implementation of the Leap-Frog structure
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Example: 5th Order Chebyshev Filter   
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Example: 5th Order Chebyshev Filter   
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Frequent choices in active ladder filters

• Inductor synthesis : 

HP filters (ideal for all-grounded inductors)
BP filters 
LP – filters with zeroes

• Leapfrog architectures: 

LP all – pole filters
BP filters (resonant groups simulated by biquads)
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Self-Tuning of OTA Filters
In integrated circuits, Gm's and capacitances are strongly affected by PVT variations (up to ± 30 % 

variations). For these reasons, in most OTAs the Gm can be controlled by means of a voltage 

applied to a proper terminal (Vtune). In this way self-tuning of the filter can be accomplished. 

To understand the self-tuning 

principle, consider the effect of tuning

on the phase response of a 1st order 

LP filter



Self-Tuning of OTA Filters: master slave approach
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Slaves

Master

The loop varies Vtune in 

such a way that wC of the 

two master LP filters 

equals the reference 

frequency. Since the same 

Vtune is fed to the slaves, 

their Gm/C ratios are  also 

proportional to the ref. 

frequency.  

Reference 

frequency

source 


