Analog Filter Design

Part. 3: Time Continuous Filter Implementation

Sect. 3-a:

- General considerations
- Passive filters

Design approaches

- Passive LC (R) ladder filters
- Cascade of Biquadratic (Biquad) and Bilinear cells
- State Variable Filters
- Simulation of LC filters with active RC networks

Filter Parameters

- For a given transfer function $H(s)$, a particular implementation is characterized by several FOMs (Figures Of Merit). The most frequently used are:
$>$ Dynamic Range: $D R=\frac{\max \left(V_{\text {out }}\right)}{v_{n-\text { out }}} \quad \mathrm{v}_{\text {n-out }}=$ output noise
$>$ Sensitivity to component variations

$$
\left\{\begin{array}{l}
S_{x}^{\omega_{0}}=\frac{d \omega_{0} / \omega_{0}}{d x / x}=\frac{x}{\omega_{0}} \frac{d \omega_{0}}{d x} \\
S_{x}^{Q}=\frac{x}{Q} \frac{d Q}{d x}
\end{array}\right.
$$

$>$ Component value spread, e.g. $\frac{C_{\text {max }}}{C_{\text {min }}}$

LC passive filters: "The Prototype filter"

$>$ LC ladder filters are synthetized in normalized (1 rad/s, 1Ω) and lowpass form (prototype filter)
$>$ Transformation rules are used to derive the required filter function (e.g. band-pass) and parameters (e.g. actual operating frequencies) from the prototype filter

$$
H_{N}(s)=\frac{V_{2}}{V_{S}}
$$

Normalized Low-Pass
Function

Passive Lossless Ladder Filters

$>$ Doubly terminated LC ladder network
> Advantages: minimum sensitivity to component variation in the passband
$>$ The lowest sensitivity is achieved with equally terminated networks ($R_{1}=R_{2}$).
$>$ Can be used as starting point for the synthesis of active RC filters
$>$ Drawback: tuning requires change of all components.
$\operatorname{order}(\mathrm{N})=$ number of capacitors + number of inductors

Ladder networks: driving point impedance (d.p.i.)

Cauer synthesis approach for d.p.i.

Prototype Filter Configurations (all poles)

$\mathrm{N}=2 \mathrm{M}+1$ (odd order)

$N=2 M$ (even order)

Pass-band gain: $\quad k=\frac{R_{2}}{R_{1}+R_{2}}<1$
(0.5 for equally terminated networks)

Alternate solution (all poles)

$\mathrm{N}=2 \mathrm{M}+1$ (odd order)

$\mathrm{N}=2 \mathrm{M}$ (even order)

Pass-band gain: $\quad k=\frac{R_{2}}{R_{1}+R_{2}}<1$
(0.5 for equally terminated networks)

LC ladder network for TF with imaginary zeros (e.g. Inverse Chebyshev and Cauer Elliptic filters)

Frequency scaling rules

> Frequency scaling allows to change the normalization frequency, allowing transformation of the characteristic frequencies of the filter

$$
\begin{aligned}
& \left.\frac{1}{s_{n} C} \rightarrow \frac{\omega_{N}}{s C} \Rightarrow C \rightarrow \frac{C}{\omega_{N}} \xlongequal{s_{n} \rightarrow \frac{s}{\omega_{N}}} \quad \begin{array}{l}
s_{n} L \rightarrow s \frac{L}{\omega_{N}} \Rightarrow L \rightarrow \frac{L}{\omega_{N}} \\
R \rightarrow R
\end{array}\right\} \\
& \quad\}
\end{aligned}
$$

Impedance Scaling Rule

$>$ Impedance scaling is used to change component values leaving the transfer function unaltered. The target is finding feasible component values for the chosen technology

If the network includes only:

- Two terminal impedances (L,R,C components)
- Voltage Controlled Voltage Sources (VCVS) i.e Ideal voltage amplifiers.
- Current Controlled Current Sources (CCCS) i.e. ideal current amplifiers

Then: the Vout/VS transfer function is unchanged when all the impedances are multiplied by the same function $f(s)$

Impedance scaling: component transformation

An important case is when the function $f(s)$ is a constant factor K :

$$
\begin{array}{ll}
\frac{1}{s_{n} C} \rightarrow K \frac{1}{s C} \Rightarrow C \rightarrow \frac{C}{K} & \perp \\
s L \rightarrow K s L \Rightarrow L \rightarrow K L
\end{array}
$$

Element transformations

$>$ Goal: to change the filter response from low-pass to the other three possibilities (high-pass, etc.) and perform frequency scaling at the same time.

Let us recall the following transformations:
From Low-Pass to:

Element Transformation

Low-pass to High-pass

$$
\begin{aligned}
& S_{n} \rightarrow \frac{\omega_{N}}{s} \\
& \frac{1}{s_{n} C} \rightarrow \frac{s}{\omega_{N} C} \Rightarrow C \rightarrow L=\frac{1}{\omega_{N} C} \\
& s_{n} L \rightarrow \frac{\omega_{N}}{s} L \Rightarrow L \rightarrow C=\frac{1}{\omega_{N} L} \\
& R \rightarrow R
\end{aligned}
$$

Element Transformation

Low-pass to Band-pass

$$
\begin{array}{|ll|}
\hline \perp & \square \\
C_{P}=\frac{C}{B} & L_{P}=\frac{B}{\omega_{0}^{2} C} \\
\xi & \square \\
\square & \rightleftharpoons \\
C_{S}=\frac{B}{\omega_{0}^{2} L} & L_{S}=\frac{L}{B} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& s_{n} \rightarrow \frac{\omega_{0}}{B}\left(\frac{s}{\omega_{0}}+\frac{\omega_{0}}{s}\right) \quad \frac{1}{s_{n} C} \rightarrow \frac{1}{\frac{s C}{B}+\frac{\omega_{0}^{2} C}{s B}}=\frac{1}{s C_{P}+\frac{1}{s L_{P}}} \\
& s_{n} \rightarrow \frac{s}{B}+\frac{\omega_{0}^{2}}{s B} \\
& s_{n} L \rightarrow L \frac{s}{B}+L \frac{\omega_{0}^{2}}{s B}=s L_{S}+\frac{1}{s C_{S}}
\end{aligned}
$$

Element Transformation

Low-pass to Band-stop

$$
S_{n} \rightarrow\left[\frac{\omega_{0}}{B}\left(\frac{s}{\omega_{0}}+\frac{\omega_{0}}{s}\right)\right]^{-1}
$$

$$
\begin{gathered}
\perp \perp \\
C_{S}=\frac{C B}{\omega_{0}^{2}} \\
\hline L_{S}=\frac{1}{B C} \\
\xi \quad \square \\
C_{P}=\frac{1}{B L} \\
L_{P}=\frac{B L}{\omega_{0}^{2}}
\end{gathered}
$$

Design of LC ladder passive filters

> A procedure that allows designing an arbitrary transfer function with a ladder structure does not exist.
> All-pole functions (e.g. Butterworth, Chebyshev I, Bessel) can be designed with a standard approach, where the branches of the ladder (Z and Y elements) are pure capacitors or inductors. Given a class of networks, not all functions are feasible.
> The rigorous design of Cauer (elliptic) filters is less straightforward.
$>$ Tables are available for the most frequently used ladder topologies and transfer functions. Several CAD design tools are also available.

Table example

Williams \& Taylor «Electronic Filter Design Handbook» 2006, McGraw-Hill

TABLE 11-29 $0.25-\mathrm{dB}$ Chebyshev $L C$ Element Values

Example: Butterworth Prototype Filter

		$\overbrace{\square}^{I_{C_{2}}^{L_{2}}}$	$\Psi_{c_{M}}^{L_{M}}$	$\left.\bar{C}_{M+1}\right\} R_{2}$						
	$\underbrace{=}_{c_{1}} \overbrace{}^{L_{1}}=$	$\overbrace{T_{C_{2}}}^{L_{2}}$	$\left.=\mathrm{T}_{c_{M}}^{L_{M}}\right\}$				radi	ans - pe	$\begin{gathered} e r-\sec \\ \omega=1 \end{gathered}$	onds
N	C1	L1	C2	L2	C3	L3	C4	$\mathrm{L} 4$	C5	L5
2	1.4142	1.4142						1		
3	1.0000	2.0000	1.0000			Butte	rworth (1	rps pass	band)	
4	0.7654	1.8478	1.8478	0.7654						
5	0.6180	1.6180	2.0000	1.6180	0.6180					
6	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2740	0.4450			
8	0.3902	1.1111	1.6629	1.9616	1.9616	1.6629	1.1111	0.3902		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129

Chebyshev 1 dB ripple

Example

- Design a LC ladder Chebyshev filter with the following characteristics:
f_pass $=10 \mathrm{kHz}$, Maximum Pass-band attenuation 1 dB
f_stop $=20 \mathrm{kHz}$ Minimum Stop-Band Attenuation: 40 dB

Python: cheb1ord: Order=5, $\omega_{\mathrm{P}}=62.8 \mathrm{krad} / \mathrm{s}$
But: tables are normalized to $\omega_{-3 \mathrm{dв}}$. From the magnitude plot:

$$
f_{-3 \mathrm{~dB}} \cong 10.34 \mathrm{kHz} \quad \omega_{N}^{\prime}=\omega_{-3 \mathrm{~dB}} \cong 65 \mathrm{krad} / \mathrm{s}
$$

LC Filter design using Tables

