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Analog Filter Design

Part. 1: Introduction



Definition of Filter

• Electronic filters are linear circuits whose operation is defined 
in the frequency domain, i.e. they are introduced to perform 
different amplitude and/or  phase modifications on different 
frequency components. 

• Digital Filters (or Numerical Filters) operates on digital (i.e. 
coded) signals

• Analog Filters operate on analog signals, i.e. signals where the 
information is directly tied to the infinite set of values that a 
voltage or a current may assume over a finite interval (range). 
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Brief Filter History: The Basis 
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Harmonic Analysis

 200 BC: Apollonius of Perga theory of “deferents and epicycles” 

(the basis of later (100 AD) Ptolemaic system of astronomy), 

maybe anticipated by Babylon mathematicians intuitions  

 1822 Joseph Fourier: Théorie Analytique de la Chaleur. Preceded by 

Euler, d’Alembert and Bernoulli works on trigonometric interpolation.   

Electrical Network Analysis

 1845 Gustav Robert Kirchhoff: Kirchhoff Circuit Laws (KCL, KVL)

 1880-1889 Olivier Heaviside developed the Telegrapher's equations and coined the terms 

inductance, conductance, impedance etc. 

 1893  Charles P. Steinmetz: “Complex Quantities and Their Use in Electrical Engineering“  In 

the same year, Arthur Kennely introduced the complex impedance concept



Brief Filter History: Resonance
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 1898 – Sir Oliver Lodge: Syntonic tuning
Marconi RTX with syntonic tuning

 Acoustic resonance was know since the invention of the first musical instruments.
 Acoustical (i.e. mechanical) resonance allows selecting and enhancing individual

frequencies. It suggested the first FDM (frequency division multiplexing) application 
to telegraph lines based on electrical resonance. 

 Electrical resonance was first observed 

in the discharge transient of Leiden Jars 

Not suitable for telephone

FDM, but sufficient for Radio

tuning



Brief filter history: The beginning of the electronics era
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1904 – John Ambrose Fleming Valve (Vacuum Diode)

1906 – Lee De Forest “Audion” Vacuum Triode  

1912 – Lee De Forest: cascaded amplifier stages

1915 – G. A. Campbell – K.W. Wagner “wave filters”
first example of filter theory: 
Image Parameters Theory 

1911 – First Triode-based Amplifiers and Oscillators



Brief Filter History: Towards Modern Filter Theory
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 1930 – Stephen Butterworth introduces maximally flat filters. 
(with amplifier to separate stages) 

 1917 – Edwin Howard Armstrong: First Superhetorodyne Radio 

 1927 – Harold Stephen Black: application of negative feedback to amplifiers

 1920 – Introduction of the term “feedback” (referred to positive FB) 

 1920-30 – Diffusion of Frequency Division Multiplexing for telephone calls. 

 1925-40 – Progressive introduction of the Network Syntesys
approach to filter design. Primary contributors was 
Wilhelm Cauer

Vacuum tube era



Filter operation

The role of a filter can be:

• Modify the magnitude of different frequency components. 
These filters are by far the most commonly used. 

• Modify the phase of different frequency components (i.e. to 
compensate for an unwanted phase response of a filter of an 
amplifier)
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Real filters generally change both the phase and magnitude of a signal



Analog filters: General properties
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Common properties:

 Linearity

 Time Invariance

 Stability (BIBO: Bounded Input -> Bounded Output)

Filters may be:

 Lumped / Distributed

 Active / Passive

 Continuous-time / Discrete-Time



Lumped element networks
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Lumped element networks are made up of components, whose state 

and/or behavior is completely defined by a discrete number of 

quantities. 

Lumped element networks are simplifications or real systems, which 

are spatially distributed (i.e. the relevant quantities are given as function 

of space variables, defined over a continuous domain).

Lumped Distributed 

(e.g. transmission line)



Passive and Active Networks (Linear)
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Passive network: 

 Includes only passive components (resistors capacitors, inductors, transformers)

 When connected to external independent sources, the net energy flux into 

the network is always positive 

Passive network Active network



Continuous and Discrete Time
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Continuous time: the signal at all time 

values belonging to a continuous interval 

are significant

Discrete time: the signal assumes significant 

values only at time intervals that form a

countable (i.e. discrete) and ordered set. 

The signal is then a sequence of values s(n)

A sequence can be considered as the result of sampling a continuous-time signal

This relationship is not univocal 



Time and Value Discretization
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Discrete 

magnitude

(digital)

Continuous

magnitude

(analog)

Discrete Time Continuous Time



Filter types according to the ideal magnitude response
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fc synonyms:

 Corner frequency

 Cut-off frequency

fCL Corner Freq – Low

fCH Corner Freq – High



Real filters: the approximation function
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 The Low Pass filter is 

the reference for other 

types

 Frequency are general 

given as angular 

frequencies (w)

 A Transition Band (TB) is 

introduced 

Note: wp is generally different from wc (-3 dB frequency)

3 dB

wc



Approximation parameters for high-pass, band-pass, band-stop filters
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The approximation problem for

time-continuous analog filters



Approximation Problem
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Approximation Problem
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Approximation Problem
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Approximation Problem
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We need to find a function K(s) such that |K(jw)|2 satisfies the conditions:
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Notable cases
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 Maximally Flat Magnitude Filters (e.g. Butterworth Filters)

 Chebyshev Filters

 Inverse Chebyshev Filters

 Elliptical Filters

 Bessel Filters 

General selection criteria:

 The lower the polynomial order, the better the solution

 Monotonic behavior in the PB can be required

 Asymptotic behavior for w>>wS could be important

 Phase response: a linear response is often required



Maximally Flat Magnitude (MFM) Approximation
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Maximally Flat Magnitude (MFM) Approximation
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Maximally Flat Magnitude (MFM) Approximation
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Maximally Flat Magnitude (MFM) Approximation
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Maximally Flat Magnitude (MFM) Approximation
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Butterworth Filters
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 The Butterworth filter is a MFM filter with =1

 It can be shown that the case ≠1 is identical to 

=1 but with simple frequency transformation
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Butterworth Filters
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Filter Parameter Determination
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Butterworth filter : example
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Chebyshev Filters
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Chebyshev polynomials: properties
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Chebyshev filters: Pass Band Attenuation 
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Chebyshev filters: Stop Band Attenuation 

P. Bruschi - Analog Filter Design 34

     www SNSNnSN nCjK arccoshcosh)(

   



w SNn arccoshcosh

110

110

10

10

2

2











P

S

A

A















w




)(arccosh

)(arccosh
min

SN

n



Inverse Chebyshev filters (or Chebyshev type II)
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Target: Obtain monotonic behavior in the pass-band (no ripple) and ripple

In the stop-band
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Elliptic (or Cauer) Filters
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Phase, delay, group delay
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In order to maintain the shape of a generic signal, the following conditions 

must be respected:

 All the significant frequency components of the signal fall into the filter 

pass-band, which should be as flat as possible:

 The filter phase response in the pass-band should be of the type:

Rtw

If this condition is fulfilled, the input signal is simply delayed by time tR.

In other words, the group delay should be constant. The group delay 

is  defined as:
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Bessel Filters
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Constant group delay is very important in systems that has to handle digital 

transmissions, where signal distortion may result in high BER (Bit Error Rate), 

or even in unrecoverable signal. 

The Bessel filter is obtained by considering an all-pole function:
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Bessel Filters
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The Bessel Filters are derived by:

 Taylor’s expansion of the arctan() functionis calculated obtaining a 

polynomial approximation of the phase;

 The first derivative of the phase approximation is calculated

 The constant term of the derivative is set to 1 (group delay=1)

 Higher order terms are set to zero; this corresponds to setting the 

derivatives of  the group delay to zero. The number of derivatives that can be 

nulled depends on the filter order. 

 The result is a maximally flat group delay

 Can be used to purposely introduce a delay



Bessel filters, examples
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Summary of filter characteristics
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 Butterworth: maximally flat in the pass-band and monotonic 

everywhere

 Chebyshev: More selective than Butterworth (sharper transition), 

but ripple in the pass-band (monotonic in the stop-band)

 Inverse Chebyshev: Same selectivity than Chebyshev, but ripple in 

the stop-band (flat in the pass-band). Magnitude do not 

decrease asymptotically in the stop-band

 Elliptic:         Best selectivity, but ripple in both the pass-band and stop-

band. Magnitude do not decrease asymptotically in the  

stop-band

 Bessel: The least selective of all other filters, but the best in terms 

of phase linearity (constant group-delay in the pass-band)



Other continuous time filters
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 Optimum L-filter (Papoulis)

Obtains the best selectivity with a monotonic response. Compared with a 

Butterworth  of the same order filter it is sharper in the transition band, but 

less flat (but still monotonic) in the pass-band. 

 All pass filters (phase equalizers). Their common characteristic is that for 

each pole they have a zero with opposite real part. As a result, they have 

RHP (right half plane) zeros and their step response is generally preceded 

by a glitch in the opposite direction with respect to the final value. 

For step-like signals, low-pass phase equalizers (e.g. Bessel filters) are to 

be preferred. 

 Filters based on Padè approximations: The Padè approximation is the 

best n-order rational function that approximate an arbitrary function. It is 

used for the approximation of the ideal delay: exp(-jwtD). The all-pass 

functions are a particular case of Padè approximation. 



Frequency transformations
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The aim of frequency transformations are:

 Change the characteristic frequencies with respect to the normalized case

 Change the low pass response into an high pass, band-pass etc. 
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Pass Band transformation: meaning of B, w0

 When w=w0, wn =0. Then, the response of the 

pass-band filter at w0 is the D.C. value (wn=0) 

of the prototype low pass filter. 

 For w variations from w0, wn moves away from 

the origin. When w<w0, wn is negative, so that 

H(w) is the complex conjugate of the values 

at w>w0 (see the phase diagram in the figure)

 The bandwidth B is the difference between 

the frequencies w1 and w2, for which the 

absolute value of the normalized frequency is 

unity. 

 If the bandwidth B is much smaller than 

frequency w0 (selective filter), than w1 and w2

are symmetrical with respect to w0. 0


