Analog Filter Design

Part. 1: Introduction
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Definition of Filter

« Electronic filters are linear circuits whose operation is defined
In the frequency domain, i.e. they are introduced to perform
different amplitude and/or phase modifications on different
frequency components.

* Digital Filters (or Numerical Filters) operates on digital (i.e.
coded) signals

« Analog Filters operate on analog signals, I.e. signals where the
iInformation is directly tied to the infinite set of values that a
voltage or a current may assume over a finite interval (range).
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Brief Filter History: The Basis
Harmonic Analysis

> 200 93@ @P/O/EK(M\MM)C% @Wﬂﬁm@% “EMMW”
(the basio of fater (100 @D) Phofemaic ayotem of astronomsy),

» 1822 Joseph Fourier: Théorie Analytiqgue de la Chaleur. Preceded by
Euler, d’Alembert and Bernoulli works on trigonometric interpolation.

Electrical Network Analysis

» 1845 Gustav Robert Kirchhoff: Kirchhoff Circuit Laws (KCL, KVL)

» 1880-1889 Olivier Heaviside developed the Telegrapher's equations and coined the terms
Inductance, conductance, impedance etc.

» 1893 Charles P. Steinmetz: “Complex Quantities and Their Use in Electrical Engineering® In
the same year, Arthur Kennely introduced the complex impedance concept
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Brief Filter History: Resonance

» Acoustic resonance was know since the invention of the first musical instruments.
» Acoustical (i.e. mechanical) resonance allows selecting and enhancing individual
frequencies. It suggested the first FDM (frequency division multiplexing) application

to telegraph lines based on electrical resonance.

> Electrical resonance was first observed
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Brief filter history: The beginning of the electronics era

1904 — John Ambrose Fleming Valve (Vacuum Diode)

1906 — Lee De Forest “Audion” Vacuum Triode

1911 — First Triode-based Amplifiers and Oscillators

1912 — Lee De Forest: cascaded amplifier stages

1915 — G. A. Campbell - K.W. Wagner “wave filters”
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Brief Filter History: Towards Modern Filter Theory

» 1917 — Edwin Howard Armstrong: First Superhetorodyne Radio

» 1920 — Introduction of the term “feedback” (referred to positive FB)

» 1927 — Harold Stephen Black: application of negative feedback to amplifiers
» 1920-30 — Diffusion of Frequency Division Multiplexing for telephone calls.

» 1930 — Stephen Butterworth introduces maximally flat filters. ‘35 ~
(with amplifier to separate stages) . LY

» 1925-40 — Progressive introduction of the Network Syntesys | n’! !
approach to filter design. Primary contributors was =

Wilhelm Cauer
Vacuum tube era
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Filter operation

The role of a filter can be:

« Modify the magnitude of different frequency components.
These filters are by far the most commonly used.

« Modify the phase of different frequency components (i.e. to
compensate for an unwanted phase response of a filter of an
amplifier)

[ Real filters generally change both the phase and magnitude of a signal J
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Analog filters: General properties

Common properties:

v Linearity
v" Time Invariance
v’ Stability (BIBO: Bounded Input -> Bounded Output)

Filters may be:

v Lumped / Distributed
v' Active / Passive
v' Continuous-time / Discrete-Time
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Lumped element networks

Lumped element networks are made up of components, whose state
and/or behavior is completely defined by a discrete number of
guantities.

Lumped element networks are simplifications or real systems, which
are spatially distributed (i.e. the relevant quantities are given as function
of space variables, defined over a continuous domain).
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Passive and Active Networks (Linear)

7 0 a O
1w~ 1w <> <>

L 0 N /
Passive network Active network

Passive network:

» Includes only passive components (resistors capacitors, inductors, transformers)

» When connected to external independent sources, the net energy flux into
the network is always positive
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Continuous and Discrete Time

s(1)
— -.--I-
t
Contin iime- the sianal at all tim Discrete time: the signal assumes significant
ci | ubOl:Sn' 'ne. ¢ ©sl9 netl.:l — I'nte val values only at time intervals that form a
V? ues n.ef.o ?\'t 910 a LONUAUOLS Interva countable (i.e. discrete) and ordered set.
are slanitica The signal is then a_sequence of values s(n)

A sequence can be considered as the result of sampling a continuous-time signal
This relationship is not univocal
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Time and Value Discretization

A
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Filter types according to the ideal magnitude response

IHA|?  LOW-PASS
0 7 "
I b
. HIGH-PASS
|H(f)]
0 . f ]

W pass-band
IH®IT BAND-PASS W stop-band
o ¢ 1. P f_ synonyms:

- |Igj|
v' Corner frequency
BAND-REJECT v’ Cut-off frequency

IH(®HI

fo, Corner Freq — Low
o' f, f. P foy Corner Freq — High
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Real filters: the approximation function

20log|H(jw)| 4

IH(O)l g5

L

APJI

» The Low Pass filter is
the reference for other
types

» Frequency are general
given as angular
frequencies (o)

» A Transition Band (TB) is
Introduced

Note: o, Is generally different from o, (-3 dB frequency)
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Approximation parameters for high-pass, band-pass, band-stop filters
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The approximation problem for

time-continuous analog filters
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Approximation Problem

The first step is reducing the wide variability in filter characteristics by designing
a “reference filter” from which the actual filter can be derived through
“transformations”.

The reference filter, H\(Jjo), Is:

> Low Pass Gain normalization
» Normalized Characteristic frequency normalization

H (jo) = T2 O) 0, H (o) = H(j0)- Hy ()

H(JO) N
oy and H(j0) depend on the actual filter
. _ Wp _ g
H,(Jo): ©Op=0py =—" Oy = Qg =—
Wy Wy
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Approximation Problem

In order to classify the filters, it is convenient to define the function |k(jw)| as
follows:
1
1 o) |2 =
K (jo) |?= 1 5 Hy(jo)'= .
KUl [Hy (jo) [ N L+ K(jo) I

deal Case: | H, (jo) [F= 1 inthe PB S K (jo) = 0 inthe PB
0 In the SB o in the SB

—_ " //w
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Approximation Problem

< a?<<1inthe PB
> §°>>1 inthe SB

‘HN(j(D)‘ 1 Y.
A, =-201 =101 =10logll+|K
" Og(\HN(jo)\ > H, (jo) Og(+‘ (J(D)‘)

Real Case: [ [ K(jo) "=+

Worst case: AP210|Og(1—I-a2) > a=V10%¥ -1

Similarly: AS:10|og(]__|_62) ,:> S = 105_1

P. Bruschi - Analog Filter Design



Approximation Problem

We need to find a function K(s) such that |K(jw)|* satisfies the conditions:

o, [ a?<«<1 for e <op
| K(Jo) "=+

> §°>>1 for o> wg,

Clearly:

» There are infinite solutions to this mathematical problem

» Solutions should lead to a feasible Hy(s)

» Lumped element filter: Hy(s) should be a rational functions:

H(s) = w Where N(s) and D(s) are polynomial
D(s)
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Notable cases

» Maximally Flat Magnitude Filters (e.g. Butterworth Filters)
» Chebyshev Filters

» Inverse Chebyshev Filters

» Elliptical Filters

> Bessel Filters

General selection criteria:

» The lower the polynomial order, the better the solution
» Monotonic behavior in the PB can be required

» Asymptotic behavior for ©>>w¢ could be important

» Phase response: a linear response is often required

P. Bruschi - Analog Filter Design



Maximally Flat Magnitude (MFM) Approximation
K(s)=¢es"

K(jo)=¢(jo)" = |K(jo)| =&’o”

. 1 1
‘HN(J(D)‘: 7 2__2n
\/1+\K(j@)\ J1+e2e
H,(jo) :1—3820)2” +§84a)4” —£86a)6” + ...

2 8 16

All derivatives up to the (2n-1)th are zero for o=0.
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Maximally Flat Magnitude (MFM) Approximation

1

1+ %"

H, (jo) =

Since Hy(s) Is the Fourier transform of a real signal
(the impulsive response): Hy*(w)=H\(-j®). Then:

1

1+ &%w*"

Hy (i0)H, (- jo) =
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Maximally Flat Magnitude (MFM) Approximation

S=Jo = w=-—]S Hy(s)H (=s) = . n
. 1+82(—82)
HN(S):@
1 1

Hy(S)Hy(=3) = D(s)D(-s) 1; & (_Sz)n

Thus, Hy(s) is an all-poles function:

The roots of D(s)D(-s) are the solutions of 1+&%(-s%)"=0
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Maximally Flat Magnitude (MFM) Approximation

n 1 n n—ll n(n- 1
(-s?) == = s°" =(-1) S—Z—e‘( 1)8—2
1
1\n . 2k+n-1 .
S, = . exp| Jm » K :integer

odd multiples of ™ for neven

angle :< 2n

] 7T
even multiples of — for n odd roots of roots of
2N D(s) D(-s)
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Maximally Flat Magnitude (MFM) Approximation

n even n odd
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Butterworth Filters

» The Butterworth filter is a MFM filter with e=1 1
H,(Jo) =
» |t can be shown that the case ¢#1 is identical to ‘ v () )‘ \/l+ 2"
=1 but with simple frequency transformation
D.(s) are the Butterworth polynomials
1

Non normalized (actual) filter [> \H(joo)\:
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Butterworth Filters

Hy (jo) = —— H (o) == = —ade
TR @ g = R e
1.2 (DN = Q)C
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0.6 il
" Logarithmic
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Filter Parameter Determination

Ap &
|K(j(DSN)|:6 |K(j®p|\|)|:a a=Y\V10%* -1 6=V10"* -1
| K(jo) |= " - _
AS
Osn n Wg ” 0 10%° -1 n = |09(ﬂ)
o) a5, 2log| s
e Pe )% Y00 1 os
1
; % &:(DPN:(DN:(DC:(DPa n
Opy =ad = W, =4a Oy
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Butterworth filter : example

p 5

fP:l kHz Wgq _ fS g = \/10% _1=0509 \/_ = - — 1965

Ap.=1 dB N ;
AZ=60 dB 6:\/1010 —1=1000 n =3.86x10

no|—1990) |0 eaT-11
1 2Iog[w5)
Wp
0. =0,a " =2xnf,-1.063

P. Bruschi - Analog Filter Design

30



Chebyshev Filters
‘K ( j(x))‘ =¢eC, ((D) C,(®): n-th order Chebyshev polynomial

S .
c (w):<cos n-arccos(o)] |of <

cosh|[n-arccos h(o)] |o|>1

Cn (X) = 2XCn—1(X) o C:n—2

C,(x)=1 C,(x)=x C,(x)=2x*-1
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Chebyshev polynomials: properties

-

COS
C, (oo) =4

COS

\

For O<m<1 oscillates between 0 and 1

For =0 :
For =1 :
For >0

n-arccos(o)| || <1

1[n-arccos h(w)] |o]>1

Oifnodd, 1if neven
1 for every n
Increase monotonically
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=]
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For m=1.2

e

3rd
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oWl

0.8

1.0 1.2

Chebyshev polynomial have the highest leading term coefficient than any other
Polynomial constrained to be less than 1 (in modulus) for o between 0 and 1
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Chebyshev filters: Pass Band Attenuation

1

K(jo)|=¢C, (o) H, (jo)| =
J1+£°C2 ()

Dco<l = —2 <|H, (jw)| <1

V1+g?

1 iﬁuw):ki(jl&)gl

O, = < :
" " V1+¢g° H(J0) N

\/ A (A, =1dB = ¢e=05
10 e.}J. <
a=ec=\V10" -1 : A, =3dB = e=1
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Chebyshev filters: Stop Band Attenuation

K (jogy )| = €C,(wgy )= &-cosh(n-arccosh (wg, )= 8

O
cosh(n -arccosh (mq, )) = = Jn 52 10% 1
n= 8_2 T A
arccosh (\/ﬁ ) 107 -1

min

arccosh (o )
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Inverse Chebyshev filters (or Chebyshev type Il)

Target: Obtain monotonic behavior in the pass-band (no ripple) and ripple
In the stop-band 1

HN(j ):
K (jo)| = —— Hu(jo) 1

1 1+
‘°’C“I@I IIESHE

J 1
| d

1

IHN(jl)I =

I
I
I
I
| 1
I
I
I
I
I

I 1 @
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Elliptic (or Cauer) Filters
1

K(jo) = &R Hy (Jo)| =
KUoll= <Ry (o) ol J+e2R%(0)

R,: “elliptical” rational function : Nix(®) / Dr(®)

n/2
(0 —(D
MH for n even
k=1 (D _(Ozk 1

Rn(o)):<

2
— @
MmH - gk for n odd

mpkmzk = Q)s

M suchthat |R, (o) <1 for|m|<1
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Phase, delay, group delay

In order to maintain the shape of a generic signal, the following conditions

must be respected:

» All the significant frequency components of the signal fall into the filter
pass-band, which should be as flat as possible:

» The filter phase response in the pass-band should be of the type:

¢ = —otg
If this condition is fulfilled, the input signal is simply delayed by time t;.

In other words, the group delay should be constant. The group delay
IS defined as: do

’[ o
G
do
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Bessel Filters

Constant group delay is very important in systems that has to handle digital
transmissions, where signal distortion may result in high BER (Bit Error Rate),
or even in unrecoverable signal.

The Bessel filter is obtained by considering an all-pole function:
K

Hy(S)=——

N( ) D(S)

We start from a generic polynomial D(s), substitute s=jo and than calculate
the phase of Hy by: _
" v lm(D(Jw))j
Re(D(jo))

¢ = —arctan (
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Bessel Filters

The Bessel Filters are derived by:

= Taylor’'s expansion of the arctan() functionis calculated obtaining a
polynomial approximation of the phase,;

= The first derivative of the phase approximation is calculated

= The constant term of the derivative is set to 1 (group delay=1)

= Higher order terms are set to zero; this corresponds to setting the
derivatives of the group delay to zero. The number of derivatives that can be
nulled depends on the filter order.

» The result is a maximally flat group delay
» Can be used to purposely introduce a delay
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Bessel filters, examples

Denominators of various order for unity group delay

1: D(s) =s+1, K=1 ® .5 = +/(2n=1)In(2)
. _ o2 : _
2: D(s)=s"+3s5s+3, K=3 Approximate
3: D(s)=s’+6s°+155+15; K =15 expression forn = 3
D, =(2n-1)D,_, +s°D,_, (Bessel polynomials, recursive expression)
1
o —> 2 — T, = —— (pass-band group delay after frequency scaling)
Wy Wy

The Bessel filter is less selective than a Butterworth filter of same
order, but its phase response is much more linear
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Summary of filter characteristics

» Butterworth: maximally flat in the pass-band and monotonic
everywhere
» Chebyshev: More selective than Butterworth (sharper transition),
but ripple in the pass-band (monotonic in the stop-band)
» Inverse Chebyshev: Same selectivity than Chebyshev, but ripple in
the stop-band (flat in the pass-band). Magnitude do not
decrease asymptotically in the stop-band

> Elliptic: Best selectivity, but ripple in both the pass-band and stop-
band. Magnitude do not decrease asymptotically in the
stop-band

» Bessel: The least selective of all other filters, but the best in terms

of phase linearity (constant group-delay in the pass-band)
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Other continuous time filters

» Optimum L-filter (Papoulis)
Obtains the best selectivity with a monotonic response. Compared with a
Butterworth of the same order filter it is sharper in the transition band, but
less flat (but still monotonic) in the pass-band.

» All pass filters (phase equalizers). Their common characteristic is that for
each pole they have a zero with opposite real part. As a result, they have
RHP (right half plane) zeros and their step response is generally preceded
by a glitch in the opposite direction with respect to the final value.

For step-like signals, low-pass phase equalizers (e.g. Bessel filters) are to
be preferred.

> Filters based on Pade approximations: The Pade approximation is the
best n-order rational function that approximate an arbitrary function. It is
used for the approximation of the ideal delay: exp(-joty). The all-pass
functions are a particular case of Pade approximation.
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Frequency transformations

The aim of frequency transformations are:

» Change the characteristic frequencies with respect to the normalized case

S

S, > —— All characteristic frequencies are multiplied by o,

Wy

» Change the low pass response into an high pass, band-pass etc.

W, S I
S — N S, —> — +— s 5| QLo > LB
n n
S Blow, s Blow, s
High pass Band-Pass Band Stop

)
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Pass Band transformation: meaning of B, o,
O, S o Jo (Doj -@o[@_moj
jo, > + = |
Sn_)B[Q)O+Sjj‘> (o jo Blo, o
o [ . woj e

% —
On B W, ®
M - 60
for small variations around w, such that: =~ —— << 1
0
( )
1
7 ® o 1 o
®, + 80 —> BO 1+—— 5 ~)—
0
Wy ¢, 00 B
\ Wy
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Pass Band transformation: meaning of B, o,

2 2
B B B B
o, =l2>0=0,=0,,[1+ +— o, =-lDo=0, =0,,/1+ ——
20, 2 20, 2

2
®, + 0, o N B
2 ’ 20,

112

O,

for: B << o,
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Pass Band transformation: meaning of B, o,

When o=w0,, ®, =0. Then, the response of the
pass-band filter at o, is the D.C. value (»,=0)
of the prototype low pass filter.

For o variations from o,, ®, moves away from
the origin. When o<wo, o, IS negative, so that
H(w) Is the complex conjugate of the values

at ®>m, (see the phase diagram in the figure)

The bandwidth B is the difference between
the frequencies o, and w,, for which the
absolute value of the normalized frequency is
unity.

If the bandwidth B is much smaller than
frequency o, (selective filter), than o, and o,
are symmetrical with respect to o,.
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