List of scipy.signal scripts:

Folder: Synthesis_and_freq_response

Filter synthesis general: Examples of filter synthesis using the matlab-like filter design functions. **Example_filtering_effect**: Filter synthesis and application of the filter to the separation of a pure tone (1 kHz) from a disturbing tone (2 kHz) and random noise.

Filter_synthesis_with_iirdesign. Use of the alternative function "iirdesign " to perform filter synthesis.

Bessel_vs_butterworth. Comparison of a butterworth filter with a Bessel filter with similar selectivity. The filter are compared in terms of group delay and step response

Folder: Biquad_decompos

biquad_butter: Butterworth Filter design and expression of the filter response as a product of biquads. The script produce the biquad coefficients in terms of ω_0 and Q. Note that no zero are present.

biquad_ellip: Elliptical Filter design and expression of the filter response as a product of biquads. The script produce the biquad coefficients in terms of ω_0 and Q. Note that pure imaginary zeros are present.

Folder: discrete_time

<u>generic</u> 1st order <u>H</u> di <u>z</u>: Simulation (frequency and step response) of a generic first order discrete time H(z) transfer function.

<u>euler_1st_order</u>. Approximation of the first order low pass filter with the Euler forward approximation. Calculation of the H(z) coefficient is done explicitly.

<u>test bilinear 2d order</u>: Approximation of second order, continuous time low pass function by means of the bilinear transform. It is possible to introduce pre-warping.

test_cont2discret_1st Example of use of function "cont2discrete" to obtain an equivalent discretetime model from a first order continuous-time transfer function. Various methods (e.g. Euler, forward and backward, bilinear, zero hold) can be chosen.

test_cont2discrete_2nd Same as previous but for a second order system.