FISICA 1 per TELECOMUNICAZIONI PROVA SCRITTA appello 6 del 11 luglio 2001

COGNOME	NOME	E	
Prenotazione orale (facolta	ativa): □18 luglio	□settembre (I)	□settembre (II)
NOTA: questo foglio deve	essere restituito N	NOTA: e' obbliga	torio giustificare
brevemente ma in modo es	sauriente e compre	nsibile le risposte	

Esercizio 1 Si consideri il modello classico dell'atomo di idrogeno in cui l'elettrone (di massa m e carica $q_e = -q_p = -q$) ruota di moto circolare uniforme a distanza R da un protone che si considera fermo.

- **1.1** Si calcoli il modulo del momento angolare dell'elettrone in funzione di m,R,q. [in questa risposta non è necessario fornire valori numerici].
- **1.2** Nel modello di Bohr il modulo del momento angolare vale $n\hbar$, dove $\hbar = 1.05 \times 10^{-34} \text{Js}$ ed n e' un numero intero (numero quantico pricipale) che caratterizza lo stato dell'atomo. Si calcoli il raggio dell'orbita (valore numerico) nello stato n=2.
- **1.3** Si calcoli il valore (numerico in eV) dell'energia meccanica totale nello stato n=2. [si ponga l'energia potenziale elettrostatica nulla a distanza infinita]

Esercizio 2 Nella regione x<0 di un sistema di coordinate Oxyz è presente un campo di induzione magnetica $\underline{\mathbf{B}}=(0,0,-B_o)$, mentre nel semispazio x>0 il campo magnetico vale $(0,0,+B_o)$. Una spira quadrata di lato L si trova nel piano xy, ha due suoi lati paralleli all'asse x ed è mantenuta da un operatore esterno ad una velocità costante $(v_o,0,0)$. La spira è conduttrice, ha una resistenza R ed autoinduttanza trascurabile; al tempo t=0 sta iniziando ad entrare nel semipazio x>0. Si consideri che la normale alla spira sia concorde con l'asse z.

- **2.1** Si calcoli il flusso magnetico attraverso la spira per $0 < t < L/v_0$.
- **2.2** Si calcoli la corrente nella spira per $0 < t < L/v_0$.
- **2.3** Perchè è rilevante, ai fini delle risposte precedenti, l'ipotesi che la spira sia "mantenuta da un operatore esterno ad una velocità costante"?

Esercizio 3 Un cilindro omogeneo di massa M e raggio R è vincolato a ruotare attorno al suo asse. Per t>0 la sua velocità angolare è $\omega = \omega_o e^{-\gamma t}$, con ω_o e γ costanti note e positive.

- **3.1** Si calcoli il modulo della forza totale sul cilindro (per t>0).
- **3.2** Si calcoli il modulo del momento meccanico totale sul cilindro (per t>0) rispetto al suo asse.
- **3.3** Per quali valori dei parametri dati il cilindro effettua un solo giro, a partire dalla posizione che occupa a t=0, prima di fermarsi?

FISICA 1 per TELECOMUNICAZIONI SOLUZIONI della PROVA SCRITTA appello 6 del 11 luglio 2001

Esercizio 1

1.1 Il modulo del momento angolare dell'elettrone vale mvR = $q(mR/4\pi\epsilon_0)^{1/2}$

1.2
$$R_n = 4\pi\epsilon_0 n^2 \hbar^2 / mq^2$$
 $R_2 = 2.1 \times 10^{-10} m$

1.2
$$R_n = 4\pi\epsilon_0 n^2 \hbar^2 / mq^2$$
 $R_2 = 2.1 x 10^{\circ}$
1.3 $E_n = -mq^2 / 32\pi^2 \epsilon_0^2 n^2 \hbar^2$ $E_2 = -3.4 eV$

Esercizio 2

2.1 Il flusso magnetico attraverso la spira vale

$$B_oLv_ot + (-B_o)L(L-v_ot) = B_oL(2v_ot - L)$$

2.2 La corrente nella spira vale -2B₀Lv₀/R

2.3 L'ipotesi che la spira sia "mantenuta da un operatore esterno ad una velocità costante" è rilevante per bilanciare la forza magnetica risultante sulla spira. Notare che nel lato completamente immerso nel semispazio x>0 (B diretto come +z) la corrente è diretta come –y, mentre nel lato completamente immerso nel semispazio x<0 (B diretto come -z) la corrente è diretta come +y. Di conseguenza la forza magnetica è diretta come -x su entrambi i lati e la sua risultante non è nulla.

Esercizio 3

- 3.1 Il modulo della forza totale è nullo (la velocità del centro di massa è costantemente nulla e quindi la sua accelerazione è anch'essa nulla).
- 3.2 Il modulo del momento meccanico totale sul cilindro (per t>0) vale $Id\omega/dt = -(MR^2/2)\gamma\omega_0e^{-\gamma t}$
- **3.3** L'angolo di cui è ruotato il cilindro al tempo t vale $\int_0^t \omega dt = \omega_0 / \gamma (1 e^{-\gamma t})$. Il cilindro si ferma per t= ∞ , quindi l'angolo di cui è ruotato il cilindro prima di fermarsi vale ω_o/γ . Il cilindro effettua un giro e poi si ferma se si ha $2\pi = \omega_0/\gamma$.