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GENERAL CONSIDERATIONS 

ON NUMERICAL DISCRETIZATION SCHEMES 

Mathematical Character of Balance Equations for Fluid Flow 

• The mathematical character of Partial Differential Equations (PDEs) is 

relevant for their numerical discretization 

� the numerical scheme should reflect, though approximately, the 

way in which relevant information is propagated throughout the 

computational domain 

� boundary and initial conditions must be imposed in the numerical 

method in agreement with the way information is propagated 

• The classification of PDEs envisages three different characters 

addressing different phenomena; grossly speaking: 

� hyperbolic: phenomena involving the propagation of wave fronts 

progressing along specific space-time paths with finite speed 

� parabolic: phenomena involving infinite speed of propagation in 

space and progressing in time 

� elliptic: steady-state distribution of scalars in space 

• Examples of hyperbolic equations 

 

� the advection of a scalar 
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� the telegraph equation 
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• Examples of parabolic equations 

� the diffusion of a scalar (heat, concentration) 

 

� the laminar boundary layer  
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• Examples of elliptic equations 

� the steady temperature distribution in a solid or the electric 

potential in a domain 

 

� the steady neutron flux distribution in a reactor core 
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• Navier-Stokes equations 2Dw
w p g

Dt
ρ µ ρ= ∇ − ∇ +
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 are also elliptic in nature 

when steady and may be parabolic in transient form 
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• The sets of partial differential equations as the ones describing fluid-

dynamics can be classed into hyperbolic, parabolic or elliptic by 

evaluating their “characteristic roots” 

� the system must be written in the form 

( ) ( ) ( ), , , , , ,x t x t x t
t x

∂ ∂
+ =

∂ ∂

φ φ
A φ B φ c φ  

where ϕϕϕϕ  is the vector of unknowns, e.g. { }, ,p u wϕ =ϕ =ϕ =ϕ =  for single-phase 

flow and { }, , , , ,l v v l vp u u w wαϕ =ϕ =ϕ =ϕ =  for two-phase flow  

� then, the “characteristic equation” is solved   

( )det 0λ− =B A
 

• For the scalar advection equation, 0
T T

w
t x

∂ ∂
+ =

∂ ∂
, the matrices A and B 

degenerate into 1 and w, giving the characteristic root wλ = , showing 

the hyperbolic character of advection. 

• Generally speaking,  

o when the roots of this equation (characteristic roots) are real, the 

system is said hyperbolic and the characteristic roots represent the 

slope of the characteristic lines in the x-t plane, to be interpreted as 

the lines along which the relevant information is transported; it is: 

i
i

dx

dt
λ =  

o when all the characteristic roots are complex, the system is said 

elliptic; 

o in all the other cases, the system is said parabolic. 

• To better understand the situation, it is worth considering another 

classification, that can be shown to be equivalent to the above one 

and applies to second order partial differential equations 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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The classification is based on the value of ( ) 2, 4x t b ac∆ = − ; for ( ), 0x t∆ >  

the equation is hyperbolic, for ( ) 2, 4 0x t b ac∆ = − =  the equation is 

parabolic and for ( ) 2, 4 0x t b ac∆ = − <  the equation is elliptic. 
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• The relation between the two classifications can be understood considering that 

the above second order equation can be converted to a system of first order 

partial differential equations. In fact, by putting 

1 2 3
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= = =
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 the second order equation can be rewritten as the system of equations 
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 and the characteristic equation becomes 
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• For the vibrating string equation it is 
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The equation is therefore hyperbolic and the two characteristic roots 

represent the speed of propagation of perturbation (waves) along the 

x axis in the forward and in the backward directions 

• For the telegraph equation, it is 
2 2
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T T T

t t x
τ α

∂ ∂ ∂
+ =
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2

1,2
0τλ α λ α τ− = ⇒ = ±  

So, also this equation is hyperbolic and the two characteristic roots 

depend on the ratio of the two appearing constants. In both cases, the 

real characteristic roots, represent the speed at which information is 
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propagated in space during time for hyperbolic phenomena; the 

characteristic lines represent the paths in the space-time plane along 

which information is propagated: their local slope is given by the 

characteristic roots 

In the figure below, it is clarified that the “domain of dependence”, 

enclosed by the characteristic lines (they may be two and straight, as 

in the right figure, or more than two and even curved if the 

characteristic roots are not constant, as in the left one), represents 

the region from which the state in any given point P  depends: the 

relevant information affecting it cannot come from outside the 

region. 

 

• The telegraph equation helps in understanding that the speed of 

propagation of information in the heat equation becomes infinite. In 

fact, for vanishing τ  it is  
2 2 2

2 2 2
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T T T T T

t t x t xτ
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∂ ∂ ∂ ∂ ∂
+ = → =

∂ ∂ ∂ ∂ ∂
 

and the two characteristic roots 

1,2λ α τ= ±  become infinite. This 

means that any perturbation travels 

with infinite speed forth and back 

along the x axis, and the domain of dependence is all the region below 

a certain time t .  

• For the 2D Laplace equation, it is: 
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and the roots are found to be complex conjugated, showing the 

elliptic character of the equation. 
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A RELEVANT EXAMPLE for 1D FLOW ANALYSES 

The One-Dimensional Equations  

for a Compressible Single and Two-Phase Flow 

In this approach the single or two-phase fluid is anyway considered as a 

mixture having cross section averaged properties.  

Temperature and velocity are uniquely defined for both phases and the 

single couple of thermodynamic variables p  and u  defines the properties 

of the fluid.  

In the case of Two-Phase Flow the model is said HEM (Homogeneous 

Equilibrium Model) or Equal Velocity Equal Temperature (EVET). 

In this respect, the equations to be derived hereafter hold for two-phase 

mixtures and for single phase fluids as well. 

The following equations are written in terms of cross section averaged 

variables, neglecting the difference between the average of products and 

the product of averages: this is a simplification often introduced that must 

anyway be carefully considered in its implications. 

• Mass Balance 

We consider an elementary duct slice having length equal to dz  with 

cross section area that, in general, can be variable along z  

The mass balance in terms of variables averaged over the cross section 

can be written as 

( ) � ( )
inlet mass
flow rate

rate of change outlet mass flow rate
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where ( )[ ]smkgwAQAWG
2=ρ=ρ== , is the mass velocity assuming w  

as the cross section averaged value of velocity: ww = .  

In the case of two-phase flow the volumetric flux, j , defined as 







==

s

m

A

Q
j  

represents a more meaningful definition than w w= , as it is the speed 

of the geometrical centre of the mixture. 

By simplifying the differential terms and considering that area is 

constant in time, it is 

( ) 0
1

=
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∂
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∂

ρ∂
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zAt
   (mass balance) 

• Momentum Balance along the channel axis 

Considering the same elementary volume, writing again the 

momentum equation in terms of cross section averaged values it is:  

( fP  is the wetted perimeter) 
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Neglecting second order terms and simplifying, it is: 

( ) ( ) ( ) AsingP
z

A
ppA

z
jGA

z
GA

t
fw θρ−τ−

∂

∂
+

∂

∂
−

∂

∂
−=

∂

∂
 

Considering that 

ρ
=

G
j   and  ( )

z

p
A

z

A
ppA

z ∂

∂
+

∂

∂
=

∂

∂
 

and dividing both sides by the area, it is found 
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The previous equation can be also written in the form: 
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21
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ρ θ τ
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by integrating along a finite length, it is 

, ,acc temp acc spat grav frictp p p p p∆ = ∆ + ∆ + ∆ + ∆  

Obviously, in the case in which singular pressure drops and/or a pump 

are present, new terms must be introduced, as 
singp∆ e 

pumpp∆ . 

• Energy Balance 

By taking gzwue ++= 22 , in terms of variables average over the cress 

section, it is: 
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in which hP  is the heated perimeter. It is therefore: 
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( ) ( )[ ] q
A

P
qpveGA

zA
e
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h ′′′+′′=+
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∂
+ρ

∂

∂ 1
 (energy balance) 

An equivalent form of the equation can be written for single-phase flow 

making use of the relationship wG ρ=  and assuming that the averages of 

products over the cross sections are equal to the mean of the products 

(which, as already mentioned, in general is not true): 
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• These equations are used also in the case of gas-dynamics along a pipe. 

A relevant character possessed by these equation is that they are 

“hyperbolic” having real characteristics (see below) 

• In the simple Homogeneous Equilibrium Model (HEM), as well as in 1D 

single-phase compressible flow, the three balance equations lead to 

three real characteristic roots 

1

2

3 ( )

sound

sound

w w speed of pressure perturbations in the forward direction

w w speed of pressure perturbations in the backward direction

w speed of enthalpy perturbations fluid velocity

λ

λ

λ

= + =

= − =

= =  

• The three characteristic lines allow to define the domain of dependence 

of any point-instant in the space-time plane, highlighting where the 

needed information on previous time conditions comes from 

• This is highlighted by the construction of the characteristic line 

triangles in the following figure 

 
Subsonic flow towards the right  Subsonic flow towards the left  Supersonic flow towards the right 
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• Of particular interest is the application of these concepts for 

determining the type and number of boundary conditions needed at the 

inlet and at the outlet of a pipe; this is shown in the figure below: 

 

• On the other hand, for a six equation two-fluid model, it is 

1,2 3,4 5,6
ˆ,f g mixture void perturbations mixture soundw w w w w wλ λ λ= = ± = ±

 

• Initial value differential problems having an hyperbolic character are 

“well-posed”, because their solution exists and is unique and it changes 

in a continuous fashion with initial conditions: the latter characteristic 

is not necessarily possessed by elliptic models 

• In some cases, as in the equations adopted by the RELAP5 code, two 

characteristic roots (the 3rd and 4th in the previous description) generally 

turn out to be complex giving a partially elliptic character to the equations 

• The mathematical problem is therefore “ill-posed” and unstable 

behaviour is possible 

• In RELAP5, a code used for nuclear reactor application, the problem is 

anyway solved at the level of numerical discretization: 

� by using a numerical scheme introducing enough “numerical 

diffusion” as to stabilize the problem 

� by introducing artificial viscosity terms purposely designed to make 

sure that a stable solution will be obtained 

2 BC 1 BC 2 BC 
No BC 
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The general form of multidimensional balance equations to be solved in fluid 

dynamics is obtained by conservation principles over arbitrary and finite 

volumes 

( ) ( )

V S S V

Rate of change Flux of out of S Flux of out of S Volumetric
of in V due to fluid motion due to molecular motion source of

advection or convection diffusion

d
dV dS dS S dV

dt
φ φρφ ρφ φ ρ

Φ Φ
Φ Φ

= − ⋅ + Γ ∇ ⋅ +∫ ∫ ∫ ∫
����� ������� ������� �����

w n n
 

where φ  is the specific value per unit mass of the extensive variable Φ , being 

the subject of the balance, and φΓ  and Sφ  are, respectively, the diffusion 

coefficient and the source per unit mass  

 

By a conventional passage, the balance equation over the arbitrary 

volume V is firstly transformed by the use of the divergence theorem 

( )

( ) ( )

V V V V

Rate of change Flux of out of S Flux of out of S Volumetric
of in V due to fluid motion due to molecular motion source of

advection or convection diffusion

dV dV dV S dV
t

φ φρφ ρφ φ ρ

Φ Φ
Φ Φ

∂
= − ∇ ⋅ + ∇⋅Γ ∇ +

∂∫ ∫ ∫ ∫
����� ������� ������� �����

w
 

and then the arbitrariness of the selected control volume and the 

continuity of the functions allows to infer that if 

( ) ( ) ( ) 0
V

S dV
t

φ φρφ ρφ φ ρ
∂ 

+ ∇⋅ − ∇⋅ Γ ∇ − = ∂ 
∫ w  

this implies that the integrand function must be zero everywhere: 

 

( ) ( ) ( )
�

( )
Source termAdvection Diffusion term

Transient term or convection term

S
t

φ φρφ ρφ φ ρ
∂

+ ∇ ⋅ = ∇ ⋅ Γ ∇ +
∂ ����� ����������

w  

 

 In other words, the principle of conservation established for a finite 

volume is translated to the differential (infinitesimal) form 

 
 

 

V 

S 

diffusive flux ofφ φ−Γ ∇ = Φ  

advective flux ofρφ ⋅ = Φw n  

 

V 

S 

diffusive flux ofφ φ−Γ ∇ = Φ  

advective flux ofρφ ⋅ = Φw n  

 

V 

S 

diffusive flux ofφ φ−Γ ∇ = Φ  

advective flux ofρφ ⋅ = Φw n  
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Since this is the general form of the equations involved in fluid flow, 

numerical methods are conceived to deal with the terms appearing in it. 

 

 It will be seen that, making use of the “finite volume” technique of 

discretization, the red arrow in the previous sketch must be inverted: from 

the differential equation we must go back to the finite volume conservation 

principle. 
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BASIC CONCEPTS ABOUT COMPUTATIONAL 

MODELLING OF TURBULENT FLOWS 
 

LENGTH SCALES IN TURBULENCE 

• In turbulent flow an “energy cascade” occurs representing a transfer of 

turbulence kinetic energy (per unit mass), identified by k, from large to 

smaller eddies. In particular: 

o large eddies receive energy by the average flow field at the 

macroscopic scales characterising it 

o small eddies, on the other hand, are mainly responsible for 

turbulence kinetic energy dissipation 

o it can be reasonably assumed that small eddies are in an 

equilibrium state in which they receive from large eddies the 

same rate of energy they dissipate (universal equilibrium theory 

by Kolmogorov, 1941) 

• Motion at the smaller scales involved in turbulence phenomena is 

governed by the following variables: 

o turbulence kinetic energy dissipation per unit time 
2 3dk dt m sε  = − =    

o kinematic viscosity 
2

m sν  =    

• By dimensionally combining the above variables, it is possible to 

determine the Kolmogorov length, time and velocity scales  

( ) [ ]

1 4
3

2 3
1 4

3

2

m s
m

s m
η ν ε

    
≡ = =    

     

 

( ) [ ]
1 2

2 3
1 2

2

m s
s

s m
τ ν ε

   
≡ = =   

   
 

( )
1 4

2 2
1 4

3

m m m

s s s
νε

     
≡ = =         
v  

• The length scale η  is generally much larger than the mean free paths of 

molecules; therefore, turbulent flow is essentially a continuum 

phenomenon 
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• Nevertheless, this length scale is many orders of magnitude smaller than 

that of lager eddies, whose size is in the order of the length of the bodies 

which generated them 

• The length scale characterising large eddies is identified by l  and a 

measure of it is said the integral turbulence length scale, representing 

the distance over which a fluctuating component of velocity keeps 

“correlated”, i.e., such that the mean ( ) ( )1 2i i
w r w r′ ′
� �

 is not negligible for a 

distance between the two points in the order of l . It is η>>l . 

• Both on an experimental and on a dimensional basis it was possible to 

establish the relation between ε , k  and l  applicable for high Reynolds 

number turbulence (see later). This relationship has the form 

3 2k
ε ≈

l
 

• Therefore, considering the definition of η  it is: 

( )
( ) ( )

( )

1 4 3 4 3 43 2 3 4 1 21 4 1 2
3 4

1 4 3 4 3 4 3 43
T

k k k
Re

ε

η ν ν ν νν ε

 
= = ≈ = = = 

 

l l ll l l l

 

where 
1 2

T

k
Re

ν
≡

l
 is the turbulence Reynolds number. 

• Concerning the energy distribution at the different length scales, a 

spectral distribution originating from a Fourier series decomposition is 

used 

( )E d turbulent kinetic energy between and dκ κ κ κ κ= +  

with 

( ) ( )2 2 2

0

1

2
x y z

k w w w E dκ κ
∞

′ ′ ′= + + = ∫ .  

In this distribution the wave 

number κ  is related to the 

wavelength, λ , by the 

relationship 2κ π λ= . 

• The figure shows the 

qualitative trend of the 

turbulent energy spectrum in 

bi-logarithmic scale 

Energy 

Containing 

Eddies 

Inertial 

Subrange 

Viscous 

Range 

κ  

( )E κ  

-1
l  

-1η  

( ) 2 3 5 3
E Cκκ ε κ −=  
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• Three regions appear: 

1. the one of lengths comparable with large eddies, where turbulence 

takes energy form the mean flow; 

2. on the other side, at small values of the wave number, the region of 

viscous dissipation; 

3. the intermediate region, where transfer of energy by inertial 

mechanisms dominates; in this region, as it has been verified by 

experiments, the spectrum is proportional to 2 3 5 3ε κ −  (the Kolmogorov 

-5/3 law) 

 

DIRECT NUMERICAL SIMULATION (DNS) 

It is virtually the most accurate method to model turbulent flow. It is 

based on considering that the Navier-Stokes equations include all the 

relevant information needed to predict turbulence behaviour 

 Direct Numerical Simulation – DNS does not require special 

constitutive models for dealing with turbulence; it involves the transient 

solution of the Navier-Stokes equatons, which model instability 

phenomena giving rise to eddies; for incompressible flow it is: 

0w∇⋅ =
�

   (continuity equation) 

gpw
Dt

wD ��
�

ρ+∇−∇µ=ρ 2
 (Navier-Stokes equations) 

 

 In this light, DNS can be thought as a source of data having the same 

worth of experimental ones: 

• making use of accurate numerical techniques (for instance, spectral or 

pseudo-spectral methods), it allows to reproduce with reasonable 

accuracy phenomena as the onset of turbulence and its characteristics; 

• it allows to obtain more detailed data than any experiment will ever be 

able to provide. 

However, beware: 

Nothing can really substitute experience!!! 

The main problem involved in DNS is that the direct solution of 

Navier-Stokes equations should be sufficiently accurate over the whole 

range of involved lengths 

This results in a formidable computational problem, since all the 

involved lengths scales should be adequately resolved (from the 
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Kolmogorov microscale, η , to the integral length scale, being in the order 

of the size of the duct or the flow surrounded object): 

• an estimate of the number of equally spaced nodes necessary in this 

purpose in a duct having an height H is available (Wilcox 1998 book) 

and is in the order 10
6
 ÷÷÷÷ 10

9
 increasing with ( )

9 4
Reτ , where 

( )2Re w Hτ τ ν=  and w
wτ τ ρ= ; 

• similarly, the time step should be in the order of the time scale τ , giving 

rise to a very large number of time advancements; 

 

For these reasons, DNS is presently an interesting tool for research, under 

continuous development, but its applications are limited by the present 

computer capabilities. 

 

LARGE EDDY SIMULATION (LES) 

In the attempt to overcome the problem of resolving the small scales of 

turbulence, LES methods have been proposed, having the following 

characteristics: 

• the large turbulence scales are directly solved as in DNS; 

• the smaller scales are treated with subgrid models (SGS – SubGrid 

Scale). 

In some relevant cases, the LES technique allowed to obtain results similar 

to those of DNS with a computational effort in the order of some 

percentage in terms of required number of nodes and time advancements. 

 A key point in LES is the choice of a technique to filter the small 

scales; different options are available: 

• “volume-average box filter” 

( )
( )

( )
( )

1
, ,

i i

V r

w r t w r t dV
V r

′ ′= ∫
�

� �
�  

where it is 

( ) { }2 2, 2 2, 2 2V r x x x x x y y y y y z z z z z′ ′ ′≡ − ∆ ≤ ≤ + ∆ − ∆ ≤ ≤ + ∆ − ∆ ≤ ≤ + ∆
�

 

(V is a parallelepiped “box”, having sides , ,x y z∆ ∆ ∆  around r
�

); in this 

case, i
w  is the resolvable-scale filtered velocity, representing the velocity 

scale which can be resolved numerically 
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Obviously, it is: 

i i i
w w w′= +  

formally similar to the relationships applicable in the case of RANS on 

the basis of time averages that, in this case, is based on the selected 

spatial averaging process; 3 x y z∆ = ∆ ∆ ∆  is said the filter width and i
w′  

and the subgrid-scale velocity 

• “filter functions” 

in this case filter functions ( ),G r r′− ∆
� �

 are introduced; they give 

( ) ( ) ( )
( )

, , ,i i

V r

w r t G r r w r t dV′ ′ ′= − ∆∫
�

� � � �
 

and satisfy the obvious normalization condition: 

( )
( )

, 1
V r

G r r dV′ ′− ∆ =∫
�

� �
 

There are different possible choices: 

o “volume-average box filter” 

( )
( ) ( )1 ,

,
0,

V r r V r
G r r

otherwise

 ∈
′− ∆ = 



� �
� �

 

o “Gaussian filter” 

( )
3 2 2

2 2

6
, exp 6

r r
G r r

π

 ′− 
′− ∆ = −    ∆ ∆   

� �
� �

 

o filters based on the Fourier transform (spectral methods) 

once the velocity field is expressed in terms of wave number κ  (i.e., 

the reciprocal of a length scale) it is possible to impose that the filter 

cuts all the components characterised by a wave number greater than 

a threshold max 2κ π= ∆ ; an example of such technique is the following 

“Fourier cutoff filter”: 

( )
( )

( )
( )

( )
( )

( )
( )

sin sin sin1
,

x x y y z z
G r r

V r x x y y z z

′ ′ ′− ∆ − ∆ − ∆          ′− ∆ =
′ ′ ′− ∆ − ∆ − ∆

� �
�  
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Once the resolvable scales and the subgrid scales have been defined, 

the Navier-Stokes equations, making use of the Einstein notation (the 

repeated index in a term implies summation over all the applicable values 

of such index), can be written in averaged form: 

0i

i

w

x

∂
=

∂
     (continuity) 

2
1i ji i

j i k k

w ww wp

t x x x x
ν

ρ

∂∂ ∂∂
+ = − +

∂ ∂ ∂ ∂ ∂
   (momentum) 

The average appearing as an argument of the derivative in the second 

term at the LHS can be decomposed as follows: 

( ) ( )i j i i j j i j i j j i i j
w w w w w w w w w w w w w w′ ′ ′ ′ ′ ′= + + = + + +  

or (note that in general: w w′ ′≠ ) 

( )
�

ijijij

i j i j i j i j i j j i i j

R SGS Reynolds stressC cross term stressL Leonard stress

w w w w w w w w w w w w w w

== −=

′ ′ ′ ′= + − + + +
������������

 

The Leonard stress is often implicitly represented by the truncation error 

of the numerical scheme, if it is a second order one, otherwise it must be 

directly evaluated. It is also possible to show that 

( )2

ij i j
L w w∝ ∇  

 Nevertheless, by adopting the notation: 

( )ij i j i jw w w wτ = − −  

or, alternatively, putting 

1

3
ij ij kk ij

Q Qτ δ
 

= − − 
 

  
1

3
kk ij

P p Qρ δ= +   ij ij ij
Q C R= +  

we have finally an equation having the form: 

1i ji i
ij

j i j j

w ww wP

t x x x x
ν τ

ρ

 ∂∂ ∂∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂  
 

The above relationship shows that the fundamental problem in LES is 

the determination of a model for the subgrid stresses, ij
τ . 
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Smagorinski in 1963 proposed a relatively successful subgrid model 

based on the definition of an eddy viscosity, Tν  such that 

2
ij T ij

Sτ ν=  

with 

( )
2

T S ij ijC S Sν = ∆    
1

2

ji
ij

j i

ww
S

x x

 ∂∂
= +  ∂ ∂ 

 

where SC  is the Smagorinski coefficient representing a parameter to be 

adjusted for the particular problem to be dealt with; values in the range 

0.10 to 0.24 have been adopted for typical problems. 

 In some more recent dynamic subgrid scale models SC  is updated at 

each advancement. 

 The LES models require particular care in imposing the boundary 

conditions, being virtually suitable for the use beyond the viscous 

boundary layer, at large Reynolds number. 

 LES models are promising for design applications, though they are 

still heavy from the computational point of view. 

 
REYNOLDS AVERAGED NAVIER-STOKES EQUATIONS (RANS) 

• Turbulent flow is characterised by the chaotic fluctuation of variables 

(velocity, pressure, temperature, etc.) around mean values that may be 

also variable (more slowly) in time 

 

    

 

 

 

 

c  

t  
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• A description of the instantaneous behaviour of the fluid is of limited 

interest for engineering purposes 

• It is therefore preferable to describe the change in time or space of 

average values, adopting a statistical treatment for fluctuations 

• The average value of the intensive variable c  is therefore defined by the 

relationship 

( ) ( )
2

2

1 t t

t t
c t c d

t
τ τ

+∆

−∆
=

∆ ∫  

and the instantaneous value of c  is decomposed in the summation of the 

average and the fluctuating value, having a zero time average 

( ) ( ) ( )c t c t c t′= +   and  ( )
2

2
0

t t

t t
c dτ τ

+∆

−∆
′ =∫  

• The time interval adopted in averaging t∆  must be chosen long enough 

to “filter” the turbulent fluctuations, but short enough to avoid 

jamming the longer term variation of average quantities 

• The extent of fluctuations can be quantified by their quadratic 

averages: 2
c′  

• As a particular case, let us consider the quantities  

2
iw′   turbulence intensity for the i-th velocity component 

222
zyx www ′+′+′    turbulence intensity  

ji ww ′′   ),,,( zyxji =   double correlation 

• Turbulent intensity is strictly related to the turbulent kinetic energy 

( )2 2 21

2
x y z

k w w w′ ′ ′= + +  

 

The time (Reynolds) averaging applied to the Navier-Stokes equations 

leads to the following expression: 

( ) ( ) ( ) ( )wwgIpwww
t

′′ρ⋅∇−ρ+−τ⋅∇=ρ⋅∇+ρ
∂

∂ ���
�������

 

where 
t

Re w wτ τ ρ ′ ′= = −
� �� � � �

 

is the Reynolds stress tensor.  
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This tensor is the main quantity to be 

simulated in turbulence flows by the RANS 

approach, since it represents the additional 

momentum flux due to turbulence. 

The Boussinesq approximation allows 

making use of the concept of eddy viscosity, 
Tν , 

for evaluating this stress in similarity with 

formulations adopted for laminar flow 

2
ji

ij T ij T

j i

ww
S

x x
τ ρν ρν

 ∂∂
= = +  ∂ ∂ 

 

• Different models have been proposed to 

calculate this stress. They can be distinguished in the following 

categories: 

1. Algebraic models (or zero-equation models) 

2. One-equation models 

3. Two-equation models 

• The complexity of these models is greater the larger is the number of 

“equations” (i.e., partial differential equations, PDEs) that must be 

added to the averaged mass, energy and momentum balance equations 

(RANS); in particular: 

o no additional PDE is added in algebraic models; 

o one or two PDEs are added in one-equation and two-equation 

models. 

• “Stress transport models”, on the other hand, do not make use of the 

Boussinesq approximation, defining transport equations for each of the 

six independent components of the turbulent stress tensor 

• With respect to algebraic models, the models with one or more equations 

allow specify the transport of kinetic energy, so that the previous and 

upstream history of the flow is accounted for in addition to local 

conditions 

Increasing velocity 

Momentum 
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• An important distinction between turbulence models is anyway the one 

between complete and incomplete models: 

o completeness of the model is related to its capability to 

automatically define a characteristic length of turbulence 

o in a complete model, therefore, only the initial and boundary 

conditions are specified, with no need to define case by case 

parameters depending on the particular considered flow 

 

Algebraic Models 

Prandtl mixing length theory (1925) 

As we already saw, Prandtl assumed that the turbulent stress tensor could 

be defined by 

2t x x
yx mix

w w
l

y y
τ ρ

∂ ∂
=

∂ ∂
 

where mixl  is the mixing length; the model is similar to the one for 

molecular viscosity in which kinematic viscosity is a interpreted as the 

product of a mean molecular velocity by a length (the mean free path). 

It is an incomplete model, since the mixing length is different 

according to the particular flow (boundary layers, jets, wakes, …). 

 In the case of a wall, Prandtl assumed mixl  to be linearly dependent on 

the distance from the wall, by a law having the form mixl Cy= , with C and 

empirical constant. In the case of a jet or of the mixing between two 

streams at different velocity (“mixing layer”) mixl  is proportional to the 

width of the jet or of the mixing layer, i.e., to the width of the zone in 

which velocity is sufficiently different from the one of the free 

unperturbed stream. 

 Notwithstanding its simplicity, the mixing length model provides 

reasonable results in a reasonable number of conditions, after being 

reasonably tuned for the particular flow. 

Some of the variants to the model have been: 

• the introduction by Van Driest (1956) of a damping function  

0

01 26
y A

mix
l y e Aκ

+ +− + = − =
   

0.41 von Karman constantκ =  improving the behaviour of the Reynolds stress at 

0y
+ → , in agreement with theoretical predictions ( 4

yx yτ ∼ ); 
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• a modification introduced by Clauser (1956) in order to improve the 

representation of turbulent viscosity in the defect layer; 

• the introduction of two different formulations for turbulent viscosity in 

the “inner layer” and the “outer layer” (two-layer models by Cebeci-

Smith, 1967, and Baldwin-Lomax, 1978); 

• the introduction of an ordinary differential equation to define turbulent 

viscosity in the outer layer in two-layer models (1/2 equation models by 

Johnson and King, 1985, and Johnson and Coakley, 1990) 

Algebraic models, anyway, though they have some attractiveness for 

their simplicity, require being “tuned” to the particular flow to be 

predicted. 

In this light, they must be considered incomplete, in the above specified 

meaning of this word. 

 

Partial Differential Equation Models 
A look to the stress transport equations  

Though the stress transport models do not fall in the considered category 

(they are actually beyond the Boussinesq approximation), they are the 

starting point to understand the derivation of the turbulence kinetic 

energy equation 

 Following the treatment for an incompressible fluid (v. Wilcox, 1998), 

it is: 

• the general component of the Navier-Stokes equation can be written as 

( )
2

0 ( , , , )i i i
i k

k i k k

w w wp
N w w i k x y z

t x x x x
ρ ρ µ

∂ ∂ ∂∂
= + + − = =

∂ ∂ ∂ ∂ ∂
   (

1
) 

• considering the identity 

( ) ( ) ( )0 , , ,i j j iN w w N w w i j x y z′ ′+ = =  

and applying to it the time-averaging operator, it is: 

( ) ( ) ( )0 , , ,i j j iN w w N w w i j x y z′ ′+ = =   (°) 

• the same techniques and assumptions adopted in deriving the RANS 

equations lead now to equations for each stress tensor component; for 

instance, consider the transient term in the Navier-Stokes equations: 

                                                
(

1
) The Einstein’s notation is again adopted. 
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( ) ( )j j j ji i i i
j i j j i i

w w w ww w w w
w w w w w w

t t t t t t
ρ ρ
 ′  ∂ + ′′ ∂ ∂∂ + ′∂ ∂ ′ ′ ′ ′ ′ ′+ = + + + 
 ∂ ∂ ∂ ∂ ∂ ∂   

 

� �
00

j j j ji i i i
j j i i j j i i

w w w ww w w w
w w w w w w w w

t t t t t t t t
ρ ρ

==

  ′ ′∂ ∂ ∂ ∂′ ′∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′ ′ ′ = + + + = + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 

( ) ( )i ji jj iji
j i

w ww www
w w

t t t t t

τ
ρ ρ ρ ρ

′ ′∂′ ′  ∂′∂ ∂′∂
′ ′= + = = = − 

∂ ∂ ∂ ∂ ∂  
 

where, on the contrary of the notation adopted up to now, from here on ij
τ  

identifies the “specific” Reynolds stress tensor, defined as 

ij i j
w wτ ′ ′= −  

(differing from the usual notation ij i j
w wτ ρ ′ ′= − ). 

 By proceeding in a similar way, term by term, from (°) it is: 

2
ij ij j j j iji i i

k ik jk i j k

k k k k k j i k k

w w ww w w p p
w w w w

t x x x x x x x x x

τ τ τ
τ τ ν ν

ρ ρ

′ ′∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂
′ ′ ′+ = − − + + + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 This equation shows the typical difficulties encountered when trying 

to “close” the turbulence equations. In fact: 

• the application of the time-averaging operator to the Navier-Stokes 

equations makes the Reynolds stress tensor to appear as a tensor of 

“correlation” between two fluctuating velocity components ( i j
w w′ ′ ); 

• the derivation of transport equations for the Reynolds stress tensor 

makes higher order correlation terms to appear: ( i j k
w w w′ ′ ′ ). 

This endless process can be therefore “closed” only including “closure 

laws” for the unknown terms at some stage. In the Reynolds stress 

transport equations the unknown terms became a lot: 

• 10 unknown terms having the form i j k
w w w′ ′ ′  

• 6 unknown terms having the form 
ji

j i

ww p p

x xρ ρ

′′ ′ ′∂ ∂
+

∂ ∂
 

• 6 unknown terms having the form 2
ji

k k

ww

x x
ν

′∂′∂

∂ ∂
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The turbulence kinetic energy equation 

The turbulence kinetic energy equation can be now obtained by taking the 

trace of the equations for the specific transport of Reynolds stress tensor 

components (i.e., taking the summation of the diagonal terms). In fact: 

( )2 2 2 2
ii i i x y z

w w w w w kτ ′ ′ ′ ′ ′= − = − + + = −  

Its classical form is: 

�

1 1

2

i i i
j ij i i j j

j j k k j j

unsteady turbulent
dissipation pressureconvective production molecularterm transport

diffusionterm diffusion

w w wk k k
w w w w p w

t x x x x x x
τ ν ν

ρ

′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′+ = − + − − ∂ ∂ ∂ ∂ ∂ ∂ ∂  ���������� �������� ��� ���

 

where the various terms are: 

• unsteady term: as in every balance equation, it represents the local 

change rate of the quantity to be conserved; 

• convective (or advective) term: it represents the turbulence kinetic 

energy transport due to the mean fluid motion; 

• production term: it represents the transfer of energy from the mean 

flow per unit time; the Reynolds stress appearing in it is evaluated by: 

2 2
2

3 3

ji

ij T ij ij T ij

j i

ww
S k k

x x
τ ν δ ν δ

 ∂∂
= − = + −  ∂ ∂ 

 

where T
ν  is the turbulent diffusivity of momentum (eddy viscosity); 

• dissipation term: it represents the rate at which the turbulence kinetic 

energy is converted into thermal internal energy; on the basis of 

dimensional considerations, it is defined as: 

i i

k k

w w

x x
ε ν

′ ′∂ ∂
=

∂ ∂
 

and is approximated by relationships having the form 
3 2k

ε
l

∼  

• molecular diffusion term: it represents the diffusive transport due to 

processes occurring at a molecular level; 

• turbulent transport term: it represents the contribution to the kinetic 

energy transport due to the velocity turbulent fluctuations; 
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• pressure diffusion term: it is the term due to the correlation existing 

between pressure and velocity fluctuations. 

Turbulent and pressure diffusion transport terms are sometimes grouped 

together and represented with a single term: 
1 1

2

T
i i jj

k j

k
w w w p w

x

ν

ρ σ

∂
′ ′ ′ ′ ′+ ≈ −

∂
 

in which k
σ  is a parameter correlating turbulent diffusivity of momentum 

to that of turbulence kinetic energy. It is therefore:  

i T
j ij

j j j k j

wk k k
w

t x x x x

ν
τ ε ν

σ

  ∂∂ ∂ ∂ ∂
+ = − + +  

∂ ∂ ∂ ∂ ∂   
 

One-Equation Models 

Prandtl (1945) proposed to express dissipation rate as 
3 2

D

k
Cε =

l
 

However, in this way, the integral turbulence length scale must be defined, 

for instance, on the basis of approaches similar to those adopted for the 

mixing length theory. 

 The one-equation model by Prandtl takes therefore the form 
3 2

i T
j ij D

j j j k j

wk k k k
w C

t x x x x

ν
τ ν

σ

  ∂∂ ∂ ∂ ∂
+ = − + +  

∂ ∂ ∂ ∂ ∂   l
 

A further closure equation is defined for the turbulent viscosity  
2

1 2

T D

k
k Cν

ε
= =l  

More complex models have been proposed later on, though they refer 

to similar expressions. 

In general, one-equation models are incomplete, since the turbulence 

length scale must be defined on a case by case basis; complete versions are 

anyway available which specify independently this length (e.g., Baldwin-

Barth, 1990). 

 

Two-equation models 

As we saw, one-equation models, though they introduce the transport 

equation for turbulence kinetic energy, are generally incomplete, since 

they do not define explicitly the turbulence length scale 
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 In order to solve this problem, different two-equation approaches 

have been proposed: 

• Kolmogorov in 1942 proposed that a new equation for the transport of 

the specific dissipation rate, 
1sω − =   , dimensionally related to the other 

quantities by the relationships: 
1 2

T k k kν ω ω ε ωl∼ ∼ ∼  

• Chou in 1945 proposed the introduction of an exact equation for ε , 

related to the other quantities by 
2 3 2

T k k kν ε ε ω εl∼ ∼ ∼  

• Zeierman and Wolfstein in 1986 proposed an equation for the transport 

of the product of k and the turbulence dissipation time, τ , which is 

essentially the reciprocal of Kolmogorov’s ω ; it is: 
1 2

T k k kν τ τ ε τl∼ ∼ ∼  

From these proposals the so-called k ω− , k ε−  and k kτ−  where 

obtained. Other proposed models where the k k− l  (Rotta, 1951). 

A short description of the k ω−  and k ε−  models follows, since they 

were the ones that received the greatest attention up to the present time. 

 
k ω−  Model 

Kolmogorov defined ω  as “the rate of dissipation of energy per unit volume 

and unit time”. He underlined its relation with the turbulence length scale, 

defining ω  as a mean frequency given by  
1 2c kω = l  

where c is a constant. 

Most of considerations by Kolmogorov in relation to ω  and its 

transport equation were based on dimensional reasoning; in his work 

there is no formal derivation of the equation for ω . 

 Wilcox (1998) proposed in the following way the possible steps of 

Kolmogorov’s reasoning in identifying ω  as a variable whose transport 

evaluation is needed: 

• also basing on the Boussinesq approximation, it is reasonable to assume 

that eddy viscosity is proportional to the turbulent kinetic energy: 

T kν ∝ ; 

• as 
2

T m sν  =    and 
2 2

k m s =   , their ratio has the dimension of a time; 

• similarly, 
2 3m sε  =    and then [ ]1k sε =   
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• we can therefore close from a dimensional point of view the 

relationships between the different quantities by defining a variable 

having the dimension of a time or of its reciprocal. 

Then, to define an equation for ω  we can assume that the essential 

terms that it must contain must represent the time rate of change, 

convection (advection) diffusion, dissipation, dispersion and production  

 The equation, in the form proposed by Kolmogorov, was: 

2

j T

j j j

w
t x x x

ω ω ω
βω σν

 ∂ ∂ ∂ ∂
+ = − +  

∂ ∂ ∂ ∂  
 

From the original formulation by Kolmogorov, the k ω−  model was 

subjected to different developments. The Wilcox (1998) version is the 

following: 

( )* *i

j ij T

j j j j

wk k k
w k

t x x x x
τ β ω ν σ ν

 ∂∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂  
 

( )2i

j ij T

j j j j

w
w

t x k x x x

ω ω ω ω
α τ βω ν σν

 ∂∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂  
 

with additional formulations for the appearing constants. 

 For dissipation, turbulent viscosity and the turbulence characteristic 

length scale in this model it is: 
*
kε β ω=   T kν ω=   1 2

k ω=l  

The coefficients appearing in the above equations are all defined on 

the basis of laws which do not include any arbitrary assumption of the 

relevant parameters (v. Wilcox, 1998, Sect. 4.3.1): the model is therefore 

complete. 

 
k ε−  Model 

It is the most often used turbulence model. The so-called standard k ε−  

model was presented in a fundamental paper by Jones and Launder 

(1972). 

Launder and Sharma in 1974 made a retuning of the model, so also 

their paper is often taken as reference. 

Unlike the equation for ω , the transport equation for ε  may be 

obtained by a rigorous process based on the Navier-Stokes equations 

( )
2

0 ( , , , )i i i
i k

k i k k

w w wp
N w w i k x y z

t x x x x
ρ ρ µ

∂ ∂ ∂∂
= + + − = =

∂ ∂ ∂ ∂ ∂
 

by developing the following identity: 
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( )2 0i
i

j j

w
N w

x x
ν

′∂ ∂
=  ∂ ∂

 

The development is relatively complex and leads to an equation including 

at the RHS the following terms: production of dissipation, dissipation of 

dissipation, molecular diffusion of dissipation and turbulent transport of 

dissipation. 

 The equations of the standard k ε−  model are: 

i T
j ij

j j j k j

wk k k
w

t x x x x

ν
τ ε ν

σ

  ∂∂ ∂ ∂ ∂
+ = − + +  

∂ ∂ ∂ ∂ ∂   
 

2

1 2
i T

j ij

j j j j

w
w C C

t x k x k x x
ε ε

ε

νε ε ε ε ε
τ ν

σ

  ∂∂ ∂ ∂ ∂
+ = − + +  

∂ ∂ ∂ ∂ ∂   
 

where 
2

T C kµν ε=  ( )C kµω ε=  
3 2

C kµ ε=l  

and the constants are given by: 

1 1.44Cε =  2 1.92Cε =  0.09Cµ =  1kσ =   1.3εσ =  

As it is seen, also this model is complete. 

 

In summary: 

• by two-equation models, after evaluating the couple k ε−  or k ω− , the 

eddy viscosity Tν  is evaluated:  
2

T C kµν ε=  or T kν ω=  

allowing to calculate the Reynolds stress tensor, by the Boussinesq 

approximation  

2 2
2

3 3

ji
ij T ij ij T ij

j i

ww
S k k

x x
τ ν δ ν δ

 ∂∂
= − = + −  ∂ ∂ 

 

• when accepting the Reynolds analogy between heat and momentum 

transfer, a prescribed value of the turbulent Prandtl number (often close 

to unity) allows for the calculation of the thermal eddy diffusivity 

1T
t

T

Pr
ν

α
= ≈  

 necessary to evaluate the turbulent contribution in energy averaged 

equations 
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Concluding remarks 

• It can be noted that also the equations of two-equation models can be 

put in the general conservation form 

( ) ( )j

j j j

w S
t x x x

φ φ

φ
ρφ ρ φ

∂ ∂ ∂ ∂
+ = Γ +

∂ ∂ ∂ ∂
 

to be discretised with the same numerical techniques adopted for general 

balance equations and described in the first part of this lecture 

• It is quite difficult to catch turbulent phenomena close to the wall, 

because of the sharp gradients of turbulence intensity, that are difficult to 

be described with enough detail 

max,
2

zx ww′  

x  

z  

max,
2

zz ww′  

025.0  

050.0  

075.0  

100.0  

125.0  

x  

z

eff
zx,τ  

t
zx,τ  

 

• This is the reason why the application of k ω−  and k ε−  turbulence 

models close to the wall requires attention, because standard models 

cannot be integrated up to the wall, where turbulence is damped in the 

buffer and laminar sublayer regions 

In this regard, two possible choices are presently available: 

o the use of “wall functions”, adopting the well known logarithmic 

form of the velocity profile to 

obtain the appropriate 

boundary conditions to be 

imposed in the first node close 

to the wall; in this case, the 

first node must be put at a 

large enough value of y
+  (e.g., 

greater than 30) 

 

with 
ρ

τ
τ

ww =   ( ) ( )

τw

yw
yw z

z =++    
ν
τ yw

y =+  

0
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y
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o as an alternative, low Reynolds number models must be used, in 

which corrections aiming at a better evaluation of the viscous 

effects close to the wall are introduced (by “damping functions”). 

In this case, the first node close to the wall must be put at 1y
+ < , 

well within the laminar sublayer: a very refined mesh is necessary 

at the walls 

 

 
 

• For a compressible fluid, the averaging process to be adopted is the so-

called Favre averaging, consisting in averaging the different variables 

using density as the weight; for instance for velocity it is: 
2

2

1 1 t t

i i
t t

w w dt
t

ρ
ρ

+∆

−∆
=

∆ ∫
�  

• On the basis of this definition, it is possible to define the conservation 

equations averaged according to Favre for mass, energy and 

momentum as the equations for the Reynolds stress tensor components 

and of turbulence kinetic energy 

• The latter is given by: 

( ) ( ) 1

2

i i
j ij ij i j i i j i

j j j i i

w uP
k w k t u u u u p u u p

t x x x x x
ρ ρ ρτ ρε ρ

  ′′∂ ∂∂ ∂ ∂ ∂
′′ ′′ ′′ ′′ ′ ′′ ′′ ′+ = − + − − − + 

∂ ∂ ∂ ∂ ∂ ∂ 

�
�  

where 
2

2
3

k
ij ij ij

k

w
t s

x
µ µ δ

∂
= −

∂
  p P p′= +   i i iw w w′′= +�  

The last two terms appearing in the k equation are pressure work and 

pressure dilatation. 

 

        

                        (a) Wall functions mesh                                           (b) Low-Reynolds number mesh 
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NUMERICAL DISCRETIZATION METHODS 
 

• Partial Differential Equations applicable to engineering problems can 

be seldom solved in closed form: a phase of discretization and numerical 

solution is generally necessary 

• This discretization process represents a quite important phase in partial 

differential equation system solution. Its major phases can be described 

as follows: 

 
Discretizing a partial differential equation problem having engineering 

interest is therefore the process of translating the mathematical problem 

from the continua of space and time to a discrete subset of them, where the 

solution is evaluated in a point-wise fashion 

 The most common discretization schemes refer to the following 

techniques: 

 

• finite differences: strictly speaking, the partial derivatives in the 

governing equations are substituted with expressions based on finite 

differences of the independent variable and of the space and time 

increments: 

→→→→ algebraic equations in the nodal values  

of the unknown variable are obtained; 

DDIIFFFFEERREENNTTIIAALL  

PPRROOBBLLEEMM  

DDiissccrreettiizzaattiioonn  

AALLGGEEBBRRAAIICC  PPRROOBBLLEEMM  

((EEqquuaattiioonnss  ++  bboouunnddaarryy  aanndd  

iinniittiiaall  ccoonnddiittiioonnss))  

SSoolluuttiioonn  ooff  

aallggeebbrraaiicc  

eeqquuaattiioonnss  

AAPPPPRROOXXIIMMAATTEE  

SSOOLLUUTTIIOONN  

BBoouunnddaarryy  aanndd  

IInniittiiaall  CCoonnddiittiioonnss  

PPaarrttiiaall  DDiiffffeerreennttiiaall  

EEqquuaattiioonnss  

CChhooiiccee  ooff  aa    

DDiissccrreettiizzaattiioonn  MMeetthhoodd  

((ffiinniittee  ddiiffffeerreenncceess,,  ffiinniittee  

vvoolluummeess,,  ffiinniittee  eelleemmeennttss,,  

……))  

IInntteeggrraattiioonn  DDoommaaiinn  

DDiissccrreettiizzaattiioonn  

((““ggrriiddddiinngg””  oorr  ““mmeesshhiinngg””))  

CCoonnvveerrggeennccee  ccrriitteerriiaa  

((ee..gg..,,  oonn  rreessiidduuaallss))  

MMeetthhooddss  ffoorr  ssoollvviinngg  lliinneeaarr  

aanndd  nnoonn--lliinneeaarr  ssyysstteemmss  

((SSOORR,,  LLOORR,,  AADDII,,  GGrraaddiieenntt  

MMeetthhooddss,,  MMuullttiiggrriidd  SScchheemmeess,,  

NNeewwttoonn--RRaapphhssoonn,,  ……))  
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• finite volumes: the governing equations are integrated over control 

volumes in which the overall domain is subdivided, in order to resume 

the conservation principle they were derived from; making use of 

particular definitions of the volume and the surface integrals 

→→→→ algebraic equations in the nodal values  

of the unknown variable are obtained; 

 

• finite elements: local approximating functions depending on values of 

the unknown variables in the nodes of the elements in which the space is 

subdivided are optimised by the use of the “method of weighted 

residuals”: 

→→→→ algebraic equations in the nodal values  

of the unknown variable are obtained. 

 

 So, whatever the adopted numerical discretization method, the final 

problem is to deal with systems of algebraic equations that must be solved 

(generally by iterative solution methods) 

 

 These algebraic equations must have specific mathematical 

properties that we have to carefully take into account 

 

 We must clarify that even if these properties will be mainly described 

for numerical schemes obtained by the “finite difference” approach, they 

also apply for finite volume or finite element techniques 

 

 In addition to these properties we must consider another relevant 

property of numerical schemes adopted for engineering applications that can 

be stated as follows: 

 

while solving by numerical means a conservation equation, care must be 

taken that no spurious sources or sinks of the conserved quantity will appear 

even while working with finite space and time increments 

 

 In other words, we can afford having an approximate solution of our 

equations, because of the use of a coarse time or space grid, but we can 

never afford that the discretization process will not preserve exactly the 

conserved quantity: this “conservative” character of the numerical 

schemes is therefore a fundamental requirement 
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CONVERGENCE, CONSISTENCY AND STABILITY 

The numerical methods obtained by any discretization method must 

possess some basic mathematical features, to be described hereafter  

Let us consider a time-dependent linear partial differential equation  

ψ=
∂

ψ∂
A

t
 

where A  and ψ  are a linear differential operator and a function (in case, 

the equation may even represent a system of equations and ψ  is a vector 

function). When discretised in space and time the resulting numerical 

scheme will have the general form 

nn
BB ψ=ψ +

0
1

1  

where 1B  and 0B  are finite difference linear operators depending also on 

the space and time increments and 
nψ  and 

1nψ +
will be now the vectors of the 

values of ψ  at the different space locations and at times nt  and 1n
t

+ : 

( )...,,,,00 zyxtBB ∆∆∆∆=   ( )...,,,,11 zyxtBB ∆∆∆∆= . 

We must assume that 1B  can be inverted to allow for time advancement 

nnn CBB ψ=ψ=ψ −+
0

1
1

1
 

where ( )...,,,, zyxtCC ∆∆∆∆=  is the truncated integral operator allowing 

to obtain 
1nψ +
 from 

nψ . 

For simplicity, we assume that there is a link between the space and 

time increments, such that all of them will vanish when 0t∆ →   

( )tgx x ∆=∆  ( )tgy y ∆=∆  ( )tgz z ∆=∆  

So, we will write 

( ) ( ) ( )( ) ( )tCtgtgtgtCC zyx ∆=∆∆∆∆= ,,,  

Convergence 

Assuming to be able to solve the algebraic equations without round-off 

error (the one made by the particular machine in representing a limited 

number of significant figures), the discretization error that we make at the 

n-th time level with respect to the exact solution 
n
eψ  is given by 

nn
e

n ψ−ψ=δ  

The total error would also include round-off 
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For the numerical method to be useful in some respect, we need that 

the discretization error can be small enough for small increments 

So, we need that 

0lim
0

=δ
→∆

n

t
 

where 	  is an appropriate norm. This is expressed stating that: 

A numerical method is said to be “convergent” if the solution of the 

discretised equation tends to the exact solution of the differential equation  

as the grid spacing tends to zero 

It can be easily seen that the discretization error 
nδ  is a result of the 

approximations made in evaluating the differential (and then the integral) 

operators, i.e. from truncation (i.e. inaccuracy of the difference operator), 

and from error propagation from the previous time step. 

In fact: 

( ) ( ) ( ) ( )1 1 1 1n n n n n n n

e e e e

subtracted and added

C t C t C t C tδ ψ ψ ψ ψ ψ ψ− − − −= − ∆ = − ∆ + ∆ − ∆
�����������  

and then 

( )
( )

( )

1

1 1

( " ") n

n n n n

e e

propagation of theerror due to truncation in C t
the operator is not exact error at time t

C t C tδ ψ ψ δ

−

− −

∆

= − ∆ + ∆
������� �����  

This calls into play two other important properties: 

• consistency, expressing the extent at which the finite difference operator 

is a good approximation of the original differential one; 

• stability, defining the conditions to be respected for limiting the 

propagation of an error existing at the previous time step. 

 

Consistency 

From the relation 

( ) nn
tC ψ∆=ψ +1

 

it is easily obtained 

( ) n
nn

t

ItC

t
ψ

∆

−∆
=

∆

ψ−ψ +1

 

where I  is the identity operator.  
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Comparing this expression with  

ψ=
∂

ψ∂
A

t
 

and considering that it is obviously 
1

0
n n

for t
t t

ψ ψ ψ+ − ∂
→ ∆ →

∆ ∂
 

we also expect that 

( )
( ) ( ) 0

C t I
t A t for t

t
ψ ψ

∆ −
→ ∆ →

∆
 

In summary, we need that the finite difference equation be consistent 

with the differential one: 

( ) ( ) ( )
( )

( )
( ) 0

t t t C t I t
t A t for t

t t t

ψ ψ ψ
ψ ψ

+ ∆ − ∆ − ∂
− → − ∆ →

∆ ∆ ∂
 

This is expressed saying that  

A numerical scheme is said to be “consistent” with the differential problem  

if the difference equations representing it tend to those of the differential 

problem as the grid spacing tends to zero 

 Consistency is therefore a property of the form of the numerical 

scheme. 

 The difference between the discretised equations and the partial 

differential equation is referred to as the “truncation error”.  

 In particular, if eψ  is the exact solution of the differential problem, 

the local truncation error is defined as 

( )

�� ��� ��
0

1

1

=

+

+ 







ψ−

∂

ψ∂
−ψ

∆

−∆
−

∆

ψ−ψ
= e

en
e

n
e

n
e

n A
tt

ItC

t
LTE ( )

t

tC
n
e

n
e

∆

ψ∆−ψ
=

+1

 

i.e., it is obtained by applying the numerical scheme to the exact solution 

eψ . 

 By developing a by a Taylor series expansion the difference equations 

it is possible to express the truncation error as a function of powers of 

increments 
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Example: Let us approximate the equation 

0
2

2

=
∂

ψ∂
−

∂

ψ∂

xt
 

by the finite difference scheme (see below) 

0
2

2

11
1

=
∆

ψ+ψ−ψ
−

∆

ψ−ψ −+
+

xt

n
i

n
i

n
i

n
i

n
i

 

where ( ),n n

i i
means x tψ ψ . Considering that: 

( ) ( ) ( )
...

2462

4

4

43

3

32

2

2
1 +

∆

∂

ψ∂
+

∆

∂

ψ∂
+

∆

∂

ψ∂
+∆

∂

ψ∂
+ψ=ψ + t

t

t

t

t

t
t

t

n

i

n

i

n

i

n

i

n
i

n
i  

( ) ( ) ( )
...

2462

4

4

43

3

32

2

2

1 +
∆

∂

ψ∂
+

∆

∂

ψ∂
±

∆

∂

ψ∂
+∆

∂

ψ∂
±ψ=ψ ±

x

x

x

x

x

x
x

x

n

i

n

i

n

i

n

i

n
i

n
i  

it is 

t

n
i

n
i

∆

ψ−ψ +1 ( ) ( )
...

2462

3

4

42

3

3

2

2

+
∆

∂

ψ∂
+

∆

∂

ψ∂
+

∆

∂

ψ∂
+

∂

ψ∂
=

t

t

t

t

t

tt

n

i

n

i

n

i

n

i
 

=
∆

ψ+ψ−ψ −+
2

11 2

x

n
i

n
i

n
i ( )

...
12

2

4

4

2

2

+
∆

∂

ψ∂
+

∂

ψ∂ x

xx

n

i

n

i

 

and then, substituting in the difference equations, it is 

( )
0...

122

2

4

4

2

2

2

2

=+
∆

∂

ψ∂
−

∆

∂

ψ∂
+

∂

ψ∂
−

∂

ψ∂ x

x

t

txt

n

i

n

i

n

i

n

i
 

or 

( ) ( )2

2

2

xOtO
xt

n

i

n

i

∆+∆=
∂

ψ∂
−

∂

ψ∂
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It can be noted that: 

• the scheme is consistent, since truncation error tends to zero with refining 

the space and time grid 

• the truncation error is first order in t∆  and second order in x∆  

• because of the presence o truncation error, when using finite increments 

the actually solved equation is different from the original one: a modified 

equation is actually solved including higher order derivatives 

Stability 

In short, it can be stated that: 

A numerical scheme is said “stable” if it does not amplify the errors 

appearing during the numerical solution process 

 Since it is 

( ) ( ) ( ) ( ) 0
1

00011 δ∆+∆=ψ∆−ψ∆+ψ∆−ψ=δ tCLTEttCtCtC eee  

( ) ( ) ( ) 02
12

1
2

2 δ∆+∆∆+∆=δ∆+∆=δ tCLTEtCtLTEttCLTEt  

.....  

( ) ( ) 0

1

δ∆+∆∆=δ ∑
=

− tCLTEtCt n
n

i

i
inn

 

it can be noted that “stability” is related to the “boundedness” of the 

difference operators ( )tC
n ∆  in the functional domain in which they 

operate, i.e. to their property to damp (and not amplify) these functions and 

hence the errors. 

 In fact, it is noted that even if we assume no error on the initial data, 

i.e. 0 0δ = , we necessarily have to take into account that the local truncation 

error at each step will appear: this should be damped to guarantee a 

limited discretization error 

( ) 0

1

0
n

n n i

i

i

t C t LTE ifδ δ−

=

= ∆ ∆ =∑  

In fact, local truncation error at each step will be always obtained 

because of the use of finite increments (we cannot really avoid it!) 
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Different techniques are available to check stability. A well known one 

is the von Neumann stability criterion in which a perturbation is given to 

the values of the variable at the previous time-step and it is assumed that it 

propagates in space and time as: 

( ) ( ) ( )
,

n

i
t t i x xn

ix t e e
α βδ δ

− −
=  (

2
) (

3
) with RC ∈β∈α ,   

It can be shown that the perturbed, ψ , and the non perturbed solutions, 

np
ψ� , must satisfy the same equation. In fact: 

( ) ( ) ( )txxtCttx npnp ,
~

,,
~ ψ∆∆=∆+ψ  

and  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , ,

, , , , ,np np

x t t C t x x t

or x t t x t t C t x x t x t

ψ ψ

ψ δ ψ δ

+ ∆ = ∆ ∆

 + ∆ + + ∆ = ∆ ∆ + � �
 

since it is ( ) ( ) ( ), , ,npx t x t x tψ ψ δ= +� . As a consequence the same equation is 

satisfied by the perturbation 

( ) ( ) ( )txxtCttx ,,, δ∆∆=∆+δ  

 The quantity 

( ) ( )
( )tx

ttx
xtG

,

,
,

δ

∆+δ
=∆∆        

being a ratio of complex numbers, is said amplification factor and its 

magnitude allows discussing stability. 

 In particular, the criterion for stability is  

( ) 1, ≤=∆∆ ∆t
extG

α
  (von Neumann condition) 

and requires to study the real part of α  for arbitrary xβ∆ . 

The above condition applies when the exact solution does not increase 

with time; whenever it is not so, it is necessary to impose the criterion 

( ) tKxtG ∆+≤∆∆ 1,  (von Neumann necessary condition) 

                                                

(
2
) Consider that, though here we are using for the error propagated the same notation δ  as for the discretisation error, the 

latter represents a broader concept, including also truncation error. 

(
3
) Note that β  has the role of a “wave number” of the perturbation. Considering that perturbations will generally contain a 

wide variety of wave numbers, demonstrating stability means demonstrating that for any wave number the perturbation will 

not grow.  
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Example: The dimensionless heat diffusion equation, again represented in 

“explicit” (see later on) and dimensionless form is: 

→=
∂

ψ∂
−

∂

ψ∂
0

2

2

xt
0

2
2

11
1

=
∆

ψ+ψ−ψ
−

∆

ψ−ψ −+
+

xt

n
i

n
i

n
i

n
i

n
i

 

It is: 

0
2

2

11
1

=
∆

δ+δ−δ
−

∆

δ−δ −+
+

xt

n
i

n
i

n
i

n
i

n
i

 

with 

tn
i

n
i e

∆α+ δ=δ 1
  

xin
i

n
i e

∆β−
− δ=δ 1   

xin
i

n
i e

∆β
+ δ=δ 1  

Therefore 

( )[ ]210
21

22
−+

∆

∆
+=→=

∆

+−
−

∆

− ∆β−∆β∆α
∆β−∆β∆α

xixit
xixit

ee
x

t
e

x

ee

t

e
 

( )[ ] 1
2

11cos
2

1
22

≤
∆

∆
⇒≤−∆β

∆

∆
+== ∆α

x

t
x

x

t
eG

t
 

This means that a conditional stability is found, where the time step must be 

limited by the relation: 
2

2

x
t

∆
∆ ≤  

which can be a very severe limitation when the spatial increment is small!  

 When referring to the heat equation in dimensional form: 

2

2
0

T T

t x
α

∂ ∂
− = →

∂ ∂

1

1 1

2

2
0

n n n n n

i i i i iT T T T T

t x
α

∆ ∆

+
+ −− − +

− =  

the criterion assumes the form 

2

1

2

t

x

α∆
≤

∆
 

 By similar developments it can be shown that the “implicit” 

formulation (see below) 

1 1 1 1

1 1

2

2
0

n n n n n

i i i i i

t x

ψ ψ ψ ψ ψ+ + + +
+ −− − +

− =
∆ ∆

 

is unconditionally stable, as it is for many “implicit” numerical schemes. 
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In fact, it is:  

1 1 1 1

1 1

2

2
0

n n n n n

i i i i i

t x

δ δ δ δ δ

∆ ∆

+ + + +
+ −− − +

− =  

where 

1n n t

i i e
α∆δ δ + −=   

1 1

1

n n i x

i i e
β∆δ δ+ + −

− =   
1 1

1

n n i x

i i e
β∆δ δ+ +

+ =  

So 

( )2 2

1 2
0 1 2

t i x i x
t i x i xe e e t

e e e
t x x

α∆ β∆ β∆
α∆ β∆ β∆∆

∆ ∆ ∆

− −
− −− − +  − = → = + − +   

( )
1

2

2
1 1 cos 1t t

G e x that is always true
x

α∆ ∆
β∆

∆

−
 

= = + − ≤   
 

 

 

Lax Equivalence Theorem 

Given a properly posed linear initial value problem and a finite difference 

approximation to it that satisfies the consistency condition, 

stability is the necessary and sufficient condition for convergence 

 

 The demonstration, that we omit, follows from the above formulation 

adopted for the discretization error and holds for linear problems. 

Consistency and Stability are therefore the properties to be possessed by 

a numerical scheme to achieve Convergence. 
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Domain discretization 

The space and time domain must be discretised by introducing appropriate 

grids (a “mesh”) whose characteristics may vary depending on the 

discretization scheme. 

 A simple Cartesian grid as the one described below can be used for 

time and space discretization of 1D problems.  

 

Centered nodes or centered faces can be used in the case of 2D or 3D finite 

volumes according to accuracy constraints 

A typical nomenclature is used in 2D and 3D for defining a node and 

its neighbouring ones 

 

 

D o B 

E W 

S 

N 

U o T 

P 

x 
y 

z 

 

 

 

 

 

 

 

 

 

   Centered nodes   Centered faces 
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The use of “control volumes” and “junctions” is also typical of system codes 

for single and two-phase flow applications. Often, the nodes are “staggered” 

to solve mass and energy equations in different control volumes: 

Mass and Energy

Balance Node

Momentum

Balance Node Scalar Variables:

p, ul , uv ,αααα

Vector Variables:

wl , wv

 

Collocated or staggered grids are also used in CFD. By the latter approach 

a more direct use of velocities evaluated at the interfaces is made in mass 

and energy balance equations  

 

P E W 

S 

N 

e w 

n 

s 

 

 

Control volume for 
the solution of mass 

and energy balances 

 

Control volume for 

the solution of 

momentum along the 

vertical axis 

 

Control volume for 

the solution of 

momentum along the 

horizontal axis 

P E W 

S 

N 

e w 

n 

s 

 

More complex grids can be generated to better fit bodies. Structured grids 

are those in which different families of curves are present and the curves of 

a family do not intersect each other, while they do intersect the curves of the 

other families. Unstructured grids do not respect this definition. 

 In structured grids, each node can be identified by the indices of the 

curves of the intersecting families, while it is not the case for unstructured 

grids 

Z

Y

X   

Structured grids of types “H”, “O” and “C” and “H” 

 Control volume for 

the mass, energy and 

momentum balances 



Corso di Termofluidodinamica ed Elementi di CFD - III° Anno Ingegneria Nucleare e della Sicurezza e Protezione – Part II 

 
45 

 

Example of unstructured grid 

Very complex grids, made by tetrahedral or polyhedral finite volumes or 

finite elements, can be adopted for complex geometries. Sometimes, 

refinements close to the walls are needed to better represent the 

structure of turbulent boundary layers. 
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FINITE DIFFERNCES, FINITE VOLUMES  

AND FINITE ELEMENTS 

Finite Differences 

In substituting first derivatives 

with finite difference expressions 

different choices can be adopted 

(in the following, we assume 

( )i ixφ φ=  and so on) 

• backward differences 

1

1i

i i

x i ix x x

φ φφ −

−

−∂ 
≈ 

∂ − 
 

• forward differences 

1

1i

i i

x i i
x x x

φ φφ +

+

−∂ 
≈ 

∂ − 
 

• centered differences 

1 1

1 1i

i i

x i i
x x x

φ φφ + −

+ −

−∂ 
≈ 

∂ − 
 

In a more systematic way, additional and more complex expressions can 

be obtained making use of Taylor expansion or differentiating polynomial 

interpolation curves. It is interesting to note that the expansion in Taylor 

series around ix  leads to 

( )
( ) ( )

2 32 3
1 1

1 1 2 32! 3!

i i i i

i i i i

i i i

x x x x
x x

x x x

φ φ φ
φ φ ± ±

± ±

− −   ∂ ∂ ∂ 
= + − + + +    

∂ ∂ ∂     
…  

and so 

( )
( ) ( )

2 32 3
1 1

1 1 2 32! 3!

i i i i

i i i i

i i i

x x x x
x x

x x x

φ φ φ
φ φ − −

− −

− −   ∂ ∂ ∂ 
= − − + − +    

∂ ∂ ∂     
…  

( )
( ) ( )

2 32 3
1 1

1 1 2 32! 3!

i i i i

i i i i

i i i

x x x x
x x

x x x

φ φ φ
φ φ + +

+ +

− −   ∂ ∂ ∂ 
= + − + + +    

∂ ∂ ∂     
…  

φ  

1ix −       ix          1ix +  x  

1

1

i i

i ix x x

φ φφ −

−

−∂
≈

∂ −

1

1

i i

i ix x x

φ φφ +

+

−∂
≈

∂ −

1 1

1 1

i i

i ix x x

φ φφ + −

+ −

−∂
≈

∂ −
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It is therefore: 

( ) ( )
22 3

1 11

2 3

1 2! 3!

i i i ii i

ii i i i

x x x x

x x x x x

φ φ φ φ φ− −−

−

− −   − ∂ ∂ ∂ 
= − + +    

− ∂ ∂ ∂     
…  

( ) ( )
22 3

1 11

2 3

1 2! 3!

i i i ii i

ii i i i

x x x x

x x x x x

φ φ φ φ φ+ ++

+

− −   − ∂ ∂ ∂ 
= + + +    

− ∂ ∂ ∂     
…  

or 

( ) ( )
22 3

1 11

2 3

1 2! 3!

i i i ii i

i i i i i

x x x x

x x x x x

φ φφ φ φ− −−

−

− −   −∂ ∂ ∂ 
= + − +    

∂ − ∂ ∂     
…  

( ) ( )
22 3

1 11

2 3

1 2! 3!

i i i ii i

i i i i i

x x x x

x x x x x

φ φφ φ φ+ ++

+

− −   −∂ ∂ ∂ 
= − − +    

∂ − ∂ ∂     
…  

So, these expressions obtained by forward or backward differences 

introduce higher order terms proportional to 1i ix x −−  or 1i ix x+ − : it is said that 

they are first order accurate in x∆ , i.e. the order of their truncation error is 

the first in the spatial increment. 

  On the other hand, for the centered difference expression it is:  

( ) ( )
( )

( ) ( )
( )

2 2 3 32 3
1 1 1 11 1

2 3

1 1 1 1 1 12! 3!

i i i i i i i ii i

ii i i i i ii i

x x x x x x x x

x x x x x x x x x

φ φ φ φ φ+ − + −+ −

+ − + − + −

− − − − + −   − ∂ ∂ ∂ 
= + + +    

− ∂ ∂ − ∂ −     
…  

or 

( ) ( )
( )

( ) ( )
( )

2 2 3 32 3
1 1 1 11 1

2 3

1 1 1 1 1 12! 3!

i i i i i i i ii i

i i i i i i ii i

x x x x x x x x

x x x x x x x x x

φ φφ φ φ+ − + −+ −

+ − + − + −

− − − − + −   −∂ ∂ ∂ 
= − − +    

∂ − ∂ − ∂ −     
…  

It can be noted that, in the case of uniform discretization, it is: 

3 2

1 1

32 3!

i i

i i

x

x x x

φ φφ φ+ −
 −∂ ∂ ∆ 

= − +  
∂ ∆ ∂   

…  

showing that the expression with centered differences with uniform grid is 

“second order” accurate in x∆ ; this means a greater accuracy with respect 

to first order, since the approximate expression tends to the derivative 

“faster” when 0x∆ →  (i.e., with 2
x∆ ). 
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 For higher order derivatives it is possible to adopt the numerical 

differentiation of finite difference expressions. For instance: 

( ) ( )

( ) ( )

( )

1 1

2
1 2 1 2 1 1 11 1

2

1 1 1 1 1 1

1 1 1

2 2 2

i i i i

i i i i i i i ii i i i

i
i i i i i i i i

x x x xx x x x

x
x x x x x x x x

φ φ φ φ φ φ

φ φ φ φφ
+ −

+ − + − ++ −

+ − + − + +

∂ ∂    − −
− −   

∂ ∂ − ∆ − − ∆  − −   ∂
≈ ≈ = 

∂  − − ∆ + ∆ ∆ ∆
 

( )

( )

1 1 1 1

1 1

1

2

i i i i i i i

i i i i

x x x x

x x x x

φ φ φ+ − + +

+ +

∆ + ∆ − ∆ + ∆
=

∆ + ∆ ∆ ∆
 

For uniform discretization, it is: 

( )

2

1 1

22

2
i i i

i
x x

φ φ φφ + −
  − +∂

≈ 
∂ ∆ 

  

That is a well known expression, already used above, for discretizing the 

diffusion equation 

( )

( )
22 4

1 1

22 4

2
...

12

i i i

i i

x

x xx

φ φ φφ φ+ −
∆   − +∂ ∂

= − +   
∂ ∂∆   

 

Sometimes, for diffusion terms, it is more convenient to differentiate 

directly the fluxes to account for the change in the diffusion coefficients 

( ) ( )

1 1
1 2 1 2

1 2 1 2 1 1

1 1 1 1

1 1

2 2

i i i i
i i

i i i i i i

i
i i i i

x x x x x x

x x
x x x x

φ φ φ φ φ φ

φ
+ −

+ −
+ − + −

+ − + −

∂ ∂    − −
Γ − Γ Γ − Γ   

∂ ∂ − −    ∂ ∂  
Γ ≈ ≈  ∂ ∂   − −

 

 Up to now we implicitly assumed differentiation with respect to a 

spatial variable. Similar techniques can be adopted the time derivatives of 

time-varying variables (in the following, 
n

i
φ  will indicate ( ), n

i
x tφ ). 

 For instance, a forward difference will lead to: 
1n n

i i

t

φ φ+ −

∆

( ) ( )
2 32 3 4

2 3 4
...

2 6 24

n n nn

i i i i

t tt

t t t t

φ φ φ φ∆ ∆∂ ∂ ∆ ∂ ∂
= + + + +

∂ ∂ ∂ ∂
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 In similarity with what seen for spatial derivatives, it is clear that we 

can obtain a greater accuracy with a centered difference expression 
1 1

2

n n n

i i

it t

φ φφ + −−∂ 
≈ 

∂ ∆ 
 

obtaining a second order approximation in t∆ . 

 In a more general approach for space and time discretization, we can 

consider the differential equation  

L
t

φ
φ

∂
=

∂
 

where L  is a differential operator containing spatial derivatives and 

source terms. By spatial discretization we get: 

aL
t

φ
φ

∂
=

∂
 

where a
L  is a finite difference operator obtained by discretizing L . We can 

now proceed to integrate both sides of the equation in time over a finite 

time step:  
1

1

n

n

t

n n

i i a

t

L dtφ φ φ

+

+ = + ∫  

We can make different assumptions on the time variation of the integrand 

function. In this respect, we have three classical assumptions: 

• explicit method: 
1n n n

i i aL tφ φ φ+ = + ∆  

• implicit method: 
1 1n n n

i i aL tφ φ φ+ += + ∆  

• Crank-Nicolson method: 
1 11

2

n n n n

i i a a
L L tφ φ φ φ+ + = + + ∆   

The latter is more accurate, since it is similar to a centered differencing in 

time. A general formulation for the three methods is: 

( )1 1 1 0 1n n n n

i i a a
L L tφ φ α φ α φ α+ + = + + − ∆ ≤ ≤   

A relevant example: finite difference discretization of the advection equation 

It is rather instructive to consider the simple hyperbolic equation 

0
T T

w
t x

∂ ∂
+ =

∂ ∂
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This equation is relevant for us because: 

• the advective part of the balance equations represents and important 

feature that needs to be carefully discretised; 

• when a propagation phenomenon is hyperbolic in nature (e.g., pressure 

perturbations), we always have to take into account the finite speed of 

propagation of perturbations (e.g., the fluid velocity or the speed of 

sound) 

Two widespread difference schemes for this equation are: 

• the “upwind explicit” method 
1

1

1

1

0, 0

0, 0

n n n n

i i i i

n n n n

i i i i

T T T T
w w

t x

T T T T
w w

t x

∆ ∆

∆ ∆

+
−

+
+

− −
+ = ≥

− −
+ = <

 

• the “upwind implicit” method 
1 1 1

1

1 1 1

1

0, 0

0, 0

n n n n

i i i i

n n n n

i i i i

T T T T
w w

t x

T T T T
w w

t x

∆ ∆

∆ ∆

+ + +
−

+ + +
+

− −
+ = ≥

− −
+ = <

 

It can be shown that, in the limit of small increments, these two 

methods formally tend to the original partial differential equation: 

1

1

0
0

1 1 1

1

0
0

lim

lim

n nn n n n

i i i i

t
i ix

n nn n n n

i i i i

t
i ix

T T T T T T
w w

t x t x

T T T T T T
w w

t x t x

∆
∆

∆
∆

∆ ∆

∆ ∆

+
−

→
→

+ + +
−

→
→

− − ∂ ∂
+ = +

∂ ∂

− − ∂ ∂
+ = +

∂ ∂

 

So consistency is verified. The application of the von Neumann stability 

criterion (see above) shows that the explicit upwind scheme is conditionally 

stable and, in particular, it is stable provided that  

1
w t

Courant number
x

∆

∆
= ≤

 (Courant-Friederichs-Lewy condition) 

while the upwind implicit one is unconditionally stable. 

 The latter represents an “advantage” of the implicit methods, since 

there is no need to select particular couples of t∆  and x∆  to assure 

stability. It will be seen that this advantage has a price and some drawbacks. 
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Demonstrations about stability: 

• Upwind explicit scheme 

Given the scheme 
1

1 0
n n n n

i i i iT T T T
w

t x∆ ∆

+
−− −

+ =  

 the error must satisfy the condition: 
1

1 0
n n n n

i i i iw
t x

δ δ δ δ

∆ ∆

+
−− −

+ =  

 where we put 
1n n t

i i eα∆δ δ+ =   1

n n i x

i i e β∆δ δ −
− =  

 Then, it is  

( ) ( )

1 1
0 0

1 1 1 1

n t n n n i x t i x

i i i i

t i x t i x

e e e e
w w

t x t x

w t
e e e C e

x

α∆ β∆ α∆ β∆

α∆ β∆ α∆ β∆

δ δ δ δ

∆ ∆ ∆ ∆
∆

∆

− −

− −

− − − −
+ = ⇒ + =

⇒ = − − ⇒ = − −

 

 where we have put 
w t

C Courant number
x

∆

∆
= = ; the stability criterion is: 

( ) ( )

( ) ( )

1 1 cos sin

1 cos sin 1

t
G e C x i x

C C x i x

α∆ β∆ β∆

β∆ β∆

 = = − − + 

 = − + − ≤ 

 

 This condition implies that the Courant number must be less or equal 

to unity, as shown in the figure representing the obtained complex number 

at varying values of the Courant number 
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• Upwind implicit scheme 

Given the scheme 
1 1 1

1 0
n n n n

i i i iT T T T
w

t x∆ ∆

+ + +
−− −

+ =  

 the error must satisfy the condition: 
1 1 1

1 0
n n n n

i i i iw
t x

δ δ δ δ

∆ ∆

+ + +
−− −

+ =  

 In this case, it is more convenient to put 
1n n t

i i e
α∆δ δ + −=   1 1

1

n n i x

i i e
β∆δ δ+ + −

− =  

 Then, it is  

( ) ( )

( )

1 1 1 1
1 1

0 0

1 1 1 1

1

1 1

n n t n n i x t i x

i i i i

t i x t i x

t

i x

e e e e
w w

t x t x

w t
e e e C e

x

e
C e

α∆ β∆ α∆ β∆

α∆ β∆ α∆ β∆

α∆

β∆

δ δ δ δ

∆ ∆ ∆ ∆
∆

∆

+ + − + + − − −

− − − −

−

− − − −
+ = ⇒ + =

⇒ = + − ⇒ = + −

⇒ =
+ −

 

 In this case, being 

( ) ( )
1

1
1 1 cos sin

tG e
C x iC x

α∆

β∆ β∆
= = ≤

 + − + 
 

it is sufficient to demonstrate that the complex number at the 

denominator has a magnitude greater or equal to unity for any value of 

the Courant number as shown in the figure below 
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Despite of its conditional stability, it must be noted that an explicit 

formulation is rather simple since all the values of the unknowns at the new 

time step are immediately calculated on the basis of old values 

1

11 , 0
n n n

i i i

w t w t
T T T w

x x

∆ ∆

∆ ∆
+

−

 
= − + ≥ 
 

 

An implicit formulation, instead, involves in general the solution of 

coupled equations: this is the mentioned “price” 

1 1

11 , 0
n n n

i i i

w t w t
T T T w

x x

∆ ∆

∆ ∆
+ +

−

 
+ − = ≥ 

 
 

As a drawback for its simplicity, the explicit methods are limited in 

the fact that they can propagate only information known at the previous 

time step. In fact, the limitation on the Courant number implies that 

a node of length ∆∆∆∆x cannot be swept completely during a time step 

since in that case there would be no information available  

on the upwind value of the scalar to be advected 

:THEREFORE IT MUST BE t x w node sweeping time∆ ∆≤ =  

This is not necessary in the case of implicit scheme, as the updated 

values of the scalar are evaluated simultaneously everywhere 

Several formulations exist to deal with convective terms in balance 

equations, which are even more accurate than first order upwind. 

However, “upwind differencing” represents a simple interesting choice since 

it basically reflects the transport of information in the original hyperbolic 

advection equation 

The upwind choice, in fact, approximates the direction of the 

characteristic lines, i.e., of the lines along which the perturbations of the 

advected scalar are propagated in space and time 
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Whether the explicit or the implicit scheme should be used, depends on 

how fast is the phenomenon to be simulated and which is a convenient space 

and time grid 

x

t

w x t∆ ∆>

1ix − ix

n
t

1n
t

+
implicit

explicit
w x t∆ ∆<

x

t

w x t∆ ∆>

1ix − ix

n
t

1n
t

+
implicit

explicit
w x t∆ ∆<

 

In particular: 

• for very fast phenomena, for which it is not needed to have detailed 

information on short time windows, implicit discretization should be 

used to avoid severe Courant limitations 

• for slower phenomena or detailed time analysis, the explicit scheme 

should be chosen 

In complex phenomena, like two-phase flow, there are simultaneous 

perturbations characterised by different speeds of propagation of 

information: 

o pressure perturbations: propagated at the speed of sound 

o thermal coupling between the phases: a very fast phenomenon 

o scalar (e.g., temperature, concentration, etc.) advection: 

propagated with the velocities of the mixture or of the phases 

o void propagation: slightly different speed as the mixture fluid  

x

t

1ix − ix

n
t

1n
t

+

implicit

explicit

1ix +
x

t

1ix − ix

n
t

1n
t

+

implicit

explicit

1ix +  

In such a “stiff” situation, two main alternatives are available: 

• fully implicit approach (e.g., CATHARE) 

• split phenomena and use a partially implicit numerical scheme (e.g., 

RELAP5), explicit for the slower phenomena and implicit for the faster 

ones 
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Concerning accuracy, it can be shown that the truncation error in 

implicit methods is larger than in explicit ones. In fact, the related 

modified equation has a larger “numerical diffusion” coefficient: this is the 

mentioned “drawback” 

 

 Numerical diffusion is responsible in this case for the introduction of 

a sort of fictitious axial heat conduction smearing out sharp fronts (this 

phenomenon is called “dissipation”) 

T
true profile

predicted profile

TTT
true profile

predicted profile

 

 The odd numbered higher order derivatives appearing in the higher 

order terms (HOT) of truncation error introduce “dispersive” effects, i.e. a 

splitting of the propagation velocity of the different harmonic components 

of a perturbation 

 Dissipation (from even order derivatives) and dispersion (from odd 

order derivatives) build up to generate the whole effect of truncation error 

that is referred to with the name of “numerical diffusion” 

 It is mentioned that a similar effect occurs also in multidimensional 

steady-state calculations when the flow is not aligned with the grid (“cross 

wind diffusion”) 
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Finite Volume Method 

The computational domain is subdivided into control volumes (CV = 

control volumes) where the equations are solved in integral form 

( ) ( )

V S S V

Rate of change Flux of out of S Flux of out of S Volumetric
of in V due to fluid motion due to molecular motion source of

advection or convection diffusion

d
dV dS dS S dV

dt
φ φρφ ρφ φ ρ

Φ Φ
Φ Φ

= − ⋅ + Γ ∇ ⋅ +∫ ∫ ∫ ∫
����� ������� ������� �����

w n n
 

 Different, even very complicated, grids can be used in staggered or 

collocated arrangements 

 The surface integrals appearing in the balance equations are written 

as the summation of the integrals on the different surfaces 

j
jS S

dS dSψ ψ=∑∫ ∫  

where ψ  is here the generic “flux” term. 

 The evaluation of these integrals is anyway conditioned by the 

availability of a value of ψ  at the interface; for instance, in 2D it is  

 

e

e e

S

dS Sψ ψ≈∫   
w

w w

S

dS Sψ ψ≈∫  ecc. 

e.g., defining a value of the integrand function in the middle of the 

interface. More accurate choices are available. 

 Volume integrals, instead, are simply evaluated as the product of the 

nodal value (taken as the average in the node) by the volume  

P

V

q dV q V≈∫  

where q  is the general volumetric term. Also in this case, more accurate 

choices may be adopted. 
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 In order to determine the values of the integrand functions not 

immediately available in the calculation at the interfaces, it is necessary to 

introduce interpolation methods. 

 This problem is typical, for instance, of the scalar values (e.g., 

densities, enthalpies) at the interfaces. Different possibilities are available 

for the variable φ  in the advection term ρφ ⋅w n , assuming that the other 

quantities are known: 

• “upwind differencing scheme (UDS)”: 

( )
( )

, 0

, 0

P x e
e

E x e

if

if

φ
φ

φ

⋅ ≥
= 

⋅ <

w n

w n
  

( )
( )

, 0

, 0

W x w
w

P x w

if

if

φ
φ

φ

⋅ ≥
= 

⋅ <

w n

w n
 

( )

( )

, 0

, 0

P y n

n

N y n

if

if

φ
φ

φ

 ⋅ ≥
= 

⋅ <

w n

w n
  

( )

( )

, 0

, 0

S y s

s

P y s

if

if

φ
φ

φ

 ⋅ ≥
= 

⋅ <

w n

w n
 

this translates the already observed concept seen in the 1D case for the 

advection equation and results in a first order accurate scheme that is 

rather “diffusive” (see above), i.e. rather affected by truncation error; 

 Concerning the upwind difference scheme, it must be noted that this 

technique is frequently used in system codes for two-phase flow and takes the 

name of “donor cell principle” 

In particular, in this case the concept of volumes and junctions 

separating them is mostly like the Eulerian lumped parameter approach 

consisting in subdividing a system into “rooms” separated by “doors”: 

• in each room (volume), mass and energy balance equations are solved to 

specify the thermodynamic properties of the fluid being inside 

• across each door (junction), momentum equations are solved to specify 

the inlet and outlet flows 

donor cell donor cell donor cell donor celldonor cell donor cell donor cell donor cell

 

With such a simplified model in mind, it is spontaneous to introduce 

a simple rule for evaluating the properties of the inlet and outlet flows 

in terms of the properties in the “uspstream” volume (i.e., the “donor 

cell”). Such a rule, translates into control volume formulation the 

“upwind differencing” technique seen for the advection equation. 
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• linear interpolation (CDS): 

( )1
e e P e E

φ λ φ λ φ= − +    
e P

e

E P

x x

x x
λ

−
=

−
 ecc. 

in this case, we have a second order accurate scheme, but oscillatory 

behaviour may be observed, as it is usual for “centered difference 

schemes” 

• quadratic upwind interpolation (QUICK): 

( ) ( ) ( )
( ) ( ) ( )

1 2

3 4

0

0

P E P P W e

e

E P E E EE e

g g se

g g se

φ φ φ φ φ
φ

φ φ φ φ φ

+ − + − ⋅ ≥
= 

+ − + − ⋅ <

w n

w n
 

with 

( )( )
( )( )

( )( )
( )( )1 2

e P e W e P E e

E P E W P W E W

x x x x x x x x
g g

x x x x x x x x

− − − −
= =

− − − −
 

( )( )
( )( )

( )( )
( )( )3 4

e E e EE e E P e

P E P EE E EE P EE

x x x x x x x x
g g

x x x x x x x x

− − − −
= =

− − − −
 

and similar formulations for the other directions; this scheme derives 

from a parabolic interpolation combined with an “upwind” treatment, 

providing a second order accurate scheme 

• exponential, power law, hybrid scheme, etc.: 

S.V. Patankar, in “Numerical Heat Transfer and Fluid Flow” (1980) 

proposes a treatment based on the 1D steady-state advection-diffusion 

equation based on the consideration of a Peclet number, 
w

P x
ρ

= ∆
Γ

, 

quantifying the ratio between 

advection and diffusion; on 

the basis of the exact solution 

and of the direction of 

motion, an exponential 

formulation and different 

approximations to it are 

proposed for the evaluation 

of the scalar at the interface 

 

interface 
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Finite Element Method (FEM) 

The FEM is mostly based on the “weighted residual method” with a 

Galerkin weighting (see below) and has the following characteristics: 

• the computational domain is discretised into “finite elements” having 

sometimes complex shape 

• an approximating function is used for expressing the trend of the 

unknown variable in space and it is expressed in terms of the value of 

the unknown variable in the “nodes” of the elements; for a steady state 

problem it is: 

( ) ( )
1

, , , ,
N

app i i

i

x y z x y zφ φ ϕ
=

=∑  

where iφ  are the nodal values; 

• the function ( ), ,i x y zϕ  are said “trial functions” (in the jargon of the 

method of weighted residuals) or “shape functions” (in the jargon of 

FEM); they are generally chosen among the low order polynomials, 

piecewise defined in contiguous elements  

The procedure for obtaining the discretised equations is composed of 

two stages. 

STAGE 1: Piecewise interpolation 

• It has the purpose to obtain the local solution expressed in terms of nodal 

values 

• In one-dimensional cases it is possible to adopt a linear interpolation 
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e.g. for the element A in the figure it is 

( ) 1

1

A i
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i i

x x
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x x
ϕ −

−

−
=

−
  ( )1

1

A i
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i i

x x
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=
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 with ( ) ( )1 1A A

i ix xϕ ϕ− + =  
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 obtaining the approximating functions in each element 

( ) ( ) ( ) ( )1 1 1

A A A

i i i i i ix x x x x xφ φ ϕ φ ϕ− − −= + ≤ ≤  

( ) ( ) ( ) ( )1 1 1

B B B

i i i i i ix x x x x xφ φ ϕ φ ϕ+ + += + ≤ ≤  

• Similarly, for a quadratic interpolation 

( ) 1
2

2 1 2

A i i
i

i i i i

x x x x
x

x x x x
ϕ −

−

− − −

  − −
=   

− −  
  ( ) 2

1

1 2 1

A i i
i

i i i i

x x x x
x

x x x x
ϕ −

−

− − −

  − −
=   

− −  
 

( ) 2 1

2 1

A i i
i

i i i i

x x x x
x

x x x x
ϕ − −

− −

  − −
=   

− −  
  with ( ) ( ) ( )2 1 1A A A

i i ix x xϕ ϕ ϕ− −+ + =  
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in each element it is 

( ) ( ) ( ) ( ) ( )2 2 1 1 2
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i i i i i i i ix x x x x x xφ φ ϕ φ ϕ φ ϕ− − − − −= + + ≤ ≤  

( ) ( ) ( ) ( ) ( )1 1 2 2 2
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i i i i i i i ix x x x x x xφ φ ϕ φ ϕ φ ϕ+ + + + += + + ≤ ≤  

In 2D cases, it is possible to adopt bi-linear or bi-quatratic interpolations: 

• bilinear 
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• biquadratic 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )
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2 2
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STAGE 2: Application of the weighted residual method 

The weighted residual method represents a general technique for 

approximating the solution of a partial differential equation.  

Let us assume that the differential equation is  
0Lφ =  

with L  an appropriate differential operator. As seen, an approximating 

function can be given by 

( ) ( )
1

, , , ,
N

app i i

i

x y z c x y zφ ϕ
=

=∑  

that should also satisfy the boundary conditions. The trial functions, 

( ), ,i x y zϕ , can be chosen conveniently among different types of functions, 

though polynomials often preferred. As seen above, for a FEM the 

coefficients ic  should be the nodal values iφ .  
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 The “residual” of the equation, defined as 

( ), , ( 0)appR x y z L in generalφ= ≠  

will be obviously nonzero in general (unless appφ  is exact…); it must be 

minimised as far as possible. To obtain this result, different “weighting 

functions” ( ), ,mW x y z  are defined, imposing integral relationships of the type 

( ) ( ) ( ) ( ), , , , , , , , , , 0m app m

V V

R x y z t W x y z dV L x y z t W x y z dVφ= =∫ ∫  

as many times as necessary to enable the calculation of the unknown 

coefficients ic  (in our case iφ ). The algebraic equations obtained by this 

technique are just the discretised equations in terms of the nodal values  i.e., 

the equations of the numerical scheme. 

 Typical choices for the weighting functions are: 

• Subdomain method:  
1,

0,

m

m

m

for r V
W

for r V

∈
= 

∉

�

�  

It is important to note that when the equation 0Lφ =  represents a 

conservation law, this imposes the integral conservation over mV   

( ) ( ) ( ), , , , , , , , 0

m

app m app

V V

L x y z t W x y z dV L x y z t dVφ φ= =∫ ∫  

This requires that the approximate solution satisfy the integral balance on 

the volume as in finite volume methods. 

• Collocation methods: 

In this case it is ( ) ( )m mW r r rδ= −
� � �

, with δ  the Dirac’s delta function 

( ) ( ) ( ) ( ), , , 0app m app m m

V

L r t r r dV L r t R r tφ δ φ − = = = ∫
� � � � �

 

This requires that the residual vanishes at selected location in space 

• Galerkin method 

In this case, the one mostly addressed with FEM, the trial functions are 

used as weighting functions: ( ) ( )m mW r rϕ=
� �

 

It is interesting to note that when the trial functions form a complete 

basis, this implies that the residual should be orthogonal, in the sense of 

the scalar product between functions ( ) ( ) ( ), , ,
V

f g f r t g r t dV= ∫
� �

 at some 

element of the basis ( ) ( ) ( ), 0 1, ,m

V

R r t r dV m Mϕ = =∫
� �

… . 
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SOLVING COUPLED EQUATIONS 

The need for pressure and velocity coupling 

Due to the fact that sound speed is generally very large in compressible 

fluids and theoretically infinite in incompressible ones, pressure 

perturbations travel very fast in the computational domain 

 This gives rise to the need to evaluate as far as possible implicitly the 

flow and the pressure fields, in order not to incur in a time step limitation 

similar to the one based on the Courant number, but evaluated with the 

sound speed instead of the fluid one. 

 In the “staggered mesh” scheme adopted by RELAP5, for instance, 

the semi-implicit scheme is conceived as follows: 

 

• the linearised energy and mass balance equations in each control 

volume are combined, with the aid of the linearised state relationship, 

to obtain a link between node pressure and velocities at inlet and outlet 

junctions 

 

� owing to the pressure-velocity implicit link, momentum equations can 

be written in the form (similar equations hold for the outlet junction) 

 

• Elimination of junction velocities from these equations leads to a 

sparse matrix system in the nodal pressures at the new time step 

• For a simple pipe system with single inlet and outlet junctions, the 

algebraic system matrix is tridiagonal and the TDMA could be used; 

a sparse matrix solver is adopted for greater generality 
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SIMPLE and SIMPLER Methods 
In the case of CFD, this coupling between the pressure and the velocity 

fields is also needed to stabilise solutions 

Considering the SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) and SIMPLER (SIMPLE Revised) methods, two basic 

algorithms for the solution of mass and momentum coupled equations, 

help in clarifying this concept  

 With reference to a classical staggered mesh (not strictly required) 
 

Control volume for 

the solution of mass 

and energy balances 

 

Control volume for 

the solution of 

momentum along the 

vertical axis 

 

Control volume for 
the solution of 

momentum along the 

horizontal axis 

P E W 

S 

N 

e w 

n 

s 

 

 

the momentum equations are written in control volume formulation 

( ) ,x x x x x
V S S S V

advection term viscous forces pressure force body forcerate of change

d
w dV w w n dS f dS pn dS g dV

dt
τρ ρ ρ+ ⋅ = − +∫ ∫ ∫ ∫ ∫

� �

������� ����� ����� ������������
 

( ) ,y y y y y
V S S S V

advection term viscous forces pressure force body forcerate of change

d
w dV w w n dS f dS pn dS g dV

dt
τρ ρ ρ+ ⋅ = − +∫ ∫ ∫ ∫ ∫

� �

������� ����� ����� ������������
 

Volume and surface integrals are written in appropriate forms, 

according to the finite volume technique, paying attention to point out the 

link between the net pressure difference along each axis and the related 

velocities. For instance at the boundary “e” (see the above figure) the x-

velocity is linked to the pressure difference in the adjoining volumes as 

( ), ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  

where nb means “neighbouring” and indicates the contribution to the 

momentum change coming from the adjoining nodes 
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In this equation: 

• nba  accounts for the advective and diffusive contributions from the 

adjoining (neighbouring) nodes; 

• b  is a general source term for body force and all the other terms 

evaluated explicitly (it will be repeated in the following equations with 

similar meaning but different actual value) 

• ( )P E ep p A− , represents the net of pressure forces over the control 

volume for momentum along the horizontal axis; it can be noted as the 

staggered mesh arrangement allows for the direct use of nodal pressures 

in P and E to represent the pressure difference across the interface 

• e
A  represents the lateral area on which the pressure force acts 

The fact to have singled out the pressure difference term in the equations 

will allow evaluating in a coupled way the pressure and velocity fields 

 Momentum equation along the y-axis has a similar form 

( ), ,n y n nb y nb P N n

nb

a w a w b p p A= + + −∑  

Whenever a third axis is present, an additional equation for the related 

component will appear 

( ), ,t z t nb z nb P T t

nb

a w a w b p p A= + + −∑  

 Since the pressure field at the new time step is not yet known, it is 

necessary to make use of an estimate of pressure (indicated with a *) that 

will provide velocities that, in general, will not satisfy continuity 

 A guessed velocity field will be then obtained by solving momentum 

equations 

( )* * * *

, ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  

( )* * * *

, ,n y n nb y nb P N n

nb

a w a w b p p A= + + −∑  

( )* * * *

, ,t z t nb z nb P T t

nb

a w a w b p p A= + + −∑  
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Since the velocity field does not satisfy continuity it will be necessary 

to introduce a velocity correction (primed quantities) that will result in a 

corresponding pressure correction: 

*p p p′= +   
*

x x xw w w′= +  
*

y y yw w w′= +  
*

z z zw w w′= +  

 Subtracting side by side the following equations 

( ), ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  ( )* * * *

, ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  

the equation for the corrections is obtained 

( ), ,e x e nb x nb P E e

nb

a w a w p p A′ ′ ′ ′= + −∑  

In the SIMPLE algorithm it is therefore assumed that the first term at 

the RHS can be neglected. This approximation will be corrected in the 

SIMPLER scheme. 

By adopting such simplification, it is 

( ),e x e P E ea w p p A′ ′ ′≈ −  

and we write 

( ),x e e P E e e ew d p p d A a′ ′ ′= − ≡  

 The velocity correction formulations are then obtained: 

( )*

, ,x e x e e P Ew w d p p′ ′= + −  ( )*

, ,y n y n n P Nw w d p p′ ′= + −  ( )*

, ,z t z t t P Tw w d p p′ ′= + −  

Of course, similar relationships must be defined over the remaining faces 

of the control volume 

( )*

, ,x w x w w W Pw w d p p′ ′= + −  ( )*

, ,y s y s s S Pw w d p p′ ′= + −  ( )*

, ,z b z b b B Pw w d p p′ ′= + −  

 

In order to find an equation for the corrections, use is made of the 

continuity equation. In fact, it is clear that, in addition to satisfy the 

momentum equations along the three axes, the velocity field must satisfy the 

compressible or incompressible continuity equations  

( ) 0w
t

ρ
ρ

∂
+ ∇ ⋅ =

∂

�
   0w∇ ⋅ =

�
 

(in the latter case a “divergence-free” velocity field is obtained). 

 Either equation leads to a constraint in pressure that is named “Poisson 

equation”, as the classical equation of Electromagnetism 
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 For the general case of a compressible fluid, the equation 

( ) ( ) ( ) ( ) 0
x y z

w w w w
t t x y z

ρ ρ
ρ ρ ρ ρ

∂ ∂ ∂ ∂ ∂
+ ∇ ⋅ = + + + =

∂ ∂ ∂ ∂ ∂

�
 

takes the space and time discretised form 

( )
( ) ( ) ( ) ( ) ( ) ( )

0

0
P P

x x y y z ze w t bn s

x y z
w w y z w w x z w w x y

t

ρ ρ
ρ ρ ρ ρ ρ ρ

− ∆ ∆ ∆
    + − ∆ ∆ + − ∆ ∆ + − ∆ ∆ =    ∆

 

(all the terms are evaluated at the new time step, except the one with the 0 

superscript, evaluated at the previous one)  

 Substituting in this equation the formulas for velocity obtained by 

momentum equation, including corrections, we have the Poisson equation 

P P E E W W N N S S T T B B
a p a p a p a p a p a p a p b′ ′ ′ ′ ′ ′ ′= + + + + + +  

representing a 7 point equation (or 5 point in 2D o 3 point in 1D), where 

E e e
a d y zρ= ∆ ∆  W w w

a d y zρ= ∆ ∆  N n n
a d x zρ= ∆ ∆  S s s

a d x zρ= ∆ ∆  

T t ta d x yρ= ∆ ∆  B b ba d x yρ= ∆ ∆  

P E W N S T B
a a a a a a a= + + + + +  

( )
( ) ( )

0

* *P P

x xw e

x y z
b w w y z

t

ρ ρ
ρ ρ

− ∆ ∆ ∆
 = + − ∆ ∆
 ∆

 

( ) ( ) ( ) ( )* * * *

y y z zs n b t
w w x z w w x yρ ρ ρ ρ   + − ∆ ∆ + − ∆ ∆

     

 In relation to the above, it can be pointed out that: 

• it is quite evident the analogy with the semi-implicit numerical scheme 

adopted by RELAP5 that, in the case of a 1D pipe, gives rise to a three-

point equation in nodal pressures: the pressure-velocity coupling 

procedure is basically the same 

• since the values , , .e w eccρ ρ  are not immediately available, since the scalar 

quantities are evaluated in the nodes P, E, W, etc., it is then necessary to 

interpolate putting particular attention to make use of the same density 

value for both the control volumes adjoining the interface 

this is a fundamental requirement  

to maintain the conservation property in the scheme 
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• the b coefficient is nothing but a residual of the continuity equation based 

on the guessed (starred) velocities: monitoring its decrease during 

iterations will give an idea about convergence 

On the basis of the above formulations, the algorithm proceeds as 

follows: 

1. an estimate of the pressure field 
*

p  is assigned; 

2. momentum equations are solved; 

( )* * * *

, ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  ( )* * * *

, ,w x w nb x nb W P w

nb

a w a w b p p A= + + −∑  

( )* * * *

, ,n y n nb y nb P N n

nb

a w a w b p p A= + + −∑  ( )* * * *

, ,s y s nb y nb S P s

nb

a w a w b p p A= + + −∑  

( )* * * *

, ,t z t nb z nb P T t

nb

a w a w b p p A= + + −∑   ( )* * * *

, ,b z b nb z nb B P b

nb

a w a w b p p A= + + −∑  

3. the system of equations for p′  is solved: 

P P E E W W N N S S T T B B
a p a p a p a p a p a p a p b′ ′ ′ ′ ′ ′ ′= + + + + + +  

4. the corrected pressures are calculated: 

*
p p p′= +  

5. the corrected values of velocities are calculated: 

( )*

, ,x e x e e P Ew w d p p′ ′= + −  ( )*

, ,y n y n n P Nw w d p p′ ′= + −  ( )*

, ,z t z t t P Tw w d p p′ ′= + −  

( )*

, ,x w x w w W Pw w d p p′ ′= + −  ( )*

, ,y s y s s S Pw w d p p′ ′= + −  ( )*

, ,z b z b b B Pw w d p p′ ′= + −  

6. all the other balance equations are solved (energy, concentration, 

turbulence parameters, etc.) in case in which they may affect the 

velocity field  

7. the new value of p  is taken as the new estimate 
*

p  and the process 

continues from step 2 until convergence is reached. 

Notes: 

• Sometimes in order to avoid problems in convergence, under-relaxation 

is necessary in the calculation of pressures: 
*

pp p pα ′= +  

appropriate values of pα  are generally between 0.5 e 0.8. 
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• The boundary conditions to be imposed in pressure correction equations 

may be of two types: 

o wherever pressure is imposed, it is always 0p′ = , since pressure 

is known, and the number of unknowns is decreased by one; 

o wherever velocity is imposed, this does not depend on pressure: 

the number of unknowns is again decreased by one. 

 

• When an incompressible fluid is considered, since there is no link 

between pressure and fluid properties (density), in the momentum 

balance equation there is nothing allowing to determine the pressure 

magnitude: 

what matters are only the differences in pressure, 

that has therefore a relative character 

 

• This relative character of pressure actually makes indeterminate the 

linear system for pressure correction; however: 

o this does not constitute a problem for iterative solvers, since the 

initialization of the solution will drive convergence towards a 

specific solution 

o in the case of a direct solution method, it is necessary to assign 

an arbitrary value of p′  in any place, thus making determinate 

the system of equations. 

In the SIMPLER algorithm, the neglect of the term ,nb x nb

nb

a w′∑  in 

pressure correction equations is avoided since it leads to an overestimate of 

the correction, requiring under-relaxation. 

 To improve convergence, momentum balance equations  

( ), ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  

are reconsidered writing them in the form 

( ) ( )
, ,

,

nb x nb nb x nb

nb e nb

x e P E P E e

e e e

a w b a w b
A

w p p p p d
a a a

+ +

= + − = + −
∑ ∑
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A pseudo-velocity is thus introduced 

,

,
ˆ

nb x nb

nb
x e

e

a w b

w
a

+

=
∑

 

obtaining an equation in the form 

( ), ,
ˆ

x e x e P E ew w p p d= + −  

This equation is similar to 

( )*

, ,x e x e e P Ew w d p p′ ′= + −  

adopted in SIMPLE, but ,
ˆ

x ew  takes the place of 
*

,x ew  and pressures p  take 

the place of p′ . 

 A Poisson equation is therefore written in terms of pressures p : 

P P E E W W N N S S T T B B
a p a p a p a p a p a p a p b= + + + + + +  

where 

( )
( ) ( )

0

ˆ ˆ
P P

x xw e

x y z
b w w y z

t

ρ ρ
ρ ρ

− ∆ ∆ ∆
 = + − ∆ ∆ ∆

 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
y y z zb ts n

w w x z w w x yρ ρ ρ ρ   + − ∆ ∆ + − ∆ ∆    

The steps in SIMPLER are therefore the following: 

1. guess the velocity field; 

2. evaluate the coefficients in the momentum balance equations and the 

pseudo-velocities ,
ˆ

x ew   

,

,
ˆ

nb x nb

nb
x e

e

a w b

w
a

+

=
∑

 

3. the coefficients are calculated for the pressure equation 

P P E E W W N N S S T T B B
a p a p a p a p a p a p a p b= + + + + + +  

which is then solved  

4. then the obtained pressure field is treated as an estimated pressure field 
*

p  and the corresponding velocities 
*

,x ew  and similar are calculated  

( )* * * *

, ,e x e nb x nb P E e

nb

a w a w b p p A= + + −∑  ( )* * * *

, ,w x w nb x nb W P w

nb

a w a w b p p A= + + −∑  
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( )* * * *

, ,n y n nb y nb P N n

nb

a w a w b p p A= + + −∑  ( )* * * *

, ,s y s nb y nb S P s

nb

a w a w b p p A= + + −∑  

( )* * * *

, ,t z t nb z nb P T t

nb

a w a w b p p A= + + −∑   ( )* * * *

, ,b z b nb z nb B P b

nb

a w a w b p p A= + + −∑  

5. the quantity  

( )
( ) ( )

0

ˆ ˆ
P P

x xw e

x y z
b w w y z

t

ρ ρ
ρ ρ

− ∆ ∆ ∆
 = + − ∆ ∆ ∆

 

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
y y z zb ts n

w w x z w w x yρ ρ ρ ρ   + − ∆ ∆ + − ∆ ∆    

  is calculated and the pressure equation is solved p′ : 

P P E E W W N N S S T T B B
a p a p a p a p a p a p a p b′ ′ ′ ′ ′ ′ ′= + + + + + +  

6. the velocity field is corrected: 

( )*

, ,x e x e e P Ew w d p p′ ′= + −  ( )*

, ,y n y n n P Nw w d p p′ ′= + −  ( )*

, ,z t z t t P Tw w d p p′ ′= + −  

( )*

, ,x w x w w W Pw w d p p′ ′= + −  ( )*

, ,y s y s s S Pw w d p p′ ′= + −  ( )*

, ,z b z b b B Pw w d p p′ ′= + −  

but pressures are not corrected 

7. balance equations for the other variables are solved (energy, 

concentration, turbulence parameters, etc.) if needed 

8. the algorithm is repeated from step 2 until convergence is reached. 

 

Notes: 

• One of the main differences between SIMPLE and SIMPLER is that the 

latter does not make use of an estimated pressure field but only of an 

estimated velocity field; the pressure field is calculated on the basis of 

the velocity field 

 

• When the velocity field reaches convergence, the pressure field will be 

the correct one 

 

• The SIMPLER converges more rapidly than SIMPLE, but the 

computational effort per iteration is larger; the overall result is anyway 

generally in favour of SIMPLER 

 

 
 


