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SPATIAL ASYMPTOTIC APPROXIMATIONS 

FOR THE SPHERICAL HARMONICS METHOD 
 

 

The plane case with dependence on energy 

• Taking into account the dependence on energy, the transport 

equation for the plane case is: 
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• Making use of mathematical developments similar to the ones 

adopted for the monokinetic case and assuming 
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 it is possible to reach the energy dependent spherical harmonics 

form (we omit the demonstration) 
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being a system of infinite integrodifferential equations in ( )Exl ,φ  

• The PN approximation consists in truncating the series at the ( )1+N -

th term obtaining 1+N  equations ( Nl ...,,1,0= )  

 

Asympotitc spatial dependence for PN and the BN approximations 

• In the case of homogeneous regions it is possible to adopt a 

procedure different from the spatial discretization, based on a 

simple asymptotic approximation 

• In the case of calculations aimed to provide the fine group energy 

spectrum, a spatial trend of the flux of exponential type (for non 

multiplying media) or sinusoidal one (for multiplying media) may 

roughly represent the effect of leakages 
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• Therefore, for a multiplying medium an imaginary exponential 

trend is accepted. The imaginary exponential is more convenient 

from a mathematical point ot view than a sinusoidal one, just taking 

care to consider only the real part of both the flux and the source 

(assumed to be isotropic) 
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• As a consequence, for the coefficients of the Legendre polynomials 

it is 
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 On this basis, we can now proceed in two different ways: 

 

1. PN equations in asymptotic form 

We can substitute the expression of the flux in terms of Legendre 

polynomials at the left hand side, by the relation:  
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multiplying both side by ( )µlP  and integrating on 11 ≤µ≤− , it is 

found: 
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which represent the PN equations in asymptotic form. 
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2. BN Equations 

As a variant of the above, before including the expression of the flux 

in terms of Legendre polynomials and of performing the “scalar 

product” by ( )µlP , we divide both sides by ( ) µ−Σ iBEt : 
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Then we multiply by ( )µlP  and we integrate from -1 to 1: 
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and we multiply both sides by ( )EtΣπ2  
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 We now introduce the coefficients (new functions to be calculated 

on the basis of Legendre polynomials): 
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The functions nlA ,  satisfy the recurrence condition 

( ) ( ) ( ) ( ) ( )
zi

zAlzAnzAn
zi

nl,
nlnlnl

δ
=−+−+ −+ 1,1,, 112

1
 

and it is 

nlln AA ,, =  e ( ) 0...
753

1arctg
1 642

0,0 ≈+−+−≈= zper
zzz

z
z

zA  

( ) ( ) ( )[ ]1
1

0,00,11,0 −== zA
iz

zAzA  ( ) ( )zA
iz

zA 1,01,1

1
=  

The BN approximation consists again in truncating at Nl =  the 

system of infinite integral equations thus obtained. It can be 

noted that: 

♦ this occurs automatically, putting ( ) 0=→′Σ EEsn  for Nn >  

� the BN equations converge more rapidly than the 

corresponding PN; for instance, in the case of isotropic 
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scattering, an “exact” expression is obtained for 0ϕ  and also 

the higher order coefficients can be obtained exactly; 

� it is foreseeable that also for anisotropic scattering the 

process converges more rapidly, as shown below. 

For 0=N  (B0 approximation) for 0=l  we have 
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and this equation is “exact” (no need of truncation of higher 

order terms!); in order to get the angular flux in addition to 0ϕ , it 

is possible to write 
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As an alternative, it is possible to obtain all the needed ( )Elϕ  

from the equation  
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whose RHS involves only 0ϕ  and 0S . 

 

For 1=N  (B1 approximation) with some passages, the following 

system of two equations in two unknowns is obtained 
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As it can be noted, an advantage with respect to the PN equations 

is that the BN equations do not refer to higher order components 

of the flux (no need for truncating! ⇒⇒⇒⇒ faster convergence) 
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DPN APPROXIMATIONS 
• The expression of the 

angular flux in terms of 

Legendre polynomials is 

inadequate for dealing with 

the discontinuity at a planar 

surface (across 0=µ ) 

• In fact, the neutrons 

contributing to the angular 

flux for 0>µ  are generated 

in one region, while those 

contributing to the flux for 

0<µ  come from the other, 

and the two regions can be quite different in terms of sources and 

properties 

• This is not true for a curved surface. However, the presence of such 

a discontinuity is very evident in the case of an interface with the 

void) 

( ) 00, <µ=µφ sx    or   ( ) 00, >= µµφ sx  

depending on where the interface is located 

• In order to overcome this difficulty, J.J. Yvon proposed to adopt 

different expansions of the angular flux in the two intervals 

01 ≤µ≤−  and 10 ≤µ≤  

• Considering for the sake of simplicity the monokinetic case, it is: 
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• Substituting this expression in the steady state equation of neutron 

transport for the monokineitc case and for a generally anisotropic 

scattering (without source) 
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and multiplying both sides by ( )12 −µ+
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mP  then integrating 

on 11 ≤µ≤− , it is: 
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where ±  identifies the + or – sign suggesting that the related 

equation has been obtained by multiplying by ( )12 −µ+
mP  or by 

( )12 +µ−
mP  and where it is assumed 
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• When the series defining the angular flux is truncated at the N -th 

term and considering only the first 1+N  equations, the double-PN or 

DPN approximation is obtained 

• In some cases of interest, this approximation is much better than 

the corresponding PN one. In particular, putting 

( ) 00 =φ+
n   and  ( ) 0=φ−

an  ( )...,1,0=n  

It is easier to satisfy in an appropriate way the boundary conditions 

for the interface with the void in the case of a layer (in 0=x  an 

ax = ) 

• The DPN method requires that in every point it is possible to 

identify directions pointing outwards and inwards, something only 

possible for 1D cases 

• However, it must be mentioned that the PN method can be extended 

to multidimensional cases only with great mathematical difficulty 
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THE INTEGRAL EQUATION  

FOR 1D AND 2D PROBLEMS 
1D Geometry 

• Considering an isolated slab included in the interval ax ≤≤0  with 

isotropic scattering and indipendent source, in Cartesian 

coordinates the transport equation in integral form 
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where the integration along the coordinates other than x is isolated 

at the right, to be made first as as afucntion of any x 

• It is now convenient to change the integration variables, so that we 

can take full profit of the 1D characteristics of the problem 

• The reference frame is selected such that  
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• It is therefore 
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• Now it is therefore convenient to substitute to p  the variable t  

defined as: 
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where it can be noted that we used the “obvious” relation: 
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In fact, we recognise that when the neutron trajectory is inclined 

with respect to the x  axis, this results just in an increase by a factor 

θcos1  in the number of mean free paths involved in their flight 

• So defining the exponential integral functions 
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• In the monokinetic case it is: 
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• If we choose the meen free path as length scale (i.e., substituting to 

x  the coordinate xtΣ=τ ) it is  

( ) ( ) ( ) ( ) ( )[ ]∫
Σ

τ′τ′+τ′φτ′Στ′−τ
Σ

=τφ
a

s
t

t
dSE

0 001
2

1
 

• This relation can be reached also for a non-homogeneous layer. 
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( )dxx
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2D Geometry 

• We consder a “geenralized cylinder” (not necessarily circular) 

infinite in height and isolated having a volume V  having as 

intersection with the plane 0=z  the general surface 0A   

• We also assume that the scattering and the independent source are 

isotropic 

• If the variables in the problem depend only on x  and y , the integral 

transport equation becomes 

( )
( )

( ) ( ) ( )∫ ∫ ′′′




 ′′+′′′′φ→′′′Σ

′−π
=φ

∞
′τ−

V

s

Err

zdydxdEyxSEdEyxEEyx
rr

e
Eyx ,,,,,,

4
,, 00 02

,,

��

��

 

or 

( ) ( ) ( ) ( )
( )

∫ ∫∫ ′
′−π



 ′′+′′′′φ→′′′Σ′′=φ

∞

∞−

′τ−
∞

0

2

,,

00 0
4

,,,,,,,,

A

Err

s zd
rr

e
EyxSEdEyxEEyxydxdEyx

��

��

 

where we now isolated in the RHS the integration over z 

• Therefore, also in the 2D case an appropriate choice of the 

coordinate helps in obtaining a final compact form; it is: 
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• Putting 
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where the Bickley-Naylor functions were used. They are defined as: 
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Reference geometry for the 2D case 
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• In the general case in which the cylinder is non-homogeneous, it is 
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,, 00 Err
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and then 
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• It can be then concluded that  
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• In the particular case of a monokinetic problem 
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• Finally, if the cylinder is homogeneous 
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FINAL CONSIDERATIONS 

 

The above explains why in 1D and 2D codes based on the integral 

equations, collision probabilities involve exponential integral functions 

and Bickley-Naylor functions, respectively 

 

As usual, we note that in reduced dimensionality problems we need 

anyway to consider that neutrons travel in the 3D space, integrating 

along the neglected dimensions in order to obtain the overall 

contribution of neutron sources that are actually distributed in a 3D 

space 
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DISCRETE ORDINATE METHOD 

OR “SN” METHOD 
 

General considerations 

• The discrete ordinate method is based on the solution of the 

interodifferential equation discretised both in the space and in the 

angular coordinates  

• This method represents the main technique for the solution of the 

integrodifferential transport equation since it allows to easily obtain 

a solution with any degree of approximation as a function of the 

available computational resources 

• The first algorithms of these methods can be traced back to 

methods adopted for stellar atmospheres; the technique was then 

extended mainly owing to B. Carlson to nuclear energy applications 

• The remarkable efficiency of these methods, named SN metods, 

makes them to be often preferred to others 

The one-dimensional case in cartesian coordinates 

Discretised equations 

• From the steady-state integro-differential equation  

( ) ( ) ( ) ( ) ( ) ( )Ω+Ω′′Ω′′φΩ→Ω′′Σ=ΩφΣ+Ωφ⋅Ω ∫
�

�
��

�
��

�
�

��
�

�
�

� vrSdvdvrvvrvrvrvrgrad str ,,,,,,  

we can firstly consider (just for simplicity) the monokinetic case 

with isotropic scattering 

( ) ( ) ( ) ( ) ( ) ( )Ω+Ω′Ω′φ
π

Σ
=ΩφΣ+Ωφ⋅Ω ∫

�
�

��
�

�
�
��

�
�

�

� ,,
4

,, rSdr
r

rrrgrad s
tr  

and we finally consider the already obtained form for 1D geometry 
( ) ( ) ( )

( )
( ) ( )µ+µ′µ′φ

Σ
=µφΣ+

∂

µφ∂
µ ∫− ,,

2
,

, 1

1
xSdx

x
xx

x

x s
t    (°) 

• In order to solve this equation, we define M discrete directions and 

corresponding weighting coefficients 

Mµµµ ...,,, 21   Mwww ...,,, 21  

• In particular, making use of the weighting coefficients mw  

(quadrature coefficients) it is possible to calculate in an 

approxomated way the integral at RHS of (°), that is: 

( ) ( )∑∫
=

−
µφ≈µ′µ′φ

M

m

mm xwdx
1

1

1
,,  
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• Owing to this discretisation of the angular coordinate Eq. (°) is 

transformed into the following 

( )
( ) ( )

( )
( ) ( )m

M

n

nn
s

mt
m

m xSxw
x

xx
x

x
µ+µφ

Σ
=µφΣ+

∂

µφ∂
µ ∑

=

,,
2

,
,

1

 ( )m M= 1, ...,  

• The choice of the weighting coefficients mw  and, then of the 

quadrature formulations is generally made with reference to an 

even number of discrete ordinates mµ  chosen in a symmetric way 

with respect to 0=µ  

• It is, therefore: 

mmMm µ−=µ>µ −+10  







==−+

2
...,,2,11

M
mww mmM  

• The reason of the choice of symmetrically distributed values with 

respect to 0=µ  with equal weights is due to the intent to assign the 

same importance to particles streaming along different directions 

• The even number of directions is then adopted in order to avoid the 

existence of a value of m  such that 0=µm ; this would pose 

problems, since: 

♦ the derivative term would disappear in the equation, compelling to 

treat this direction in a different way with respect to the others 

♦ as already noted, the direction characterised by 0=µ  can be the 

one at which discontinuities may appear in flux along the angular 

coordinate 

• The advantage to choose an even number of discrete ordinates also 

appears in particular when boundary conditions are imposed:  

♦ in the case of pure reflection, for instance at 0=x , it is: 

( ) ( ) 







=µφ=µφ −+

2
...,,2,1,0,0 1

M
mmMm  

♦ for a free surface (interface to the void) in ax = , instead, it is: 

( ) 







+==µφ M

M
ma m ...,,1

2
0,  

• In principle, there is anyway a considerable freedom in determining 

the directions 

• A very frequent choice is the one (of Wick-Chandrasekhar) in which 

the mµ  are assigned such that they are the M  zeroes of the Legendre 

polynomial of order M : 
( ) ( )MmP mM ...,,2,10 ==µ  
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• Its is moreover requested that 
( )Mmwm ...,,2,10 =>  

and that the weighting is such to provide an exact integration over 

11 ≤µ≤−  of all the polynomials of order up to 1−M ; it is therefore: 

∑ ∫
=

−










+
=µµ=µ

M

m

nn
mm

disparin

parin
n

dw
1

1

1

0

,
1

2

  ( )1...,,2,1,0 −= Mn  

• It is necessary to note that the previous relationships with odd n  is 

identically satisfied for any set of mµ  and mw  respecting the 

requirements 

mmMm µ−=µ>µ −+10  







==−+

2
...,,2,11

M
mww mmM  

• Therefore it is possible to determine the M  independent parameters 

mµ  and mw  ( )2...,,1 Mm =  in order to exactly integrate all the 

polynomials having order 22...,,2,0 −M  (and also those of order 

12 −M , since that this is and odd number) 

 

• We have therefore: 

( ) ( ) ( ) ( ) ( )1...,,1,0,
12

21

1
1

−=
+

δ
=µµµ=µµ ∫∑ −

=

Mlk
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dPPPPw kl
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       ( ) ( ) ( ) ( )φ µ φ µ φ µ φ µ0 0 0 01 4 2 3, , ; , ,= =           ( ) ( )φ µ φ µa a, ,3 4 0= =  

  Pure reflection     Free surface 

Discrete ordinate in the planarcase and boundary conditions ( )4=M  
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• With these requirements µm  and wm  are given by the Gauss-

Legendre quadrature parameters reported in the above table for 
6,4,2=M  

• It is possible to show that, with this choice, the method is equivalent 

to the on of spherical harmonics NP , with 1−= MN : 

1−≡ MM PS  

• The numerical solution is obtained by writing the equations in the 

form 
( )

( ) ( ) ( )mmt
m

m xqxx
x

x
µ=µφΣ+

∂

µφ∂
µ ,,

,
  ( )Mm ...,,1=  

and iterating on the scattering source by the scheme: 
[ ]( )

( ) [ ]( ) [ ]( )m
t

m
t

t
m

t

m xqxx
x

x
µ=µφΣ+

∂

µφ∂
µ +

+

,,
, 1

1

  ( )Mm ...,,1=  

[ ]( )
( ) [ ]( ) ( )m

M

n

n
t

n
s

m
t

xSxw
x

xq µ+µφ
Σ

=µ ∑
=

++
,,

2
,

1

11  

• It is obviously needed also a spatial discretisation: 

♦ the interval ax ≤≤0  is subdivided into I  subintervals with 

uniform properties  

2=N  000.121 == ww  57735.021 =µ−=µ  

4=N  65215.032 == ww  33998.032 =µ−=µ  

34785.041 == ww  86114.041 =µ−=µ  

6=N  46791.043 == ww  23862.043 =µ−=µ  

36076.052 == ww  66121.052 =µ−=µ  

17132.061 == ww  93247.061 =µ−=µ  

Gauss-Legendre quadrature parameters (from Bell & Glasstone, 1979) 

 

 

 

 

Spatial discretisation for the discrete ordinate method 

0>µ  

x  
x1 2

x1
 x3  xi

 xi−1
xi+1 x I −1

 

x I  
x3 2

x5 2 xi−1 2 xi+1 2

 

x I −1 2 x I +1 2  

ix∆  0<µ  
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♦ in each subinterval, the average values of angular flux, emission 

density and cross sections are defined 

 

♦ the equations are then written in the discretised form: 
( ) ( )

( ) ( ) ( )mimiit
i

mimi

m xqxx
x

xx
µ=µφΣ+

∆

µφ−µφ
µ

−+
,,

,, 2121
 

that are rewritten using a straightforward shorthand notation for 

the angular flux 

mimiti
i

mimi
m q

x
,,

,21,21
=φΣ+

∆

φ−φ
µ

−+
  ( )Ii ...,,1=  ( )Mm ...,,1=  (°) 

Solution algorithm 

• For any direction mµ , the previous equations represent a system of 

I  equations in the I  unknowns of the angular flux values in the 

centre of each subinterval, mi,φ  

• However, since in the equations also the interfacial fluxes appear, it 

is necessary to make use of further information in order to carry on 

the calculations 

• A first information is provided by the calculation in an adjoining 

node, that is assumed to be already completed, or by a boundary 

condition 

• In the aim to eliminate the residual unknown the so-called diamond 

rule is used 

2

,21,21

,

mimi

mi

−+ φ+φ
=φ  

• The solution algorithm makes use of a different use of of this rule 

according to the sign of the direction cosine ( 0>µm  or 0<µm ). In 

particular, it is: 

♦ for 0>µm  

in this case, the calculation proceeds sweeping the subintervals 

from left to right starting with φ1 2,m , to be assumed known; it is 

interesting to note that this is also the direction of propagation of 

neutrons; it is therefore 

mimimi ,21,,21 2 −+ φ−φ=φ  

that, introduced into (°) provides the central flux in the form 
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ti
m

mi
m

mi

mi x

q
x

Σ
µ

∆
+

µ

∆
+φ

=φ
−

2
1

2
,,21

,     (°°) 

once the central flux is known, it is therefore possible to evaluate 

the interfacial flux mimimi ,21,,21 2 −+ φ−φ=φ  to be used in the 

calculation of the next subinterval; 

 

♦ for 0<µm  

unlike in the case 0>µm , the calculation proceeds from right to 

left; it is again worth to note that this is also the direction of 

propagation of neutrons (now it is, in fact, 0cos <θ=µ mm ); we put 

therefore: 

mimimi ,21,,21 2 +− φ−φ=φ  

that, introduced into (°) allows to obtain the central flux in the 

form: 

ti
m

mi
m

mi

mi x

q
x

Σ
µ

∆
+

µ

∆
+φ

=φ

+

2
1

2
,,21

,  

once the central flux is known, it is therefore possible to evaluate 

the interfacial flux mimimi ,21,,21 2 +− φ−φ=φ  to be used in the 

calculation of the next subinterval. 

• The order of accuracy obtained by the diamond rule can be 

analysed considering the particular case of zero emission density 

and constant total cross section 
( )

( ) 0,
,

=µφΣ+
µφ

µ mt
m

m x
xd

xd
 

whose exact solution is 

( ) ( ) ( ) mt xx
mm exx

µ′−Σ−µ′φ=µφ /
,,  

In particular, putting 21−=′ ixx  and 21+= ixx  it is 
h

mimi e
−

−+ φ=φ ,21,21  

where 

m

t x
h

µ

∆Σ
=  
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Making use of the relations 

ti
m

mi
m

mi

mi x

q
x

Σ
µ

∆
+

µ

∆
+φ

=φ
−

2
1

2
,,21

,  and mimimi ,21,,21 2 −+ φ−φ=φ  

it is finally found   
21

21
,21,21

h

h
mimi

+

−
φ=φ −+  

to be considered in view that   ( )3

21

21
hO

h

h
e

h +
+

−
=−  

• Notwithstanding the high accuracy of the method, considering the 

above relationship it can be noted that when 2>h  it is 021 <φ +i  even 

if 021 >φ −i  

• It is a typical problem of this method encountered during 

calculation advancement that occurs when the relationships 

mimimi ,21,,21 2 −+ φ−φ=φ  0>µm  

mimimi ,21,,21 2 +− φ−φ=φ   0<µm  

provide negative values of the interface flux 

• The problem can be solved by using a finer spatial discretisation, in 

order to get 2<h ; however, this is not always convenient, e.g. in the 

case of strongly absorbing regions and/or very much inclined 

direactions 

• However, it is possible to correct (“fix”) the flux making use of one 

of two simple rules for “fix-up” 

♦ 1st 
 RULE (“step method”) 

for 0>µm  whenever it is 02 ,21,,21 <φ−φ=φ −+ mimimi , it is assumed 

mimi ,,21 φ=φ +  (instead of the diamond rule), then calculating mi,φ  as 

a consequence of this choice by (°); similarly in case of 0<µm ,… 

(just exchange the role of the two interfaces); 

♦ 2nd
 RULE (“set offending flux to zero and recompute”) 

for 0>µm  whenever it is 02 ,21,,21 <φ−φ=φ −+ mimimi , it is assumed 

0,21 =φ + mi  (instead of the diamond rule), then calculating mi,φ  as a 

consequence of this choice by (°);similarly in case of 0<µm , … 

(just exchange the role of the two interfaces). 

• Unfortunately the use of these rules decreases the accuracy of the 

method from the second order to the first one 
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• Let us just note that the assumption of an isotrpic scattering source 

is not at all needed for the application of the above describe 

algorithm; on the contrary, discrete ordinates methods are 

particularly suitable for dealing with scattering anisotropy 

• In fact, when the anisotrpy of scattering in the laboratory reference 

frame is up to the order L , making use of the expansion in 

Legendre polynomials, we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )µ+φµΣ
+

=µφΣ+
∂

µφ∂
µ ∑

=

,
2

12
,

,

0

xSxPx
l

xx
x

x L

l

llslt  

with    ( ) ( ) ( )∫− µ′µ′φµ′=φ
1

1
, dxPx ll  

• The discrete ordinate form of this equation is therefore given by 

( )
( ) ( ) ( ) ( ) ( ) ( )m

L

l

lmlslmt
m

m xSxPx
l

xx
x

x
µ+φµΣ

+
=µφΣ+

∂

µφ∂
µ ∑

=

,
2

12
,

,

0

    ( )Mm ...,,1=  

( ) ( ) ( )∑
=

µφµ=φ
M

n

nnlnl xPwx
0

,  

• On the basis of this relationship, it is then possible to set up a 

solution algorithm quite similar to the one just described for the 

case of the isotropic scattering 

 

The one-dimensional case in spherical coordinates 

Form of the transport equation 

• In the figure reported in the next page, an unfortunate feature of 

the transport equation in curvilinear coordinates is described; it 

consists in the fact that the angular coordinate identifying the 

direction of neutrons changes during the rectilinear motion of 

neutron 

• As a consequence of this phenomenon, known as angular 

redistribution, the “streaming” term of the integro-differential 

equation involves derivatives in the angular coordinate 

• In order to obtain the streaming term in spherical coordinates, it is 

necessary to remember that it represents a differentiation along the 

direction of motion of neutrons 
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• In fact, it is 

ds

d
gradr

φ
=φ⋅Ω �

�

 

as it can be recognised by putting 

( ) ( ) ( ) ( ){ }szsysxsrsrr ,,0 ≡Ω+==
�

���

 

with 
( ) sxsx xΩ+= 0  ( ) sysy yΩ+= 0  ( ) szsz zΩ+= 0  

• In spherical geometry, the radius and the cosine of the angle 

between the radius and the direction of motion are taken as 

independent coordinates: 

222
zyxr ++≡   

r

r
�

�

⋅Ω=θ≡µ cos  

• Making use of these coordinates, we can therefore write 

ds

d

ds

dr

rds

d
gradr

µ

∂µ

∂φ
+

∂

∂φ
=

φ
=φ⋅Ω �

�

 

translating the problem into the one of expressing the derivatives of 

r  and µ  with respect to s  

• Concerning the derivative of r  we have 

ds

dz

z

r

ds

dy

y

r

ds

dx
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r

ds

dr

∂
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+

∂
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+

∂
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Curvilinear coordinates and angular redistribution 
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• Since making use of the previous definitions it is 
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and 

x
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• Similarly, for the derivative with respect to µ  we have: 
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• The transport equation in spherical coordinates for the monokinetic 

case and isotropic scattering becomes therefore 

( ) ( ) ( ) ( )
( )

( ) ( )µ+µ′µ′φ
Σ

=µφΣ+
∂µ

µ∂φµ−
+

∂

µ∂φ
µ ∫− ,,

2
,

,1, 1

1

2

rSdr
r

rr
r

rr

r s
t  

• In view of the spatial and angular discretisation, it is convenient to 

recast the streaming term into a conservative form, i.e., in a form 

that allows integration over a finite volume of the coordinates with 

“exact” neutron conservation 

• In spherical geometry, the control volumes on which we need to 

integrate are spherical shells; by integrating the streaming term 

over the general shell with inner and outer radiuses 1r  and 2r  and 

over all directions, we have: 

( ) µφππφ ddrrdVdgrad
r

r
r ∫∫∫ ∫ −

Ω⋅∇=Ω⋅Ω
1

1

2 24
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2 444
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rJrrJrdrrJr
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• In order to make this result be obtained easily after multiplication 

by 2
4 rπ , the streaming term is rewritten as 
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It is 
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• The conservative form of the transport equation in spherical 

coordinates is therefore: 

( ) ( )[ ] ( ) ( )
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( ) ( )µ+µ′µ′φ
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=µφΣ+φµ−
∂µ
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∂
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∫− ,,

2
,1

1 1

1

22

2
rSdr

r
rr

r
r

rr

s
t  

• Finally, introducing the emission density 

( )
( )

( ) ( )µ+µ′µ′φ
Σ

=µ ∫− ,,
2

,
1

1
rSdr

r
rq s  

we have 

( ) ( )[ ] ( ) ( ) ( )µ=µφΣ+φµ−
∂µ

∂
+φ

∂

∂µ
,,1

1 22

2
rqrr

r
r

rr
t    (°) 

Discretised equations 

• In similarity with the Cartesian plane case, also in spherical 

geometry there is no variation of the angular flux with the angle ϕ  

• Therefore, the angular discretisation affects only µ  

• The spatial discretisation is made in similarity with what already 

observed for the plane case in Cartesian coordinates 

• The rectangular discretisation domain shown in the Figure at the 

bottom of this page is so obtained, where the “diamond”, giving the 

name to the already mentioned rule, is clearly shown 

• By integrating (°) on this domain and in ϕd  over π<ϕ< 20 , it is: 

( ) ( )[ ]
04

1121

21

21

21

2
22

2

2

0
=π









−φΣ+
µ∂

φµ−∂
+

∂

φ∂µ
µϕ ∫∫∫

+

−

+

−

µ

µ

π i

i

m

m

r

r t drrq
rr

r

r
dd  

from which we have 

( ) ( )[ ] µµφπ−µφπµπ −−++

µ

µ∫
+

−

drrrr iiii
m

m

,4,42 21
2

2121
2

21
21

21

 

( ) ( ) ( ) ( )[ ]∫
+

−
−−++ µφµ−−µφµ−π+

21

21
21

2
2121

2
21

2
,1,18

i

i

r

r mmmm drrrr  

( ) 042
21

21

21

21

2 =π−φΣµπ+ ∫∫
+

−

+

−

µ

µ

i

i

m

m

r

r t drrqd  
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• It can be noted that the use of the conservative form of the 

transport equation allowed a quite easy integration 

• The three obtained integral terms are then approximated. For the 

first term, it is 

( ) ( )[ ] µµφπ−µφπµπ −−++

µ

µ∫
+

−

drrrr iiii
m

m

,4,42 21
2

2121
2

21
21

21  
( )miimiimm AAw ,2121,21214 −−++ φ−φµπ≅  

where we assumed 

( )2121
2

1
−+ µ−µ= mmmw   ( )2121

2

1
−+ µ+µ=µ mmm   2

2121 4 ±± π= ii rA  

and mi ,21±φ  represents the mean angular flux on the angular element 

mm wπ4=∆Ω  holding fot the two surfaces at the radiuses 21−ir  or 21+ir : 

( )∫∫
+

−

µ

µ ±

π

± µµφϕ
π

=φ
21

21

,
4

1
21

2

0,21
m

m

drd
w

i
m

mi  

• The second term is now approximated as: 

( ) ( ) ( ) ( )[ ]∫
+

−
−−++ µφµ−−µφµ−π

21

21
21

2
2121

2
21

2
,1,18

i

i

r

r mmmm drrrr  

( )21,2121,214 −−++ φ−φπ≈ mimmim aa  

where 21, ±φ mi  is the mean flux over the volume iV  (spherical shell 

between 
21−ir  and 

21+ir ), corresponding to 
21−µ

i
 and 

21+µ
i

 

( )∫
+

−

πµφ=φ ±±
21

21

2
2121, 4,

1 i

i

r

r m
i

mi drrr
V

  ( )3
21

3
21

3

4
−+ −π= iii rrV  

while the constants 21−ma  e 21+ma  represent the effect of anfular 

redistribution, whose value will be described later 

• The third integral is finally approximated as : 

 

 

 

 

 

 

 

Angular and space discretisation in spherical geometry 

µ  

r  

µm+1 2

µm

µm−1 2

ri−1 2 ri+1 2ri
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( ) ( )imimtiim

r

r t qVwdrrqd
i

i

m

m

−φΣπ≅π−φΣµπ ∫∫
+

−

+

−

µ

µ
442

21

21

21

21

2  

where imφ  and imq  represent mean values of the angular flux and of 

the emission density over m∆Ω  and iV  in the spherical shell 

( )∫ ∫ ∫
π µ

µ

+

−

+

−

πµφµϕ
π

=φ
2

0

221

21

21

21

4,
4

1 m

m

i

i

r

r
im

im drrrdd
Vw

 

( )∫ ∫ ∫
π µ

µ

+

−

+

−

πµµϕ
π

=
2

0

221

21

21

21

4,
4

1 m

m

i

i

r

r
im

im drrrqdd
Vw

q  

• Adopting the above approximations, the discretised neutron 

transport equation in 1D spherical geometry takes the form 

( )miimiim AA ,2121,2121 −−++ φ−φµ ( )21,2121,21

1
−−++ φ−φ+ mimmim

m

aa
w

 

( ) 0=−φΣ+ imimtii qV  

• In order to obtain the angular discretisation coefficients, one 

proceeds as follows: 

♦ it is noted that for uniform and istropic flux it is 

mimimi ,,21,21 φ=φ=φ −+  

requiring that streaming term is zero, so that 

imimti q=φΣ  ; 

 then, it must be requested that 

( ) 21212121 +−−+ −=−µ mmiimm aaAAw    (*) 

♦ however, in the general case the term depending on the angular 

derivative must become zero when integrated over all the 

directions; therefore, since it must be 

( ) 021,2121,21
1

21,2121,21 =φ−φ=φ−φ ++
=

−−++∑ iMiM

M

m

mimmim aaaa  ; 

since 21,iφ  and 21, +φ Mi  are arbitrary, it must be also 

02121 == +Maa  

• So, assuming 021 =a  the equation (*) allows to calculate all the 

coefficients ma  by recurrence. 

 

Solution algorithm 

• The directions are chosen so that 

1...0...1 212112212223121 =µ<µ<µ<<µ<=µ<µ<<µ<µ<µ=− +−++ MMMMMM
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where 121 −=µ  is said starting direction, since it is the direction for 

starting the calcualtion 

• In fact, for a free surface (interface with the void), the boundary 

conditions are 
( )2,...,2,10,21 MmmI ==φ +  

assuming zero the angular flux related to the directions with 

negative µ  (i.e., “inward” directions) 

• In the center of the sphere, we must assume that the angular flux 

satisfies symmetry conditions generally expressed by imposing 
( )2,...,2,1,211,21 MmmmM =φ=φ −+   

• Then, the calculation starts with the direction 121 −=µ : since the 

streaming term does not contain the angular dispersion term, being 

01
2 =µ− , we then have: 

21,21,
2121

21,2121,21
iiti

ii

ii
q

rr
=φΣ+

−

φ−φ
−

−+

−+
 

in which usally the diamond rule is adopted in the form 

21,2121,21,21 2 +− φ−φ=φ iii  

in order to advance the calculation in the direction of decreasing r  

starting from the boundary condition of zero inward flux on the 

external surface 

• One then proceeds with all the directions 2/1 Mm ≤≤  (for 0<µ ) 

adopting the diamond rule in the twofold spatial and angular form: 

22

21,21,,21,21 +−+− φ+φ
≅

φ+φ
≅φ

mimimimi

im  

Since the process is performed for decreasing r  and increasing µ , 

the diamond rule is adopted in the two forms 

miimmi ,21,21 2 +− φ−φ=φ    21,21, 2 −+ φ−φ=φ miimmi  

that, introduced into the discretised transport equation, allow to 

eliminate the unkown values of the angular flux 

( ) ( )

( ) ( ) tiimm
m

iim

imimimm
m

miiim

im

Vaa
w

AA

qVaa
w

AA

Σ++++µ−

+φ++φ+µ−

=φ

+−+−

−+−++−

21212121

21,2121,212121

1

1
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where use is made of the definition of the angular differentiation 

coefficients 

• Once the values of the angular flux for all the directions with 0<µ  

are computed, the following symmetry condition is used  
( )2,...,2,1,211,21 MmmmM =φ=φ −+   

in order to assigne the flux in the centre of the sphere for the 

directions with 0>µ . The calculations then proceeds for increasing 

r  and µ , making use of the diamond rule in the two forms 

miimmi ,21,21 2 −+ φ−φ=φ    21,21, 2 −+ φ−φ=φ miimmi  

• Even in the spherical case, it is possible to encounter problems 

related to the negative fluxes requiring the use of “fix-up” rules 

• In some cases a non completely correct behaviour of the flux in the 

centre of the sphere has be noted, to be attributed to a non-uniform 

distribution of truncation erroras a function of r  

• The condition  
( )2,...,2,1,211,21 MmmmM =φ=φ −+   

has been also considered criticisable, preferring sometimes the 

relationship 

0
0

=
∂µ

∂φ

→r

 

discretised imposing that the angular flux at the centre of the 

sphere is equal in all the directions 

 

 

 

 

 

 

 

 

 

Sample advancement scheme for an S8 method with 10 radial nodes 

r  

µ

0  

increasing µ   

decreasing r   

increasing µ  

increasing r  

Starting direction Zero angular flux 

Symmetric angular flux 
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The multidimensional case in Cartesian coordinates 

Discretised equations 

• In the multidimensional cases it is convenient to write the integro-

differential equation in the form 

( )[ ] ( ) ( ) ( ) 0,,, =Ω−ΩφΣ+ΩφΩ
�
�

�
��

�
�

�

rqrrrdiv t  

where again the following relationship has been used 

( ) ( )[ ]ΩφΩ=Ωφ⋅Ω
�
�

��
�

�

� ,, rdivrgradr  

• Considering a volume around the location { }kjiijk zyxr ,,=
�

, it is 

kjiijk zyxV ∆∆∆=    
i

ijk
kjjkijki

x

V
zyAA

∆
=∆∆== +− ,21,21  

j

ijk
kikjikji

y

V
zxAA

∆
=∆∆== +− ,21,,21,   

k

ijk
jikijkij

z

V
yxAA

∆
=∆∆== +− 21,21,  

( ) ( ) ( )i I j J k K= = =1 1 1,..., ; ,..., ; ,...,  

• To the general direction, mΩ
�

, the solid angle mm wπ=∆Ω 4  is then 

assigned. We then define the average values of the flux over the 

solid angle and the volume and also on the volume faces 

∫ ∫
π

φΩ
π

=φ

m ijkw Vijkm
mijk dVd

Vw
4

,
4

1
 ∫ ∫

π±
±

±

φΩ
π

=φ

m jkiw Ajkim
mjki dAd

Aw
4,21

,,21

,21

4

1
 

∫ ∫
π±

±

±

φΩ
π

=φ

m kjiw Akjim
mkji dAd

Aw
4,21,

,,21,

,21,

4

1
      ∫ ∫

π±
±

±

φΩ
π

=φ

m kijw Akijm
mkij dAd

Aw
421,

,21,

21,

4

1
 

• By integrating the transport equation over the solid angle 

mm wπ=∆Ω 4  and over ijkV  we have: 

 

 

 

 

 

 

 

 

Reference frame and elementary volume 

�

Ωm

dΩ  
ζm

µm

ηm0

y

z

x

∆xi

∆y j

∆zk

Ai jk−1 2,

Ai jk+1 2,

Ai j k, ,−1 2

Ai j k, ,+1 2

Aij k, +1 2

Aij k, −1 2

Vijk
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( )[ ] ( ) ( ) ( ) 0,,,

4

=






 Ω−ΩφΣ+ΩφΩΩ∫ ∫

π m ijkw V

t dVrqrrrdivd
�
�

�
��

�
�

�

 

• The first term in this equation can be approximated as follows: 

( )[ ] ( )[ ] ( ) ( )∫ ∫∫ ∫∫ ∫
π ∂ππ

Ωφ⋅ΩΩ=ΩφΩΩ≅ΩφΩΩ

m ijkm ijkm ijk w V

mem

w V

mm

w V

dAruddVrdivddVrdivd

444

,,,
�
��

��
�

��
�

�

 

 

• Then, putting 

{ }mmm ζηµ≡Ω ,,
�

 

we have  

( ) ( ) ( ){ mjkijkimjkijkimm

w V

mem AAwdArud

m ijk

,21,21,21,21

4

4, −−++

π ∂

φ−φµπ≅Ωφ⋅ΩΩ∫ ∫
�
��

�

 

( ) ( )}mijkkijmijkkijmmkijkjimkijkjim AAAA ,2121,,2121,,21,21,,21,21. −−++−−++ φ−φζ+φ−φη+

 

• Considering the previous definitions, it is: 

( ) ( )




∆

φ−φ
µπ≅Ωφ⋅ΩΩ

−+

π ∂
∫ ∫

i

mjkimjki

mijkm

w V

mem
x

VwdArud

m ijk

,21,21

4

4,
�
��

�

 







∆

φ−φ
ζ+

∆

φ−φ
η+

−+−+

k

mijkmijk

m
j

mkjimkji

m
zy

,21,21,21,,21,
 

• It is also put 

( ) ( ) ( ){ } ( )mijkmijkijktijkm

w V

t qVwdVrqrrd

m ijk

,,,

4

4,, −φΣπ≅Ω−ΩφΣΩ∫ ∫
π

�
�

�
��

 

where it is 

( )∫ ∫
π

ΩΩ
π

=

m ijkw Vijkm
mijk dVrqd

Vw
q

4

, ,
4

1 �
�

 

• We finally have 

i

mjkimjki

m
x∆

φ−φ
µ

−+ ,21,21

k

mijkmijk

m
j

mkjimkji

m
zy ∆

φ−φ
ζ+

∆

φ−φ
η+

−+−+ ,21,21,21,,21,
 

mijkmijkijkt q ,,, =φΣ+  ( ) ( ) ( ) ( )mNmKkJjIi ...,,1;...,,1;...,,1;...,,1 ====  

representing the discrete ordinate form of the transport equation 

for the multi-dimensional case 

Solution algorithm and choice of directions 

• Also in this case the solution algorithm takes into account the 

direction of motion of neutrons and then of the sign of direction 

cosines mµ , mη  and mζ  of mΩ
�
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• In particular, in anyone of the three directions, the diamond rule is 

adopted accordint ot the following rationale: 





φ−φ=φ<µ

φ−φ=φ>µ

+−

−+

mjkimijkmjkim

mjkimijkmjkim

,,21,,,21

,,21,,,21

20

20
 





φ−φ=φ<η

φ−φ=φ>η

+−

−+

mkjimijkmkjim

mkjimijkmkjim

,,21,,,,21,

,,21,,,,21,

20

20
 





φ−φ=φ<ζ

φ−φ=φ>ζ

+−

−+

mkijmijkmkijm

mkijmijkmkijm

,21,,,21,

,21,,,21,

20

20
 

• Then, substituting the appropriate form of the diamond rule in the 

relation  

i

mjkimjki

m
x∆

φ−φ
µ

−+ ,21,21

k

mijkmijk

m
j

mkjimkji

m
zy ∆

φ−φ
ζ+

∆

φ−φ
η+

−+−+ ,21,21,21,,21,
 

mijkmijkijkt q ,,, =φΣ+  ( ) ( ) ( ) ( )i I j J k K m Nm= = = =1 1 1 1,..., ; ,..., ; ,..., ; ,...,  

the equations are solved proceeding for increasing or deacreasing 

coordinates, according to the sign of the respective direction cosine 

 

• For instance, let us consider to particular cases: 

♦ 0,0,0 >ζ>η>µ mmm  

ijk,t

k

m

j

m

i

m

m,ijkm,ijk

k

m
m,kij

j

m
m,jki

i

m

m,ijk

zyx

q
zyx

Σ+
∆

ζ
+

∆

η
+

∆

µ

+φ
∆

ζ
+φ

∆

η
+φ

∆

µ

=φ

−−−

222

222
212121

 

♦ 0,0,0 <ζ>η<µ mmm  

ijk,t

k

m

j

m

i

m

m,ijkm,ijk

k

m
m,kij

j

m
m,jki

i

m

m,ijk

zyx

q
zyx

Σ+
∆

ζ
−

∆

η
+

∆

µ
−

+φ
∆

ζ
−φ

∆

η
+φ

∆

µ
−

=φ

+−+

222

222
212121

 

Selection of the directions 

• The choice of the directions can be made with a relatively large 

freedom, though it is generally required that some fundamental 

criteria are respected 

• A first criterion consists in imposing that once a given direction 

{ }mmmm ζηµ=Ω ,,
�

 has been chosen, such that it must be 

1222 =ζ+η+µ mmm  

also the directions { }mmm ζηµ− ,, , { }mmm ζη−µ ,,  and { }mmm ζ−ηµ ,,  are 

consiered admissible: 
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this allows imposing in a simple and direct way reflective conditions 

orthogonal to the there axes of the reference frame  

• Whenever such choice is made, it is possible to consider only the 

directions included in a single octant, then translating the results to 

the others 

• A particularly interesting choice is the one consisting in imposing 

that the adimissible directions are invariant to 90° rotation around 

any axis of the reference frame 

 

• These “level symmetric quadratures” are characterisedby the fact of 

being selected making use of asingle degree of freedom. In fact, it is 

assumed that the direction cosines are all chosen by a single set, 

defined as 
1...0...1 2/112/ <<<<<−<<−<− MM tttt  

• Now, let us assume that we select three cosines such that 

kmjmim ttt =ζ=η=µ  

In this case, it must be obviously 

1222 =++ kji ttt      (a) 

So, making the further choice im t=µ  and 1+=η jm t , in order to 

satisfy the normalisation relationships we require that 1−=ζ km t : 

12
1

2
1

2 =++ −+ kji ttt      (b) 

By subtracting side by side (b) to (a) we get 
2

1
222

1 −+ −=− kkjj tttt  

Since j  and k  are arbitrary, we have: 

( )CittCtt iii 12
1

22
1

2 −+=⇒+= −  

Finally, since it must be 

12
2/

2
1

2
1 =++ Mttt  

we finally get 

( )
2

312 2
1

−

−
=

M

t
C  

• Since such quadratures involve for each axis 2M  positive and 2M  

negative values for each direction cosine, they are considered “SM 

quadratures” (actually the general name is “SN”) 

• The total number of directions per each octant is ( ) 8/2+MM  and 

the overall number on the unity radius sphere is ( )2+MM  
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• For the weighting coefficients, a normalization on each octant is 

generally adopted 
( )

∑
+

=

=
8/2

1

1
MM

m

I
mw  

where I
mw = is the weighting coefficient for a general direction 

related to the first octant 

• As a consequence the scalar flux in ijkr
�

 can be obtained by the 

angular flux by the relationship 
( )

∑
+

=

φ=φ
2

1

,
8

1 MM

m

mijkmijk w  

• In each octant we also assume that the directions obtained by 

permutation of direction cosines have the same weight 

• However, even considering all these limitations, it is possible to 

envisage different choices for the weighting coefficients 

• For instance, it is possible to request that the maximum possible 

degree of Legendre polynomials in the three directions be 

integrated exactly; this leads to the so-called LQn quadratures 

 

Livello m  µm  wm  

S2 1 1 3/  1 

S4 1 0.3500212 0.3333333 

 2 0.8688903  

S6 1 0.2666355 0.1761263 

 2 0.6815076 0.1572071 

 3 0.9261808  

S8 1 0.2182179 0.1209877 

 2 0.5773503 0.0907407 

 3 0.7867958 0.0925926 

 4 0.9511897  

 

LQn parameters for SN quadratures 

• Otherwise, it can be preferred to assign a fraction of the area of the 

sphere to any direction, to be used as its weight 
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• The above considerations, related to the 3D case, can be easily 

applied also to 2D systems; in such a case an SM method will involve 

a total number of directions equal to ( ) 2/2 MM +  in the four 

quadrants 
 

 

 

 

 

S2       S4  

 

 

 

 

 

S6       S8  

Qualitiative indication of the directions for SN 

in the octant with positive direction cosines 

 

Acceleration methods for discrete ordinates 

 

General considerations 

• In the above treatment it was assumed that the emission density, q , 

was assigned 

• For purely absorption problems this corresponds to the actual 

situation, but in most cases having a practical interest the scattering 

introduces a variability of emission density as a function of flux 

• As already mentioned, the problem is solved by iterating on the 

scattering source, starting with an initial guess and adopting an 

appropriate convergence criterion 

• As already mentioned, the problem is solved by iterating on the 

scattering source, starting with an initial guess of angular flux and 

adopting an appropriate convergence criterion 
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• However, convergence may not be fast in cases of optically thick 

regions and when the scattering within a given energy group is 

considerable 

• In such cases, an acceleration procedure is necessary 

  

“Coarse mesh-rebalance” 

• This technique is based on the fact that a distribution of angular flux 

obtained after reaching convergence must satisfy the neutron balance 

• On the contrary, this is generally not true for the angular flux 

obtained at some iteration, which is based on the scattering source 

guessed at the previous iteration 

• The basic idea of the method is therefore to modify the angular flux 

distribution by multiplying it by variable factors to be determined 

in “macro-regions” (coarse meshes) just imposing the neutron 

balance 

• As we already discussed, the neutron continuity equation can be 

obtained from the integro-differential equation integrated over the 

whole solid angle: 

( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫∫
ππ πππ

ΩΩ+Ω′Ω′φΩ′⋅ΩΣΩ=ΩΩφΣ+ΩΩφ⋅Ω
44 444

,,,,, drSdrrddrrdrgrad str

�
�

�
�

��
�

�
��

�
�

�

�  

and then 

( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫∫∫
ππ πππ

ΩΩ+ΩΩ′⋅ΩΣΩ′Ω′φ=ΩΩφΣ+ΩΩφΩ
44 444

,,,,, drSdrdrdrrdrdiv st

�
�

��
�

�
�

�
��

�
�

�

 

and, again  

( ) ( ) ( ) ( ) ( ) ( )rSrrrrrJdiv st

������
�

+φΣ=φΣ+  

or 

( ) ( ) ( ) ( )rSrrrJdiv r

�����

=φΣ+  

where we have put ( ) ( ) ( )rrr str

���

Σ−Σ=Σ  

• The integration domain, already subdivided into many relatively 

small nodes for the solution of the transport equation by the SN 

method, is now subdivided into mN  larger regions (“coarse 

meshes”)  

• We than impose that the neutron balance is satisfied in every region 

mV  



NMNR-Unit-5 – Neutron Transport Theory Fundamentals and Solution Methods – Part 2 35 

( ) ( ) ( ) ( )∫∫∫ =φΣ+

mmm VV

r

V

dVrSdVrrdVrJdiv
�����

 

obtaining 

( ) ( ) ( ) ( )∫∫∑ ∫ =φΣ+Γ⋅
′ Γ ′ mmmm VV

r

m

e dVrSdVrrdurJ
�����

�

 

 

• For reasons that will be clear in a while, it is convenient to 

subdivide the current at each interface between adjoining regions 

into the “inward” and the “outward” contributions. It is therefore: 

( ) ( ) ( ) ( ) ( )∫∫∑ ∫∑ ∫ =φΣ+Γ−Γ
′ Γ

−
′ Γ

+

′′ mmmmmm VV

r

mm

dVrSdVrrdrJdrJ
�����

 

• In this equation, we now assume that the scalar flux and the 

currents are numerically obtained by integrating the angular flux 

obtained at the l -th iteration by the SN method 

• Identifying this angular flux distribution by ( )Ωφ
�
�

,
~

r
l , we assume that 

it can be multiplied by a coefficient (presently unknown) that is 

different for each region. The purpose of this action is to impose the 

fulfillment of the neuotrn balance: 

( ) ( )Ωφ=Ωφ +
�
�

�
�

,
~

,1
rfr

l
m

l   mVr ∈
�

 

( ) ( )Ωφ=Ωφ +
�
�

�
�

,
~

,
1

rfr
l

m
l   0, >⋅ΩΓ∈ ′ emm ur

�
�

�

 

( ) ( )Ωφ=Ωφ ′
+

�
�

�
�

,
~

,1
rfr

l
m

l   0, <⋅ΩΓ∈ ′ emm ur
�

�
�

 

• We can therefore put: 

 

 

 

 

 

 

 

 

 

 

Macro-regions for the “coarse-mesh rebalance” 

Vm Vm′

Γmm′
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( ) ( ) ( ) ( )rfdrfdrr
l

m
l

m
l �

�
�

�
��

φ=ΩΩφ=ΩΩφ=φ ∫∫
ππ

+ ~
,

~
,

44

1  

( ) ( ) ( ) ( )rJfdurfdurrJ
l

m

u

e
l

m

u

e
l

ee

��
��

��
��

��

�
�

�
�

−′

<⋅Ω

′

<⋅Ω

+
− =Ω⋅ΩΩφ=Ω⋅ΩΩφ= ∫∫

~
,

~
,

00

1  mmr ′Γ∈
�

 

( ) ( ) ( ) ( )rJfdurfdurrJ
l

m

u

e
l

m

u

e
l

ee

��
��

��
��

��

�
�

�
�

+

>⋅Ω>⋅Ω

+
+ =Ω⋅ΩΩφ=Ω⋅ΩΩφ= ∫∫

~
,

~
,

00

1   mmr ′Γ∈
�

 

• By substituting the above formulas in the neutron balance, we have: 

( ) ( ) ( ) ( ) ( )∫∑ ∫∫∑ ∫ =













Γ−














φΣ+Γ

′
′

Γ

−
′ Γ

+

′′ mmmmmm Vm

m
l

m

V

l
r

m

l
dVrSfdrJfdVrrdrJ
����� ~~~

 

and, putting 

( ) ( ) ( )∫∑ ∫ φΣ+Γ=
′ Γ

+

′ mmm V

l
r

m

l
mm dVrrdrJa

��� ~~
 

( )∫
′Γ

−′ Γ=

mm

drJa
l

mm

�~
  ( )∫=

mV

m dVrSb
�

 

we have 
( )mm

mm

mmmmmm Nmbfafa ...,,2,1==− ∑
≠′

′′  

representing a linear system with sparse matrix in the unknowns mf  

• The solution of this system allows therefore to obtain the new 

approximation of the angular flux to be used as a guess of the next 

iteration cycle on the scattering source 

 

Diffusion Synthetic Acceleration (DSA) 

• This technique makes use of a low-order approximation of the 

transport operator in order to improve convergence 

• For the sake of simplicity, we will restrict the treatment to the case 

of isotropic scattering and independent source; the neutron 

transport equation is 

( ) ( ) ( ) ( ) ( ) ( )
π

=Ω′Ω′φ
π

Σ
−ΩφΣ+Ωφ⋅Ω ∫

π
4

,
4

,, 0

4

rS
dr

r
rrrgrad s

tr

�
�
�

�
�
��

�
�

�

�  

• Using an operator notation, we put 

( ) ⋅Σ+⋅⋅Ω=⋅ rgradH tr

�
�

�

0  
( )

Ω′⋅
π

Σ
=⋅ ∫

π

d
r

H s

4

1
4

�

 ⋅−⋅=⋅ 10 HHH  

obtaining 

( ) ( ) ( ) ( )
π

=Ωφ−Ωφ=Ωφ
4

,,, 0
10

rS
rHrHrH

�
�
�

�
�

�
�
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• By integrating both sides of the above equation on all the directions, 

it is 

( ) ( )rSdrH
�

�
�

0

4

, =ΩΩφ∫
π

 

• We now introduce the low-order transport operator as the neutron 

diffusion operator 
( ) ( ) ⋅Σ+⋅−=⋅ rgradrDdivH rra

��
�  

• The transport operator can be thus written as the summation of the 

lower order operator plus the difference operator 

( )[ ] ( ) ( )rSdrHHH aa

�
�
�

0

4

, =ΩΩφ−+∫
π

 

• Since the diffusion operator works directly on the scalar flux, the 

following notation can be adopted 

( ) ( )rHdrH aa

�
�
�

φ=ΩΩφ∫
π4

,  

thus obtaining 

( ) ( ) ( ) ( )∫
π

ΩΩφ−−=φ
4

0 , drHHrSrH aa

�
���

 

• This suggests to use the iterative scheme 

( ) ( ) ( ) ( )∫
π

+ ΩΩφ−−=φ
4

0
1

,
~

drHHrSrH
l

a
l

a

�
���

 

or 

( ) ( )[ ] ( ) ( )∫
π

+ ΩΩφ−=φ−φ
4

0
1 ,

~~
drHrSrrH

lll
a

�
����

   (°) 

where ( )Ωφ
�
�

,
~

r
l  is the angular flux obtained by the transport operator 

making use of the scalar flux obtained at the l -th iteration and 

included in the scattering term: 

( ) ( ) ( )
π

+Ωφ=Ωφ
4

,,
~

0
10

rS
rHrH

ll

�
�
�

�
�

    (°°) 

• We can now note that  

( ) ( ) ( )Ωφ−Ωφ=Ωφ
�
�

�
�

�
�

,
~

,
~

,
~

10 rHrHrH
lll  

• Making use of (°°), the above becomes 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( )
π

+Ωφ−Ωφ=Ωφ−
π

+Ωφ=Ωφ
4

,
~

,,
~

4
,,

~
0

11
0

1

rS
rrHrH

rS
rHrH lllll

�
�
�

�
�

�
�

�
�
�

�
�

 

• Substituting this result into (°), it is found 

( ) ( )[ ] ( ) ( ) ( )[ ] ( )
∫
π

+ Ω








π
+Ωφ−Ωφ−=φ−φ

4

0
10

1

4
,

~
,

~
d

rS
rrHrSrrH

llll
a

�
�
�

�
����
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( ) ( )[ ] ( ) ( )[ ] ΩΩφ−Ωφ=φ−φ ∫
π

+
drrHrrH

llll
a

4

1
1 ,,

~~ �
�

�
���

 

• It can be noted that the above allows to obtain a new guess of the 

scalar flux operating with the diffusion operator 

( ) ( ) ⋅Σ+⋅−=⋅ rgradrDdivH rra

��
�  

( )
Ω′⋅

π

Σ
=⋅ ∫

π

d
r

H s

4

1
4

�

 

 Thus obtaining 

( ) ( )( ) ( ) ( )[ ] ( ) ( ) ( )[ ]rrrrrrgradrDdiv
ll

s
ll

rr

�������
� φ−φΣ=φ−φΣ− + ~~1  

• Therefore, once ( )r
l �φ  and ( )r

l �φ
~

 are known, this “easier” formulation 

allows to update the scalar flux for the next iteration. 
 

“Ray effects” 

• A classical problem faced by the application of the SN methods of 

limited order is the occurrence of oscillations in the computed 

scalar flux having no physical meaning 

• The amplitude of such oscillations can be reduced by increasing the 

order of the SN method, while their frequency increases 

• The reason for such behaviour of SN methods can be considered a 

direct consequence of the discretization in the angular coordinate 

• In fact, since the scalar flux is calculated as a weighted average of 

the angular flux obtained for a limited number of directions, it may 

happen that its value is perturbed by the discontinuities that the 

angular flux may show in some particular cases 

• The Figure below reports the case of a neutron source (the central 

region) surrounded by a region assumed to be characterised by a 

scattering macroscopic cross section sufficiently smaller than the 

total one ( Σ Σs t<< ) 
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• By imposing a boundary condition of free surface on the external 

boundary, the problem should be typically one-dimensional, and we 

should expect that on circles (as the dashed one) the scalar flux 

should be constant 

• It must be recognised that the above case, chose just for purpose of 

proposing an example, is very peculiar, because: 

- a 1D case should be treated by an appropriate technique taking 

advantage of one-dimensionality; 

- Cartesian coordinates would anyway approximate the circular 

regions with an irregular boundary. 

• However, the presented case has the merit to show even more 

clearly than other examples reported below in the exercises the 

consequence of a ray effect 

• In fact, assuming to calculate the flux along the dashed circle in the 

Figure with the S2 method and considering that, owing to the 

relatively large value of the absorption cross section, the flux is 

mostly made by “first flight” neutrons coming from the source, the 

resulting scalar flux would result oscillatory, being larger in the 

location B than in A 

• This is because the “first flight” neutrons that give a substantial 

contribution to the scalar flux can hardly reach the location A from 

 

 

 

 

 

 

 

 

 

 

   S2              S4  

Typical situation of the occurrence of the “ray effects” 

A  

B  

A  
B  
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the source through the few directions that do not intercept it; 

viceversa, in the case of point B there is a direction that itercepts the 

point starting from the source, giving a larger contribution to the 

angular flux 

• The mitigation of the problem can be obtained by using more many 

directions, e.g. by an S4 scheme; as it can be argued from the figure 

the expected oscillations in the scalar flux will be smaller than with 

the S2 method, though their number will increase along the 

circumference 

• Another possible solution is to replace the angular discretisation (a 

sort of angular “collocation”) with angular averages over direction 

intervals. These methods improve the effect at low orders, though 

they do not completely solve the problem 
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GAUSSIAN QUADRATURES 

 

(See Ghelardoni Marzulli “Argomenti di Analisi Numerica” ETS 1980 Vol. II, p. 115 e pp. 132 

e sgg.) 

Theorem 

Considered M distinct values of the abscissa Mxxx ,...,, 21 , in the set of 

quadratures having the form 

( ) ( )∫ ∑
=

≈
b

a

M

i

ii xfwdxxf
1

 

there is only one quadrature having exactly the accuracy at least equal 

to M-1 (i.e, that provides exact integrations of all the polynomials in 

[ ]ba,  having degree up to M-1) 

 

• In fact, we need solving the system 

( )

( )MMM
i

M

i

i

i

M

i

i

M

i

i

ab
M

xw

abxw

abw

−=

−=

−=

−

=

=

=

∑

∑

∑

1
......

2

1

1

1

22

1

1

 

 whose (“Vandermonde”) determinant is certainly non-zero 

 

• Whenever the Mxxx ,...,, 21  are not assigned, it is possible to 

determine the M coefficients iw  and the ix  such that it is possible to 

integrate exactly polynomials up to the degree 2M-1. We have in 

fact the equations 

( )

( )MMM
i

M

i

i

i

M

i

i

M

i

i

ab
M

xw

abxw

abw

2212

1

22

1

1

2

1
......

2

1

−=

−=

−=

−

=

=

=

∑

∑

∑
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Theorem 

If the points Mxxx ,...,, 21  are the zeroes of the M degree orthogonal 

polynomials over [ ]ba,  it is possible to construct a quadrature formula 

( ) ( )∫ ∑
=

≈
b

a

M

i

ii xfwdxxf
1

 

having accuracy of order 2M-1 whose coefficients are the numbers 

( )∫ −=
b

a iMi dxxlw ,1    ( )Mi ,...,1=    

with ( )xl iM ,1−  l’i-th interpolating polynomial having degree M-1 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )Miiiiii

Mii
iM

xxxxxxxx

xxxxxxxx
xl

−⋅⋅⋅−−⋅⋅⋅−

−⋅⋅⋅−−⋅⋅⋅−
=

+−

+−
−

111

111
,1  

• Such formulations take the name of Gaussian quadratures 

 

• When the interval of definition is [ ]1,1− , the orthogonal polynomials 

are Legendre polynomials and the above formulations take the 

name of Gauss-Legendre quadratures 
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EXERCISES WITH AN IN-HOUSE CODE 

 

Solution of the Integro-differential Equation of Neutron Transport 

in Cartesian 3D Geometry with the Discrete Ordinate Method 

 

 

1. Description of the Method 

 

The FORTRAN programme is based on the relations already described during 

lectures for the SN methods. 

 

In particular: 

• the transport equation: 

( )[ ] ( ) ( ) ( ) 0=Ω−ΩφΣ+ΩφΩ
�
�

�
��

�
�

�

,rq,rr,rdiv t  

is spatially discretised as 

i

m,jkim,jki

m
x∆

φ−φ
µ

−+ 2121

k

m,ijkm,ijk

m

j

m,kj,im,kj,i

m
zy ∆

φ−φ
ζ+

∆

φ−φ
η+

−+−+ 21212121

 

m,ijkm,ijkijk,t q=φΣ+  ( ) ( ) ( ) ( )mN...,,m;K...,,k;J...,,j;I...,,i 1111 ====  

 
• the “diamond rule” is applied coherently with the sign of direction cosines: 





φ−φ=φ<µ

φ−φ=φ>µ

+−

−+

mjkimijkmjkim

mjkimijkmjkim

,,21,,,21

,,21,,,21

20

20
 





φ−φ=φ<η

φ−φ=φ>η

+−

−+

mkjimijkmkjim

mkjimijkmkjim

,,21,,,,21,

,,21,,,,21,

20

20
 





φ−φ=φ<ζ

φ−φ=φ>ζ

+−

−+

mkijmijkmkijm

mkijmijkmkijm

,21,,,21,

,21,,,21,

20

20
 

 obtaining formulations having the form: 
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♦ 000 >ζ>η>µ mmm ,,  

ijk,t

k

m

j

m

i

m

m,ijkm,ijk

k

m
m,kij

j

m
m,jki

i

m

m,ijk

zyx

q
zyx

Σ+
∆

ζ
+

∆

η
+

∆

µ

+φ
∆

ζ
+φ

∆

η
+φ

∆

µ

=φ

−−−

222

222
212121

 

♦ 000 <ζ>η<µ mmm ,,  

ijk,t

k

m

j

m

i

m

m,ijkm,ijk

k

m
m,kij

j

m
m,jki

i

m

m,ijk

zyx

q
zyx

Σ+
∆

ζ
−

∆

η
+

∆

µ
−

+φ
∆

ζ
−φ

∆

η
+φ

∆

µ
−

=φ

+−+

222

222
212121

 

• The “step” rule for fix-up” is used when 

021 <φ + m,jk,i   with  000 >ζ>η>µ mmm ,,   ; 

in place of the diamond rule, it is assumed 

m,ijkm,jk,i φ=φ + 21        

and the average flux is obtained as 

m,jk,i

ijk,t

k

m

j

m

i

m

m,ijkm,ijk

k

m
m,kij

j

m
m,jki

i

m

m,ijk

zyx

q
zyx

21

212121

22

22

+

−−−

φ=

Σ+
∆

ζ
+

∆

η
+

∆

µ

+φ
∆

ζ
+φ

∆

η
+φ

∆

µ

=φ  

• LQn quadratures are used for the admisssible directions and their weights (up to 

S8) 

 

(from E.E. Lewis  and W.F. Miller, Jr. "Computational Methods of Neutron Transport", John Wiley 

and Sons, 1984) 
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In particular: 

� the directions are generated in the octant with  ( ) 82+NN  positive direction 

cosines, obtaining those in the othe octants by rotation around the Cartesian 

axes; 

� given from the previous table the value of 1µ , the other values are obtained by: 

( )Cii 12

1

2 −+µ=µ     
( )

2

312 2

1

−

µ−
=

N
C  

� the weighting factors are obtained by the previous tables, where the last table 

specifies the weighting factors for directions labeled by a given value of n in 

the first table 

� in the aim to minimize memory use, the value of the angular flux for any 

direction is not stored in memory, assigning its contribution to the scalar fux in 

an incremental way for each direction 

 

• the scalar flux is calculated as: 
( )

∑
+

=

φ=φ
2

18

1 NN

m

m,ijkmijk w  

where the weighting coefficients are normalized over an octant 

 

• Taking into account this formulation, the emission density must be properly 

evaluated; in fact, multiplying by 8mkji wzyx ∆∆∆  boths sides of the relationship 

k

m,ijkm,ijk

m

j

m,kj,im,kj,i

m

i

m,jkim,jki

m
zyx ∆

φ−φ
ζ+

∆

φ−φ
η+

∆

φ−φ
µ

−+−+−+ 212121212121

 

m,ijkm,ijkijk,t q=φΣ+   

and taking the summation over m, it is 

( ) ( )

kj

NN

m

m,jkimm

NN

m

m,jkimm zyww ∆∆








φµ−φµ ∑∑
+

=
−

+

=
+

2

1

21

2

1

21
8

1
 

( ) ( )

ki

NN

m

m,kijmm

NN

m

m,kijmm zxww ∆∆








φη−φη+ ∑∑
+

=
−

+

=
+

2

1

21

2

1

21
8

1
 

( ) ( )

ji

NN

m

m,ijkmm

NN

m

m,ijkmm yxww ∆∆








φζ−φζ+ ∑∑
+

=
−

+

=
+

2

1

21

2

1

21
8

1
 

( ) ( )

kjim,ijk

NN

m

mkji

NN

m

m,ijkmijk,t zyxqwzyxw ∆∆∆=∆∆∆φΣ+ ∑∑
+

=

+

=

2

1

2

1 8

1

8

1
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and then 

{ } +∆∆⋅−⋅ −+ kjjkijki zyiJiJ
����

2121 { } kikijkij zxjJjJ ∆∆⋅−⋅ −+

����

2121  

{ } jiijkijk yxkJkJ ∆∆⋅−⋅+ −+

����

2121 kjiijkkjiijkijk,t zyxqzyx ∆∆∆=∆∆∆φΣ+   

where i
�

, j
�

 e k
�

 represent the unit vectors parallel to the Cartesian axes and it is 

assumed 

( )

∑
+

=
±± φµ=⋅

2

1

2121
8

1 NN

m

m,jkimmjki wiJ
��

 

( )

∑
+

=
±± φη=⋅

2

1

2121
8

1 NN

m

m,kijmmkij wjJ
��

 

( )

∑
+

=
±± φζ=⋅

2

1

2121
8

1 NN

m

m,ijkmmijk wkJ
��

 

( )

∑
+

=

=
2

18

1 NN

m

m,ijkmijk qwq  

The obtained balance equation obviously represents the neutron balance on the 

volume. 

 For the emission density, it is noted that in the case of isotropic scattering and 

independent source it is: 

( )

ijk

NN

m

m,ijkmijkijkm,ijk qqwqqq ==⇒= ∑
+

=

2

18

1
 

where use is made of the relationship 

( )

1
8

1 2

1

=∑
+

=

NN

m

mw  

 In summary, it is necessary to remember that in the definition of the emission 

density the weighting factors are normalised to one instead of π4 . 

 For isotropic sources, it is: 

 

{ }
( ) ( )

ijk

NN

m

m,ijkms

NN

m

m,ijkm,ijksmijk swswq +φΣ=+φΣ= ∑∑
+

=

+

=

2

1

2

1 8

1

8

1
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and then 

ijkijksm,ijk sq +φΣ=  

 Finally, since the emission density contains the scattring source, it is possible 

to iterate on the flux starting from an estimate of the emission density based on the 

independent source only: 

ijkm,ijk sq =0
 

 

2. Structure of the program input file 

 

An example of input file is reported hereafter. 

 

Number of x layers     Number of y layers    Number of z layers         Order of the SN Method 

              1                      1                     1                            6 

       x Layer Thickness      Number of nodes in each x layer (repeat for each layer) 

                       4.                        40 

       y Layer Thickness      Number of nodes in each y layer (repeat for each layer) 

                       4.                        40 

       z Layer Thickness      Number of nodes in each z layer (repeat for each layer) 

                      10.                       40 

   Sigma Tot. in general    Sigma Scatt. in general     Source in general 

              0.750000                 0.500000                    0. 

       Number of regions with properties different from the general ones 

                                                                4 

       Characteristics of the regions: 

        x1      x2      y1     y2      z1     z2   SigmaTot.    SigmaScatt.    Source 

       0.5     1.5     1.5    2.5     2.     8.    0.750000       0.500000           1. 

       1.5     2.5     0.5    1.5     2.     8.    0.750000       0.500000           1. 

       2.5     3.5     1.5    2.5     2.     8.    0.750000       0.500000           1. 

       1.5     2.5     2.5    3.5     2.     8.    0.750000       0.500000           1. 

   Boundary conditions: value of the flux on the six lateral surfaces 

    West Face     East Face     South Face     North Face     Bottom Face    Top Face 

            0.            0.             0.             0.              0.           0. 

   Max. Error on Flux 

              1.d-05 

 

As it can be noted, the programme allows defining different discretization steps in 

different layers along the three axes. 

 General nuclear properties are assigned for the material in the integration 

domain, though in parallelepipedal regions it is possible to specify different values 
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for the cross sections and the source. In this way, it is possible to specify problems 

characterized by different sources and property distributions. 

 It is possible to assign over the six lateral surfaces boundary conditions in 

terms of inward angular fluxes (isotropic for the inward directions). Imposing that 

these fluxes are zero, an isolated body is considered. By convention, assigning 

negative fluxes, pure reflective conditions are assumed by the code. 
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3. First Applications 

 

Isolated Cube Made of Absorbing Material 

with Internal Source in a Cubical Region 

 

 

 

 

 

 

 

 

• Input deck 

 
Number of x layers     Number of y layers    Number of z layers         Order of the SN Method 

              1                      1                     1                            2 

       x Layer Thickness      Number of nodes in each x layer (repeat for each layer) 

                      4.                        40 

       y Layer Thickness      Number of nodes in each y layer (repeat for each layer) 

                      4.                        40 

       z Layer Thickness      Number of nodes in each z layer (repeat for each layer) 

                      4.                        40 

   Sigma Tot. in general    Sigma Scatt. in general     Source in general 

                  0.750000                 0.500000                    0. 

       Number of regions with properties different from the general ones 

                                                                1 

       Characteristics of the regions: 

       x1      x2      y1     y2      z1     z2   SigmaTot.    SigmaScatt.    Source 

       1.      3.      1.     3.      1.     3.   0.750000       0.500000           1. 

   Boundary conditions: value of the flux on the six lateral surfaces 

    West Face     East Face     South Face     North Face     Bottom Face    Top Face 

            0.            0.             0.             0.              0.           0. 

   Max. Error on Flux 

             1.d-05 

 

 

• Check on the distribution of the discrete ordinates for the different orders of the 

method 
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S2 approximation 
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S4 approximation 
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S6 approximation 
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 S8 approximation 
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• It can be noted that: 

� Increasing the order of the approximation, the unity radius sphere is gradually 

populated by directions; 

� the directions are the same for ±90° rotations with respect to any frame axis. 
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Results: 

 

Cubic Source Problem 

Plane z = Lz / 2

Plane z =0

Grid: 40x40x40 with S2 Approximation

 

 

The explanation of the behaviour observed on the lateral surfaces becomes evident 

considering that the adimissible directions are in a too small number to provide a 

sufficiently detailed representation of the scalar flux. 

For instance, in the position illustrated in the following figure the 8 directions 

do not intersect the source, resulting in a minimum of the scalar flux. 

 

 

 

 

 

 

 

 This occurs with perfect symmetry for any lateral surface. 
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Cubic Source Problem 

Grid: 40x40x40 with S4 Approximation

Plane z = Lz / 2

Plane z =0

 

 

 

 

Cubic Source Problem 

Grid: 40x40x40 with S6 Approximation

Plane z = Lz / 2

Plane z =0
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Cubic Source Problem 

Grid: 40x40x40 with S8 Approximation

Plane z = Lz / 2

Plane z =0

 

 

 

 

 

 

� The “ray effect” is particularly clear in the case of the S2 approximation, that 

provides a totally unrealistic trend of the scalar flux on the plane z = 0, to be 

considered in view of the only eight admissible directaion (one per each octant). 

 

� By increasing the number of directions, the problem is mitigated, though 

oscillatory trends are anyway observed, to be put in relation with ray effects. 
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Square Cell with Cylindrical Rod 

 

 

 

 

 

 

 

 

 

 

 

The calculation is performed with the S8 approximation, making use of the following 

input file, where the absolute of the negative value of y2 indicates radius of the rode 

centered in (x1,y1). 

 

Number of x layers     Number of y layers    Number of z layers         Order of the SN Method 

              1                      1                     1                            8 

       x Layer Thickness      Number of nodes in each x layer (repeat for each layer) 

                      2.                        40 

       y Layer Thickness      Number of nodes in each y layer (repeat for each layer) 

                      2.                        40 

       z Layer Thickness      Number of nodes in each z layer (repeat for each layer) 

                      4.                        40 

   Sigma Tot. in general    Sigma Scatt. in general     Source in general 

                   0.50000                 0.500000                    1. 

       Number of regions with properties different from the general ones 

                                                                1 

       Characteristics of the regions: 

         x1      x2      y1     y2      z1     z2   SigmaTot.    SigmaScatt.    Source 

         1.    -0.5      1.     0.      0.     4.   0.750000       0.500000           0. 

       Boundary conditions: value of the flux on the six lateral surfaces 

        West Face     East Face     South Face     North Face     Bottom Face    Top Face 

               -1.           -1.            -1.            -1.             -1.          -1. 

       Max. Error on Flux 

       1.d-05 

 

Note that the values of the cross sections are purely parametric. 
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The results show a classical spatial trend of the thermal flux (the source is located in 

the moderator). A considerable depression of the flux is noted in the rod in the plane 

z = Lz/2. Flux oscillations due to the "ray effects" are again observed. 

 

It is also interesting to note that that along an axial plane the flus is absolutely 

independent from the z coordinate, testifying for the effectiveness of the choice of 

reflective boundary conditions on the top and bottom planes in transforming the 3D 

problem into a 2D one. 
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Plane z = 2 cm 

 

Plane y = 0 
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Benchmark Problem Iron-Water 

(v. H. Khalil, Nucl. Sci. Eng., 90, pp.263-280, 1985) 

 

 

 

 

 

The problem is simulated in 3D version with reflective conditions on the faces 

orthogonal to the z axis. The input file is the following 

 

Number of x layers     Number of y layers    Number of z layers         Order of the SN Method 

              1                      1                     1                            8 

       x Layer Thickness      Number of nodes in each x layer (repeat for each layer) 

                     30.                        30 

       y Layer Thickness      Number of nodes in each y layer (repeat for each layer) 

                     30.                        30 

       z Layer Thickness      Number of nodes in each z layer (repeat for each layer) 

                     10.                        10 

   Sigma Tot. in general    Sigma Scatt. in general     Source in general 

                      3.33                      3.31                    0. 

       Number of regions with properties different from the general ones 

                                                                3 

       Characteristics of the regions: 
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       x1      x2      y1     y2      z1     z2   SigmaTot.    SigmaScatt.    Source 

       0.     12.      0.    12.      0.    10.        3.33          3.31           1. 

       15.    21.      0.    21.      0.    10.        1.33          1.105          0. 

       0.     21.     15.    21.      0.    10.        1.33          1.105          0. 

       Boundary conditions: value of the flux on the six lateral surfaces 

        West Face     East Face     South Face     North Face     Bottom Face    Top Face 

              -40.            0.            -40.            0.              -40.        -40. 

       Max. Error on Flux 

       1.d-05 

 

It can be noted that the average value of the flux in region 1 is 4.09e01, in in 

agreement with tabulated data. 

 

 

 

4. Proposed activities 

 

• Analyse the computer program trying to indentify the following phases of the 

calculation: 

� assignement of directions and of the related weights; 

� solution of the transport equation in agreement with the sign of direction 

cosines; 

� updating the emission density. 
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c---------------------------------------------------------------------c 

c                                                                     c 

c    Program for the solution of the integrodifferential equation     c 

c    for transport in 3D geometry                                     c 

c                                                                     c 

c    This programme has been set up for teaching purposes             c 

c    and was not subjected to a sifficiently thorough validation      c 

c    to assure the quantitative correctness of the results            c 

c                                                                     c 

c    W. Ambrosini, DIMNP, Dicember 2000                               c 

c                                                                     c  

c---------------------------------------------------------------------c 

      program tras3d 

      implicit double precision (a-h,o-z) 

c 

      include 'tras3dc.for' 

c 

      open (unit=5,file='schermo.dat') 

      open (unit=6,file='tras3d.out') 

      open (unit=7,file='tras3d.ord') 

 open (unit=8,file='trasxy.txt') 

 open (unit=9,file='trasxz.txt') 

 open (unit=10,file='trasyz.txt') 

 open (unit=11,file='trasxy1.txt') 

 open (unit=12,file='trasxz1.txt') 

 open (unit=13,file='trasyz1.txt') 

 open (unit=14,file='trasxy2.txt') 

 open (unit=15,file='trasxz2.txt') 

 open (unit=16,file='trasyz2.txt') 

c 

c   Pi is calculaetd 

c 

      pi = 4.d00 * datan (1.d00) 

c 

c   Reading the number of layers along the thtee axes and of the order of the method 

c 

      read (5,*) 

 read (5,*) nlax,nlay,nlaz,nordin 

c 

c   Reading of the thickness of the layer and assignment of the node coordinates (x) 

c 

      read (5,*) 

c 

      x(1) = 0.d00 

 i = 1 

c 

   do ilax = 1,nlax 

   read (5,*) deltx,nlx 

        dx = deltx / dfloat (nlx) 

c 

           do ix = 1,nlx 

           i = i + 1 

      x(i) = x(i-1) + dx 

      xm(i-1) = x(i-1) + 0.5d00 * dx 

           enddo 

c 

        enddo 

c 

      nx = i - 1 

c 

c   Reading of the thickness of the layer and assignment of the node coordinates (y) 

c 

      read (5,*) 

c 

      y(1) = 0.d00 

 j = 1 

c 

   do ilay = 1,nlay 

   read (5,*) delty,nly 

        dy = delty / dfloat (nly) 

c 

           do iy = 1,nly 

           j = j + 1 

      y(j) = y(j-1) + dy 

      ym(j-1) = y(j-1) + 0.5d00 * dy 

           enddo 

c 

        enddo 

c 

      ny = j - 1 

c 

c   Reading of the thickness of the layer and assignment of the node coordinates (z) 

c 

      read (5,*) 

c 

      z(1) = 0.d00 

 k = 1 

c 

   do ilaz = 1,nlaz 

   read (5,*) deltz,nlz 

        dz = deltz / dfloat (nlz) 
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c 

           do iz = 1,nlz 

           k = k + 1 

      z(k) = z(k-1) + dz 

      zm(k-1) = z(k-1) + 0.5d00 * dz 

           enddo 

c 

        enddo 

c 

      nz = k - 1 

c       

c   Reading of cross sections and of the source for general nodes 

c 

      read (5,*) 

 read (5,*) sigmat,sigmas,sourt 

c 

        do i = 1,nx 

    do j = 1,ny 

      do k = 1,nz 

      sigt(i,j,k) = sigmat 

      sigs(i,j,k) = sigmas 

      sour(i,j,k) = sourt 

     enddo 

    enddo 

   enddo 

c 

c   Reading of the number and of the position of the regions having 

c   properties different from the general ones 

c 

      read (5,*) 

 read (5,*) nreg 

c 

      read (5,*) 

      read (5,*) 

c 

    do ir = 1,nreg 

    read (5,*) x1,x2,y1,y2,z1,z2,sigmat,sigmas,sval        

c 

           if(x2.gt.0.d00) then 

            do i = 1,nx 

     do j = 1,ny 

      do k = 1,nz 

      if( (xm(i).ge.x1).and.(xm(i).le.x2) 

     &          .and.(ym(j).ge.y1).and.(ym(j).le.y2) 

     &             .and.(zm(k).ge.z1).and.(zm(k).le.z2) ) then 

          sour(i,j,k) = sval 

            sigt(i,j,k) = sigmat 

          sigs(i,j,k) = sigmas 

          endif 

              enddo 

        enddo 

       enddo 

c 

           else 

           radius = dabs ( x2 ) 

c 

            do i = 1,nx 

         distx = xm(i) - x1 

c 

     do j = 1,ny 

        disty = ym(j) - y1 

        rad = dsqrt ( distx * distx + disty * disty ) 

c 

      do k = 1,nz 

      if( (rad.le.radius) 

     &             .and.(zm(k).ge.z1).and.(zm(k).le.z2) ) then 

          sour(i,j,k) = sval 

            sigt(i,j,k) = sigmat 

          sigs(i,j,k) = sigmas 

          endif 

              enddo 

        enddo 

       enddo 

c 

      endif 

c 

    enddo 

c 

c   Reading of the inward fluxes at the six lateral surfaces 

c 

      read (5,*) 

      read (5,*) 

 read (5,*) phiawf,phiaef,phiasf,phianf,phiabf,phiatf 

c 

c   Definition of the maximum erro between two subsequent iterations 

c 

      read (5,*) 

 read (5,*) epsphi 

c 

c   Assignmenet of the discrete ordinates  

c 
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      call diradm 

c 

c  Assignement of the initial value of the source and of the fluxes at previous iteration 

c 

        do i = 1,nx 

    do j = 1,ny 

      do k = 1,nz 

      q(i,j,k) = sour(i,j,k) 

c 

      oldphi(i,j,k) = 0.d00 

c 

     enddo 

    enddo 

   enddo 

c 

        do im = 1,nm 

c 

         do j = 1,ny 

          do k = 1,nz 

          phiaem(j,k,im) = dabs (phiaef) 

          phiawm(j,k,im) = dabs (phiawf) 

     enddo 

    enddo 

c 

         do i = 1,nx 

          do k = 1,nz 

          phiasm(i,k,im) = dabs (phiasf) 

          phianm(i,k,im) = dabs (phianf) 

     enddo 

    enddo 

c 

         do i = 1,nx 

          do j = 1,ny 

          phiabm(i,j,im) = dabs (phiabf) 

          phiatm(i,j,im) = dabs (phiatf) 

     enddo 

    enddo 

c 

   enddo 

c 

c  Loop for iteration on te scattering source 

c 

        do iscat = 1,10000000 

c 

        call trasp 

c 

        call sscat 

c 

c  Cechk on convergence on flux 

c 

        dphimx = 0.d00 

c    

   imax = 1 

   jmax = 1 

   kmax = 1  

c 

     do i = 1,nx 

     do j = 1,ny 

       do k = 1,nz 

c 

           absdif = dabs ( phi(i,j,k) - oldphi(i,j,k) ) 

c 

   if(dphimx.lt.absdif) then 

   dphimx = absdif 

      imax = i 

      jmax = j 

   kmax = k  

      endif 

c 

      enddo 

     enddo 

    enddo 

c 

        write(*,100) iscat,dphimx 

   write(*,*) imax,jmax,kmax 

   write(*,*) phi(imax,jmax,kmax),oldphi(imax,jmax,kmax) 

        write(6,100) iscat,dphimx    

c 

c   Criterion for stopping the iterations 

c 

        if(dphimx.lt.epsphi) goto 10 

c 

c   Assigning the flux at the old iterations 

c 

        do i = 1,nx 

    do j = 1,ny 

      do k = 1,nz 

c 

      oldphi(i,j,k) = phi(i,j,k) 

c 

     enddo 
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    enddo 

   enddo 

c 

        enddo 

c 

   10 continue 

c 

        nxh = nx / 2 

        nyh = ny / 2 

        nzh = nz / 2 

c 

c   Mapa for the planes z = zmax / 2 and z = 0 

c 

        do i = 1,nx 

    do j = 1,ny 

c 

          write(8,200) xm(i),ym(j),phi(i,j,nzh) 

          write(11,200) xm(i),ym(j),phi(i,j,1) 

          write(14,200) xm(i),ym(j),phi(i,j,nz) 

c 

     enddo 

    enddo 

c 

c   Maps for the plane y = ymax / 2 and y = 0 

c 

        do i = 1,nx 

    do k = 1,nz 

c 

          write(9,200) xm(i),zm(k),phi(i,nyh,k) 

          write(12,200) xm(i),zm(k),phi(i,1,k) 

          write(15,200) xm(i),zm(k),phi(i,ny,k) 

c 

     enddo 

    enddo 

c 

c   Maps for the plane x = xmax / 2 and x = 0 

c 

        do j = 1,ny 

    do k = 1,nz 

c 

          write(10,200) ym(j),zm(k),phi(nxh,j,k) 

          write(13,200) ym(j),zm(k),phi(1,j,k) 

          write(16,200) ym(j),zm(k),phi(nx,j,k) 

c 

     enddo 

    enddo 

c 

      stop 

  100 format(/,1x,' Iterazione sulla Sorgente di Scattering N. ',i6, 

     &          ' Errphi = ',e14.7,/) 

  200 format(3(1x,e14.7)) 

 end 

c----------------------------------------------------------------------c 

c                                                                      c 

c    Subroutine generating admissible directins in an octant           c 

c                                                                      c 

c----------------------------------------------------------------------c 

      subroutine diradm 

      implicit double precision (a-h,o-z) 

c 

      include 'tras3dc.for' 

c 

c 

c   Assignement of the discrete ordinetes and of their weights 

c 

      nm = nordin * ( nordin + 2 ) 

      noct = nm / 8 

c 

c   Parameters for the quadrature LQ2 

c 

       if(nordin.eq.2) then 

c 

         rsqr3 = 1.d00 / dsqrt(3.d00) 

c 

         ami(1) = rsqr3    

         eta(1) = rsqr3 

         zeta(1) = rsqr3 

c 

         w(1) = 1.d00        

c 

         call rotoct (1) 

c 

c   Parameters for the quadrature LQ4 

c 

       elseif(nordin.eq.4) then 

c 

         ami1 = 0.3500212d00 

    ami2 = dsqrt ( 1.d00 - 2.d00 * ami1 * ami1 ) 

c 

         weight = 1.d00 / 3.d00 

c 
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         ami(1) = ami1 

         eta(1) = ami1 

         zeta(1) = ami2 

c 

         w(1) = weight 

c 

         call rotoct (1) 

c 

c 

         ami(2) = ami1 

         eta(2) = ami2 

         zeta(2) = ami1 

c 

         w(2) = weight 

c 

         call rotoct (2) 

c 

c 

         ami(3) = ami2 

         eta(3) = ami1 

         zeta(3) = ami1 

c 

         w(3) = weight 

c 

         call rotoct (3) 

c 

c   Parameters for the quadrature LQ6 

c 

       elseif(nordin.eq.6) then 

c 

c 

         ami1 = 0.2666355d00 

c 

         cost = 2.d00 * ( 1.d00 - 3.d00 * ami1 * ami1 )  

     &                                  /  dfloat ( nordin - 2 ) 

    ami2 = dsqrt ( ami1 * ami1 + cost ) 

c 

    ami3 = dsqrt ( ami1 * ami1 + 2.d00 * cost ) 

c 

         weigh1 = 0.1761263d00 

    weigh2 = ( 1.d00 - 3.d00 * weigh1 ) / 3.d00 

c 

c 

         ami(1) = ami1 

         eta(1) = ami1 

         zeta(1) = ami3 

c 

         w(1) = weigh1 

c 

         call rotoct (1) 

c 

c 

         ami(2) = ami1 

         eta(2) = ami3 

         zeta(2) = ami1 

c 

         w(2) = weigh1 

c 

         call rotoct (2) 

c 

c 

         ami(3) = ami3 

         eta(3) = ami1 

         zeta(3) = ami1 

c 

         w(3) = weigh1 

c 

         call rotoct (3) 

c 

c 

         ami(4) = ami2 

         eta(4) = ami2 

         zeta(4) = ami1 

c 

         w(4) = weigh2 

c 

         call rotoct (4) 

c 

c 

         ami(5) = ami2 

         eta(5) = ami1 

         zeta(5) = ami2 

c 

         w(5) = weigh2 

c 

         call rotoct (5) 

c 

c 

         ami(6) = ami1 

         eta(6) = ami2 

         zeta(6) = ami2 
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c 

         w(6) = weigh2 

c 

         call rotoct (6) 

c 

c   Parameters for the quadrature LQ8 

c 

       elseif(nordin.eq.8) then 

c 

c 

         ami1 = 0.2182179d00 

c 

         cost = 2.d00 * ( 1.d00 - 3.d00 * ami1 * ami1 )  

     &                                  /  dfloat ( nordin - 2 ) 

    ami2 = dsqrt ( ami1 * ami1 + cost ) 

c 

    ami3 = dsqrt ( ami1 * ami1 + 2.d00 * cost ) 

c 

    ami4 = dsqrt ( ami1 * ami1 + 3.d00 * cost ) 

c 

         weigh1 = 0.1209877d00 

    weigh2 = 0.0907407d00 

    weigh3 = ( 1.d00 - 3.d00 * weigh1 - 6.d00 * weigh2 )  

c 

c 

         ami(1) = ami1 

         eta(1) = ami1 

         zeta(1) = ami4 

c 

         w(1) = weigh1 

c 

         call rotoct (1) 

c 

c 

         ami(2) = ami1 

         eta(2) = ami4 

         zeta(2) = ami1 

c 

         w(2) = weigh1 

c 

         call rotoct (2) 

c 

c 

         ami(3) = ami4 

         eta(3) = ami1 

         zeta(3) = ami1 

c 

         w(3) = weigh1 

c 

         call rotoct (3) 

c 

c 

         ami(4) = ami1 

         eta(4) = ami2 

         zeta(4) = ami3 

c 

         w(4) = weigh2 

c 

         call rotoct (4) 

c 

c 

         ami(5) = ami2 

         eta(5) = ami1 

         zeta(5) = ami3 

c 

         w(5) = weigh2 

c 

         call rotoct (5) 

c 

c 

         ami(6) = ami1 

         eta(6) = ami3 

         zeta(6) = ami2 

c 

         w(6) = weigh2 

c 

         call rotoct (6) 

c 

c 

         ami(7) = ami2 

         eta(7) = ami3 

         zeta(7) = ami1 

c 

         w(7) = weigh2 

c 

         call rotoct (7) 

c 

c 

         ami(8) = ami3 

         eta(8) = ami1 

         zeta(8) = ami2 
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c 

         w(8) = weigh2 

c 

         call rotoct (8) 

c 

c 

         ami(9) = ami3 

         eta(9) = ami2 

         zeta(9) = ami1 

c 

         w(9) = weigh2 

c 

         call rotoct (9) 

c 

c 

         ami(10) = ami2 

         eta(10) = ami2 

         zeta(10) = ami2 

c 

         w(10) = weigh3 

c 

         call rotoct (10) 

c 

  endif 

c 

      do im = 1,nm 

c 

c   Assignement of the corresponding diretions by rotation around the coordinate axes  

c 

         do imr = 1,nm 

           if ( (ami(imr).eq.-ami(im)).and.(eta(imr).eq.eta(im)) 

     &            .and.(zeta(imr).eq.zeta(im)) ) irx(im) = imr  

           if ( (ami(imr).eq.ami(im)).and.(eta(imr).eq.-eta(im)) 

     &            .and.(zeta(imr).eq.zeta(im)) ) iry(im) = imr  

           if ( (ami(imr).eq.ami(im)).and.(eta(imr).eq.eta(im)) 

     &            .and.(zeta(imr).eq.-zeta(im)) ) irz(im) = imr  

 

    enddo 

c 

c   Check on the normalisation of direction cosines 

c 

      check = ami(im)*ami(im) + eta(im)*eta(im) + zeta(im)*zeta(im) 

c 

      write(7,100) im,ami(im),eta(im),zeta(im),w(im),check 

c 

      enddo 

c 

      return 

  100 format(1x,i5,5(1x,e14.7)) 

      end 

c----------------------------------------------------------------------c 

c                                                                      c 

c    Subroutine to generate direction in the octants with   c 

c    negative direction cosine                                          c 

c                                                                      c 

c----------------------------------------------------------------------c 

      subroutine rotoct (i) 

      implicit double precision (a-h,o-z) 

c 

      include 'tras3dc.for' 

c 

      im = i + noct         

c 

c   ami < 0 , eta > 0 , zeta > 0 

c 

      w(im) = w(i) 

c 

      ami(im) = - eta(i) 

 eta(im) = ami(i) 

 zeta(im) = zeta(i) 

c 

c   ami < 0 , eta < 0 , zeta > 0 

c 

      im = i + noct * 2        

c 

      w(im) = w(i) 

c 

      ami(im) = - ami(i) 

 eta(im) = - eta(i) 

 zeta(im) = zeta(i) 

c 

c   ami > 0 , eta < 0 , zeta > 0 

c 

      im = i + noct * 3        

c 

      w(im) = w(i) 

c 

      ami(im) = eta(i) 

 eta(im) = - ami(i) 

 zeta(im) = zeta(i) 

c 



NMNR-Unit-5 – Neutron Transport Theory Fundamentals and Solution Methods – Part 2 29 

c   ami > 0 , eta > 0 , zeta < 0 

c 

      im = i + noct * 4        

c 

      w(im) = w(i) 

c 

      ami(im) = ami(i) 

 eta(im) = eta(i) 

 zeta(im) = - zeta(i) 

c 

c   ami < 0 , eta > 0 , zeta < 0 

c 

      im = i + noct * 5        

c 

      w(im) = w(i) 

c 

      ami(im) = - eta(i) 

 eta(im) = ami(i) 

 zeta(im) = - zeta(i) 

c 

c   ami < 0 , eta < 0 , zeta < 0 

c 

      im = i + noct * 6        

c 

      w(im) = w(i) 

c 

      ami(im) = - ami(i) 

 eta(im) = - eta(i) 

 zeta(im) = - zeta(i) 

c 

c   ami > 0 , eta < 0 , zeta < 0 

c 

      im = i + noct * 7        

c 

      w(im) = w(i) 

c 

      ami(im) = eta(i) 

 eta(im) = - ami(i) 

 zeta(im) = - zeta(i) 

c 

      return 

 end 

c----------------------------------------------------------------------c 

c                                                                      c 

c    Subroutine for solving 3D transport equations                     c 

c                                                                      c 

c----------------------------------------------------------------------c 

      subroutine trasp 

      implicit double precision (a-h,o-z) 

c 

      include 'tras3dc.for' 

c 

c   Zeroing the scalar flux 

c 

       do i = 1,nx 

   do j = 1,ny 

    do k = 1,nz 

c 

         phi(i,j,k) = 0.d00 

c               

         enddo 

   enddo 

  enddo 

c 

c  Loop on the directions 

c 

      do im = 1,nm 

c 

      write(*,100) im 

      write(6,100) im 

  100 format(1x,' Processamento della direzione ',i6) 

c 

c  Discussion of the sign of direction cosines and 

c  boundary conditions: assignef flux or reflection 

c 

c 

c  BC along the x axis 

c      

       if(ami(im).gt.0.d00) then 

  i1 = 1 

       i2 = nx 

  ist = 1 

c 

        do j = 1,ny 

    do k = 1,nz 

       if(phiawf.ge.0.d00) then 

            phiax(1,j,k) = phiawf 

       else 

            phiax(1,j,k) = phiawm(j,k,irx(im)) 

       endif 

         enddo 
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   enddo 

c 

  else 

  i1 = nx 

       i2 = 1 

  ist = - 1 

c 

        do j = 1,ny 

    do k = 1,nz 

       if(phiaef.ge.0.d00) then 

            phiax(nx+1,j,k) = phiaef 

       else 

            phiax(nx+1,j,k) = phiaem(j,k,irx(im)) 

            endif 

         enddo 

   enddo 

c 

       endif 

c 

c  BC along the y axis 

c      

 

       if(eta(im).gt.0.d00) then 

  j1 = 1 

       j2 = ny 

  jst = 1 

c 

        do i = 1,nx 

    do k = 1,nz 

       if(phiasf.ge.0.d00) then 

            phiay(i,1,k) = phiasf 

       else 

            phiay(i,1,k) = phiasm(i,k,iry(im)) 

       endif 

         enddo 

   enddo 

c 

  else 

  j1 = ny 

       j2 = 1 

  jst = - 1 

c 

        do i = 1,nx 

    do k = 1,nz 

       if(phianf.ge.0.d00) then 

            phiay(i,ny+1,k) = phianf 

       else 

            phiay(i,ny+1,k) = phianm(i,k,iry(im)) 

       endif 

         enddo 

   enddo 

c 

       endif 

c 

c  BC along the z axis 

c      

       if(zeta(im).gt.0.d00) then 

  k1 = 1 

       k2 = nz 

  kst = 1 

c 

        do i = 1,nx 

    do j = 1,ny 

       if(phiabf.ge.0.d00) then 

            phiaz(i,j,1) = phiabf 

       else 

       phiaz(i,j,1) = phiabm(i,j,irz(im)) 

       endif 

         enddo 

   enddo 

c 

  else 

  k1 = nz 

       k2 = 1 

  kst = - 1 

c 

        do i = 1,nx 

    do j = 1,ny 

       if(phiatf.ge.0.d00) then 

            phiaz(i,j,nz+1) = phiatf 

       else 

            phiaz(i,j,nz+1) = phiatm(i,j,irz(im)) 

       endif 

         enddo 

   enddo 

c 

       endif 

c 

c  Solution of neuutron balance equations  

c  sweeping the three spatial axes accordin to the sign of direction cosines 

c 
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        do i = i1,i2,ist 

        dx = x(i+1) - x(i) 

   auxx = 2.d00 * dabs(ami(im)) / dx 

c 

         do j = j1,j2,jst 

         dy = y(j+1) - y(j) 

         auxy = 2.d00 * dabs(eta(im)) / dy 

c 

          do k = k1,k2,kst 

          dz = z(k+1) - z(k) 

          auxz = 2.d00 * dabs(zeta(im)) / dz 

c 

c  Construction of some useful quantities 

c          

          if(ist.eq.1) then 

  addx = auxx * phiax(i,j,k) 

     else 

  addx = auxx * phiax(i+1,j,k) 

     endif 

c          

          if(jst.eq.1) then 

  addy = auxy * phiay(i,j,k) 

     else 

  addy = auxy * phiay(i,j+1,k) 

     endif 

c          

          if(kst.eq.1) then 

  addz = auxz * phiaz(i,j,k) 

     else 

  addz = auxz * phiaz(i,j,k+1) 

     endif 

c 

c   Evaluation of tye central flus by the neutron balanve 

c 

          ifixx = 0 

          ifixy = 0 

          ifixz = 0 

c 

   20     denom = auxx + auxy + auxz + sigt(i,j,k) 

c 

          phiac(i,j,k) = ( addx + addy + addz + q(i,j,k) ) / denom  

c 

c   Application of the diamond rule and, in case of negative interface flux,  

c   use of the "step" fix-up rule, then recalculating the central flux 

c          

          if(ist.eq.1) then 

c 

    if(ifixx.eq.0) then 

            phiax(i+1,j,k) = 2.d00 * phiac(i,j,k) - phiax(i,j,k) 

       else 

            phiax(i+1,j,k) = phiac(i,j,k) 

       endif 

c 

          if(phiax(i+1,j,k).lt.0.d00) then 

               auxx = dabs(ami(im)) / dx 

    addx = auxx * phiax(i,j,k) 

          ifixx = ifixx + 1 

c          write(*,111) im,i,j,k 

c          write(6,111) im,i,j,k 

  111          format(1x,' Fix-up lungo x: direzione ',i5,' nodo ',3i6) 

          goto 20 

          endif 

c 

     else 

c 

    if(ifixx.eq.0) then 

            phiax(i,j,k) = 2.d00 * phiac(i,j,k) - phiax(i+1,j,k) 

       else 

            phiax(i,j,k) = phiac(i,j,k) 

       endif 

c 

          if(phiax(i,j,k).lt.0.d00) then 

               auxx = dabs(ami(im)) / dx 

    addx = auxx * phiax(i+1,j,k) 

          ifixx = ifixx + 1 

c          write(*,111) im,i,j,k 

c          write(6,111) im,i,j,k 

          goto 20 

          endif 

c 

     endif 

c          

          if(jst.eq.1) then 

c 

    if(ifixy.eq.0) then 

            phiay(i,j+1,k) = 2.d00 * phiac(i,j,k) - phiay(i,j,k) 

       else 

            phiay(i,j+1,k) = phiac(i,j,k) 

       endif 

c 

          if(phiay(i,j+1,k).lt.0.d00) then 
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               auxy = dabs(eta(im)) / dy 

    addy = auxy * phiay(i,j,k) 

          ifixy = ifixy + 1 

c          write(*,112) im,i,j,k 

c          write(6,112) im,i,j,k 

  112          format(1x,' Fix-up lungo y: direzione ',i5,' nodo ',3i6) 

          goto 20 

          endif 

c 

     else 

c 

    if(ifixy.eq.0) then 

            phiay(i,j,k) = 2.d00 * phiac(i,j,k) - phiay(i,j+1,k) 

       else 

            phiay(i,j,k) = phiac(i,j,k) 

       endif 

c 

          if(phiay(i,j,k).lt.0.d00) then 

               auxy = dabs(eta(im)) / dy 

    addy = auxy * phiay(i,j+1,k) 

          ifixy = ifixy + 1 

c          write(*,112) im,i,j,k 

c          write(6,112) im,i,j,k 

            goto 20 

          endif 

c 

      endif 

c          

          if(kst.eq.1) then 

c 

    if(ifixz.eq.0) then 

            phiaz(i,j,k+1) = 2.d00 * phiac(i,j,k) - phiaz(i,j,k) 

       else 

            phiaz(i,j,k+1) = phiac(i,j,k) 

       endif 

c 

          if(phiaz(i,j,k+1).lt.0.d00) then 

               auxz = dabs(zeta(im)) / dz 

    addz = auxz * phiaz(i,j,k) 

          ifixz = ifixz + 1 

c          write(*,113) im,i,j,k 

c          write(6,113) im,i,j,k 

  113          format(1x,' Fix-up lungo z: direzione ',i5,' nodo ',3i6) 

          goto 20 

          endif 

     else 

c 

    if(ifixz.eq.0) then 

            phiaz(i,j,k) = 2.d00 * phiac(i,j,k) - phiaz(i,j,k+1) 

       else 

            phiaz(i,j,k) = phiac(i,j,k) 

       endif 

c 

          if(phiaz(i,j,k).lt.0.d00) then 

               auxz = dabs(zeta(im)) / dz 

    addz = auxz * phiaz(i,j,k+1) 

          ifixz = ifixz + 1 

c          write(*,113) im,i,j,k 

c          write(6,113) im,i,j,k 

          goto 20 

          endif 

c 

     endif 

c 

c   Assignment of the contribution of the direction ot the scalar flux 

c          

         phi(i,j,k) = phi(i,j,k) + 0.125d00 * phiac(i,j,k) * w(im) 

c 

c  Assignement of the angular flux on thelateral surface  

c  to allow imposing pure reflection boundary conditions 

c 

           if(i.eq.1) then    

           phiawm(j,k,im) = phiax(i,j,k) 

      elseif(i.eq.nx) then 

   phiaem(j,k,im) = phiax(nx+1,j,k) 

   endif 

c     

           if(j.eq.1) then    

           phiasm(i,k,im) = phiay(i,j,k) 

      elseif(j.eq.ny) then 

   phianm(i,k,im) = phiay(i,ny+1,k) 

   endif 

c     

           if(k.eq.1) then    

           phiabm(i,j,im) = phiaz(i,j,k) 

      elseif(k.eq.nz) then 

   phiatm(i,j,im) = phiaz(i,j,nz+1) 

   endif 

c     

         enddo 

c 
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        enddo 

c 

       enddo 

c 

      enddo 

c 

      return 

 end 

c----------------------------------------------------------------------c 

c                                                                      c 

c    Subroutine for undating the emission density                      c 

c    from the new scattering source                                    c 

c                                                                      c 

c----------------------------------------------------------------------c 

      subroutine sscat 

      implicit double precision (a-h,o-z) 

c 

      include 'tras3dc.for' 

c 

c  Assignement of density emission 

c 

        do i = 1,nx 

    do j = 1,ny 

      do k = 1,nz 

      q(i,j,k) = sour(i,j,k) + sigs(i,j,k) * phi(i,j,k) 

c 

     enddo 

    enddo 

   enddo 

c 

      return 

 end
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Suggested personal work: new calculations cases to be analysed: 

 

a) Benchmark Problem IAEA EIR-2 (v. H. Khalil, Nucl. Sci. Eng., 90, pp.263-280, 1985) 

 

 

 

 

b) Prism with imposed inner flux 

c) Different sources in a prisamtic domain 

d) Parametric analyses of the already analysed cases, discussing the results 

e) Comparison between the results that can be obtained by different 

approximations for the angular discretisation 


