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SPATIAL ASYMPTOTIC APPROXIMATIONS
FOR THE SPHERICAL HARMONICS METHOD

The plane case with dependence on energy
e Taking into account the dependence on energy, the transport
equation for the plane case is:

HM;W) +2, (x, E)plx, E,p) =

d
=2
=0
e Making use of mathematical developments similar to the ones
adopted for the monokinetic case and assuming
— 2m+1 . 1
o(x.En)= Y 'Zn O (v, E)P,, (1) With ¢, (v, E)=2n] ¢(x,E,uw)P, (W)
m=0
— 2m+1

S(x,E,n)= Z

m=0
it is possible to reach the energy dependent spherical harmonics
form (we omit the demonstration)
l aq)l—l(x’E) [+1 8¢,+1(x,E)
+ +X. (x, E JE
20+1 ox 20+1  ox (5. oy (x. E)

= [ 2,(x,E"— EW, (x, E'ME +S,(x,E)  (1=0]..)

2[ +1 ,2T 4l , ’ ’
[aE’[ "de'| T(x.E — E)P(1g)o(x, B w)du + S (x, E.u)
47 0 |

S,y (. E), () with 5, (x.E)=2x[" S(x.EW)P, Wy

being a system of infinite integrodifferential equations in ¢, (x,E)

¢ The Py approximation consists in truncating the series at the (Vv +1)-
th term obtaining N +1 equations (/=0,1,...N)

Asympotitc spatial dependence for Py and the By approximations

e In the case of homogeneous regions it is possible to adopt a
procedure different from the spatial discretization, based on a
simple asymptotic approximation

¢ In the case of calculations aimed to provide the fine group energy
spectrum, a spatial trend of the flux of exponential type (for non
multiplying media) or sinusoidal one (for multiplying media) may
roughly represent the effect of leakages
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e Therefore, for a multiplying medium an imaginary exponential
trend is accepted. The imaginary exponential is more convenient
from a mathematical point ot view than a sinusoidal one, just taking
care to consider only the real part of both the flux and the source
(assumed to be isotropic)

—iBx 1 —iBx
0(x. 1, E)= o, E) e SCepE)=_—Sy(E)e b
e As a consequence, for the coefficients of the Legendre polynomials
it is
0, (x.E)=,(E)e™™
¢ With these definitions, substituting into the relation

uww, (x, E)o(x, E, )

= Z 2;; 'p W] Zy (6. E"— EWy (x, E)E" + S(x, E,u)

and dividing both 51des by the common factor ¢ **, it is obtained

i+, (E)o(w E)= Y. 22: :

n=0

P 20 (E > E)o, (EVE+_S)(E)

On this basis, we can now proceed in two different ways:

1. Py equations in asymptotic form
We can substitute the expression of the flux in terms of Legendre
polynomials at the left hand side, by the relation:

owE)=3 "o (E)P, (1)

4T
n=0
Making use for pP,(u) of the equavalent expression obtained in

n+l1 n
— P +——P
1 n+1(“’) m+1 n—1 (“’)’

multiplying both side by P (u) and integrating on —1<p<1, it is
found:
[ [+1 / T
- {21 ;- L(E)+ T (Pz+1( )}+2t(E)(p,(E)=IZs,(E — E),(E'ME"+8y,S,(E)
(1=0,...N)

terms of Legendre polynomials

which represent the Py equations in asymptotic form.
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2. By Equations
As a variant of the above, before including the expression of the flux

in terms of Legendre polynomials and of performing the ‘“scalar
product” by P,(u), we divide both sides by =, (E)-iBu:
1 &2+l , N L So(E)
JE)= P > (E'—E)o,(E)dE + ——2———
o, E) Zt(E)—iBM,E) i B] 20 (B E)e, (£) * . (5) - iB
Then we multiply by P, (1) and we integrate from -1 to 1:

J_lfp(u, E)P,()du = "’lz(f) _

< 2n+1 1 P ()R (1) : N So(E) pt R(W)

= 1 du| £ (E E E’)dE

,E) 47 LZ,(E)—iBu “j (B E)o, (EME 47 LZ,(E)—iBu

and we multiply both sides by 2x¥ (E)

—2n+1¢ P (W)P , A e SoE) el P(W)P

s () (E) =3 2 BWAW g1y (s pyg, (e SB[ ARG
i 1) 1-i 7)
z,(E) z,(E)

We now introduce the coefficients (new functions to be calculated
on the basis of Legendre polynomials):

n=0 2

1L AP, ()
A== L=
l,n(Z) 2_[_1 l—iZH 22
obtaining
- B B
Y(E)p,(E)=> 2n+1)A, | ——= || Z,,(E">E E')AE+ A, )| —— |So(E
(B0 (E) =3 s 1 [ 20 6 (s s sl
The functions 4, satisfy the recurrence condition
1 O
—n 14, ()= (DA, (2)- 14, () =
and it is
1 AN
An,l =Al,n e %7o(z)=zarctgzzl—?+?—7+... per zzO

401(0)= 40D =001 4,(0)=—40,(0)

The By _approximation consists again in truncating at /=N the
system of infinite integral equations thus obtained. It can be
noted that:

¢ this occurs automatically, putting = (E"— E)=0 for n> N

= the By equations converge more rapidly than the
corresponding Py. for instance, in the case of isotropic
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scattering, an ‘“‘exact” expression is obtained for ¢, and also

the higher order coefficients can be obtained exactly;
= jt is foreseeable that also for anisotropic scattering the
process converges more rapidly, as shown below.

For N =0 (By approximation) for /=0 we have

O ) | G ]

and this equation is “exact” (no need of truncation of higher
order terms!); in order to get the angular flux in addition to ¢, it

is possible to write

08E)= 5| 3 ZoolE = EJeo(EM S]]

As an alternative, it is possible to obtain all the needed o,(E)
from the equation

o B , A g B
5 B0 )= a0 0 e (s s o)

n=0 Zt (E
whose RHS involves only ¢, and S,.

For N =1 (B; approximation) with some passages, the following
system of two equations in two unknowns is obtained

2, (E)o,(E)-iBo, (E jz’sO E'— E)py(E")dE"+ S, (E)
B E
g(mjw)@( )-8 g (E)= [ £, (' EYoy (£
where
(Z) z" Aoo() (zl—%perzzO)

3 1= 4(2)
As it can be noted, an advantage with respect to the Py equations
is that the By equations do not refer to higher order components
of the flux (no need for truncating! = faster convergence)
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DPy APPROXIMATIONS
§ e The expression of the
\ ' \ angular flux in terms of
Legendre polynomials is
N inadequate for dealing with
§~k\\\ the discontinuity at a planar
Q

surface (across u=0)

e In fact, the neutrons
contributing to the angular
flux for u>0 are generated
in one region, while those

#>0 (<0 contributing to the flux for

u<0 come from the other,

and the two regions can be quite different in terms of sources and
properties

This is not true for a curved surface. However, the presence of such

a discontinuity is very evident in the case of an interface with the

void)

_

% X

=

o(x,.10)=0 L<0 or glx.u)=0 1>0
depending on where the interface is located
In order to overcome this difficulty, J.J. Yvon proposed to adopt
different expansions of the angular flux in the two intervals
—1<pu<0and 0<p<l1
Considering for the sake of simplicity the monokinetic case, it is:
N
o) = 3 (2n+ Dlo (x)B] 2u—1)+0; (x)B; (20 +1)
n=0
where
0 n<o 0 nw=0
Substituting this expression in the steady state equation of neutron
transport for the monokineitc case and for a generally anisotropic
scattering (without source)
a0l x, -2l +1 1 , N s
wR) 1 (o) = 32 s ()] ol A
1=0
and multiplying both sides by P/ (2u—-1) o P, (2u+1) then integrating
on —1<u<l1,itis:
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m_d(x) , mAl d(¥) y dnx) e e

2m+1  dx 2m+1  dx dx
N

=S+ DpE T ()3 2+ Dot (1) + it ()]

=0 n=0
where + identifies the + or — sign suggesting that the related
equation has been obtained by multiplying by P/(2u-1) or by

P, (2u+1) and where it is assumed

P =] BWP; (2u-1)dy P =] P WPy (2u+ 1y

. When the series defining the angular flux is truncated at the N -th
term and considering only the first N +1 equations, the double-Py or
DPy approximation is obtained

¢ In some cases of interest, this approximation is much better than
the corresponding Py one. In particular, putting

0/ (0)=0 and 0. (a)=0 (n=0,,...)

It is easier to satisfy in an appropriate way the boundary conditions
for the interface with the void in the case of a layer (in x=0 an
xX=a)

e The DPy method requires that in every point it is possible to
identify directions pointing outwards and inwards, something only
possible for 1D cases

e However, it must be mentioned that the Py method can be extended
to multidimensional cases only with great mathematical difficulty
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THE INTEGRAL EQUATION
FOR 1D AND 2D PROBLEMS

1D Geometry

¢ Considering an isolated slab included in the interval 0<x<a with

isotropic__scattering and _indipendent source, in Cartesian
coordinates the transport equation in integral form

—1(F,7",E)

o(F.E ):.[ 12

V4-TC‘;: —-r

¢ U:Zso (7, E'—> E)o(¥",E")dE + S, (?’,E)}dv’

becomes

o(x.E)=| -

V471:‘7’—r'

e—‘c(r,r ,E)

5 [ j(‘)”zso (x,E'— E)§(x",E")dE" + S, (x',E)}dx'dy'dz'

or

—‘C(?,r',E)

o(x,E) = jo“dx’[ [ 0 E' = E)o(x' E')dE" + So(x’,E)} [
o gl 7

where the integration along the coordinates other than x is isolated
at the right, to be made first as as afucntion of any x
e It is now convenient to change the integration variables, so that we
can take full profit of the 1D characteristics of the problem
¢ The reference frame is selected such that
r =1{x,0,0} r={x"y.7'}
then introducing polar coordinates in the plane yz’, with azimuth ¢

and vector radius p
2 7”2
pP=NY *zZ

v

B
>
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e It is therefore
o e—r(?,?' E) e
dy’| ———d de f pdp
Lol " anl(e—F + 7]
e Now it is therefore convenient to substitute to p the variable ¢
defined as:

L[] _Ja=x+p?

= = = 1<t< o
|cos 6| |x — x'| |x —x ( )
obtaining
dr=— ; pdp - 2 p’dzp 2= pdp2
(x=x)* + p? b (x=x)+p |
and then
pdpdo=
e We have therefore
_’crrE o E) 1 oo —(xx'E) dr
L= [ o]y [ pdp = [ e
‘ X X + p ]
where it can be noted that we used the ‘“‘obvious” relation:
©(F, 7 E)= o, x', E) =t(x,x",E)t
|cos 6|

In fact, we recognise that when the neutron trajectory is inclined
with respect to the x axis, this results just in an increase by a factor
1/lcos8| in the number of mean free paths involved in their flight

¢ So defining the exponential integral functions

E,()=[ e

tl’l

it is
o(x,E)= % jo E, [t(x,x’, E)][ j: 2o E = E)(x, E)dE + S, (x’, E)}dx'
¢ In the monokinetic case it is:
0x) = Jy Ele 2.0 (W) + 8 (6
e When the layer [0,«] is homogeneous (same material everywhere), it

is simply t(x,x")=Z,|x— x| and therefore

0e) =2 [ B[, e = 2 [0 (D0 + Sy (]

2
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e If we choose the meen free path as length scale (i.e., substituting to
x the coordinate t=%,x) it is

1 La /
T)=— E\t—7
o=, i

e This relation can be reached also for a non-homogeneous layer.
Putting:

)20 (T)0(7") + S, (7))’

x—t(x)= L;Z, (x”)dx” dt=%,(x)dx
and, expressing the flux as a function of t in place of x, it is

00) =2 [ e~ v)e@)ole)+ 50 (]

where
SO
and Sy =—
Zl Zt
That is coincident with reation obtained in the case of a
homogenoeus layer by substituting ¥ « with the more general form

T, = J.(?Z, (x)dx.

2D Geometry

e We consder a ‘“‘geenralized cylinder” (not necessarily circular)
infinite in height and isolated having a volume V having as
intersection with the plane z =0 the general surface A,

e We also assume that the scattering and the independent source are
isotropic

¢ If the variables in the problem depend only on x and y, the integral
transport equation becomes

e—r(?,?’,E)
o(x,y,E)= [ ——
vanr —r

[ I:ZSO(x', v, E' = E)(x",y ,E")dE"+ Sy (x, y’,E)}dx’dy’dz’

or

o(x, y,E)= Idx'dy'D:Zso (x,y E' = E)o(x", vy, E")dE + S, (x, y',E)}I
A

-~ e—‘t(r,r ,E) ,
- ﬁ,zdz
47t‘r —r

where we now isolated in the RHS the integration over z
e Therefore, also in the 2D case an appropriate choice of the
coordinate helps in obtaining a final compact forms; it is:
r= ;0 = {x, y,O} and r'= {x', y', Z/}
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e Putting

’ ’ ’ /7 R
Ry=A(x=xP +(y= ) R(Ry.z)=+/R} +7? =2

cosO

we have

R,d®

cos’ 0

¢ For the particular case of the homogeneous generalised cylinder, it
is ¥, = cost. and then

[

004‘—'

7 =Rytgd = di'=

—‘c(r r E e—Z;\/(x—x’)z"'(y_y,)z"‘Z,z e—Z,R(RO,z')

— j_oo «

d' =]
4n[(x —XP+(-yy+ z'z] ~ 4R (R, 7)

jﬂ/z ¢ Z1Ro/cost Rode 2 Jn/z “E R 050 g !
W24m(Ry c0s6)’ cos’ O 47R, o

d7’

Kil (ZIRO)

where the Bickley-Naylor functions were used. They are defined as:

dt

"Vt -1

Ki, (x)= [0 cos )" do = ["e ™ (1=123..)

0

Reference geometry for the 2D case
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¢ In the general case in which the cylinder is non-homogeneous, it is
7,7, E)= M
cos9

and then

(7,7, E) 1 enn2 e—r(FO,FO’,E)/cose ‘;;0 _ %’de

r’ e gL
—m4@;_ﬁyz 270 Qﬁ)—ﬁmkosey cos” ©

S S L L P B

" 2mfr, — 1] 0 2nfr, — 17

e It can be then concluded that

ol )= [ KON oy (G5 s ol a0 ) s
W 20 =1

¢ In the particular case of a monokinetic problem

ofiy) = [ Kl ooy s, Gilang

A 27‘:‘7’0 — 71y
¢ Finally, if the cylinder is homogeneous

i o)+ 500 ax

- Ki,|Z, |y — 10|
¢(’”0): I%
A, ()
FINAL CONSIDERATIONS

The above explains why in 1D and 2D codes based on the integral
equations, collision probabilities involve exponential integral functions
and Bickley-Naylor functions, respectively

As usual, we note that in reduced dimensionality problems we need
anyway to consider that neutrons travel in the 3D space, integrating
along the neglected dimensions in order to obtain the overall
contribution of neutron sources that are actually distributed in a 3D
space
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DISCRETE ORDINATE METHOD
OR “SN”> METHOD

General considerations

The discrete ordinate method is based on the solution of the
interodifferential equation discretised both in the space and in the
angular coordinates

This method represents the main technique for the solution of the
integrodifferential transport equation since it allows to easily obtain
a solution with any degree of approximation as a function of the
available computational resources

The first algorithms of these methods can be traced back to
methods adopted for stellar atmospheres; the technique was then
extended mainly owing to B. Carlson to nuclear energy applications

The remarkable efficiency of these methods, named Sy metods,
makes them to be often preferred to others

The one-dimensional case in cartesian coordinates

Discretised equations

From the steady-state integro-differential equation

Q. gmd;(j)(?, v§)+ X, (}7, v)(j)(?,vfl): J‘ZS (17, VO - vé)¢(7,v'§')dv'd§2'+ S(?,vfl)
we can firstly consider (just for simplicity) the monokinetic case
with isotropic scattering

Q- grad-olr, Q)+ 2, (7)olF. Q)= Zi—f? | o7, )acy + 5(7.9)

and we finally consider the already obtained form for 1D geometry

W)y o) =2 [ o)+ s(en) €)

ox 2
In order to solve this equation, we define M discrete directions and
corresponding weighting coefficients
HisUoses Uy Wi, Was s Wy
In particular, making use of the weighting -coefficients w,
(quadrature coefficients) it is possible to calculate in an
approxomated way the integral at RHS of (°), that is:

M
[ 0lep)dw = > w,0lx1,)

m=1
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Owing to this discretisation of the angular coordinate Eq. (°) is
transformed into the following

MW+zt<x)¢<x,um)=EST(")éwmx,ms<x,um> (m=1. .. )

The choice of the weighting coefficients w, and, then of the

quadrature formulations is generally made with reference to an
even number of discrete ordinates 1, chosen in a symmetric way

with respect to u =0
It is, therefore:

M
I‘Lm > O MM+1—m = _Mm WM+1—m = Wm (m = 19 2a’7j

The reason of the choice of symmetrically distributed values with

respect to 1 =0 with equal weights is due to the intent to assign the

same importance to particles streaming along different directions

The even number of directions is then adopted in order to avoid the

existence of a value of m such that u, A =0; this would pose

problems, since:

¢ the derivative term would disappear in the equation, compelling to
treat this direction in a different way with respect to the others

¢ as already noted, the direction characterised by 1 =0 can be the
one at which discontinuities may appear in flux along the angular
coordinate

The advantage to choose an even number of discrete ordinates also

appears in particular when boundary conditions are imposed:

¢ in the case of pure reflection, for instance at x =0, it is:

M
q)(o’um): ¢(O’MM+1—m) (m = 1’2""’7j
¢ for a free surface (interface to the void) in x =a, instead, it is:
¢(a,um)=0 (m=%+1,...,Mj

In principle, there is anyway a considerable freedom in determining
the directions

A very frequent choice is the one (of Wick-Chandrasekhar) in which
the u,, are assigned such that they are the M zeroes of the Legendre

polynomial of order M :
Py (w,,)=0 (m=12,..M)
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--"""_'_'_':';""" \\\\\\\ﬁ 0
N\ N
= ‘ ff:f \\u\““ i

=1 u=1 -
0 a ¥
9(0.44) = 90, 11,) s #(0.18,) = #0, 12, dla.11) = ola.ps,) = 0
Pure reflection Free surface

Discrete ordinate in the planarcase and boundary conditions (M =4)

Its is moreover requested that
w,, >0 (m=12,..M)
and that the weighting is such to provide an exact integration over
—1<u<1 of all the polynomials of order up to M —1; it is therefore:
2

M ! 1 n pari
D Wbty = [ wdu=1 " * (n=0,2,..M —1)

m=1

0 n dispari
It is necessary to note that the previous relationships with odd » is
identically satisfied for any set of p, and w, respecting the
requirements

M

Therefore it is possible to determine the M independent parameters
w, and w, (m=1..,M/2) in order to exactly integrate all the

polynomials having order 0,2,...2M -2 (and also those of order
2M -1, since that this is and odd number)

We have therefore:

%mek ()P () = J:Pk ()P (w)du = 28y

= (k,1=01,..M —1)
v 2k +1
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N=2 w, = w, =1.000 W, =—, =0.57735
N=4 w, =w; =0.65215 1L, =—41; =0.33998
w, = w, =0.34785 W, =—p, =0.86114
N=6 wy = w, =0.46791 Iy =—1, =0.23862
w, =ws =0.36076 I, = s =0.66121
wy = wg =0.17132 I, =L, =0.93247

Gauss-Legendre quadrature parameters (from Bell & Glasstone, 1979)

e With these requirements 4, and w, are given by the Gauss-
Legendre quadrature parameters reported in the above table for
M =246

e It is possible to show that, with this choice, the method is equivalent
to the on of spherical harmonics P,, with N =M —1:

Su =Py

¢ The numerical solution is obtained by writing the equations in the

form

0, 28] 5 (o, ) = g, ) (n=1...M)

and iterating on the scattering source by the scheme:
9 [1+1] ’
0T t) p (ol (s, )= g o) =Let)

ox
M
ELIS e, )+ S, )

n=1
e It is obviously needed also a spatial discretisation:

¢ the interval 0<x<qa is subdivided into / subintervals with
uniform properties

M

g (xp,,) =

u>0 Ax; u<0
X, X5 X X, Xist X1 Xy X
Xy Xy, Xs2 Xiip Xivip2 Xz Xpap

Spatial discretisation for the discrete ordinate method
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¢

¢ in each subinterval, the average values of angular flux, emission
density and cross sections are defined

the equations are then written in the discretised form:
u ¢(xi+1/2 M )= q)(xi—l/Z )

1

+ 2, (x)o(x. 1, )= g(x;.1,,)

that are rewritten using a straightforward shorthand notation for
the angular flux
Lo ¢i+1/2,mA_x¢i—1/2,m +2430;i i = im ((=1..0) (m=1..M) )

i

Solution algorithm

For any direction ., , the previous equations represent a system of

I equations in the / unknowns of the angular flux values in the
centre of each subinterval, ¢, ,

However, since in the equations also the interfacial fluxes appear, it
is necessary to make use of further information in order to carry on
the calculations

A first information is provided by the calculation in an adjoining
node, that is assumed to be already completed, or by a boundary
condition

In the aim to eliminate the residual unknown the so-called diamond
rule is used

0, = Oir1/2m ;_q)i—l/Z,m
The solution algorithm makes use of a different use of of this rule
according to the sign of the direction cosine (p,, >0 or pu, <0). In
particular, it is:
¢ forp, >0
in this case, the calculation proceeds sweeping the subintervals
from left to right starting with ¢, , to be assumed known; it is

interesting to note that this is also the direction of propagation of
neutrons; it is therefore

¢i+1/2,m = 2¢i,m - ¢i—1/2,m
that, introduced into (°) provides the central flux in the form
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. + =" 4.
¢l—l/2,m zum 9im oo
q)i,m = Ax ( )
I+—X
o,

once the central flux is known, it is therefore possible to evaluate
the interfacial flux ¢,,,, =20,, —¢,.,, to be used in the

ti

calculation of the next subinterval;

¢ for p, <0
unlike in the case p,, >0, the calculation proceeds from right to

left; it is again worth to note that this is also the direction of
propagation of neutrons (now it is, in fact, u, =cos6, <0); we put

therefore:

¢i—1/2,m = 2¢i,m - ¢i+1/2,m
that, introduced into (°) allows to obtain the central flux in the
form:

once the central flux is known, it is therefore possible to evaluate
the interfacial flux ¢,,,, =20,, —¢;,, to be used in the

calculation of the next subinterval.

e The order of accuracy obtained by the diamond rule can be
analysed considering the particular case of zero emission density
and constant total cross section

umM+Zz¢(x,um)=0
dx
whose exact solution is

0.1, )= 0", ) e 5o L)
In particular, putting x'=x,_,, and x=x,,, it is

~h
Oivi/2,m = Picij2,me

where
— ZtAx
[

h
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Making use of the relations

Ax
Oicijom + 5 im

2 m
q)i,m = Axu and ¢i+1/2,m = 2¢i,m - q)i—l/Z,m
1+ — %,
2,
. . . 1 - h/2
it is finally found , =0, —
y Oivrj2m =Picij2m 14h/2
to be considered in view that e =12 on?)
1+h/2

Notwithstanding the high accuracy of the method, considering the
above relationship it can be noted that when 7>2 itis ¢,,, <0 even
It is a typical problem of this method encountered during
calculation advancement that occurs when the relationships

¢i+1/2,m = 2¢i,m - q)i—l/Z,m W, > 0

Oictj2m =20, = Piijom H, <0
provide negative values of the interface flux

The problem can be solved by using a finer spatial discretisation, in
order to get i <2; however, this is not always convenient, e.g. in the
case of strongly absorbing regions and/or very much inclined
direactions

However, it is possible to correct (‘‘fix”’) the flux making use of one
of two simple rules for ‘“fix-up”’
¢ 1" RULE (“step method”)

for u, >0 whenever it is ¢,,,,,, =29;,, — 0,2, <0, it is assumed

Ois1/2m = 0;,, (instead of the diamond rule), then calculating ¢, ,, as

a consequence of this choice by (°); similarly in case of u, <0,...

(just exchange the role of the two interfaces);
¢ 2" RULE (“set offending flux to zero and recompute”)
for u, >0 whenever it is ¢,,,,,, =20, —¢,_2,, <0, it is assumed

0;41/2,, =0 (instead of the diamond rule), then calculating ¢, , as a

consequence of this choice by (°);similarly in case of p A <0, ...

(just exchange the role of the two interfaces).
e Unfortunately the use of these rules decreases the accuracy of the
method from the second order to the first one
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Let us just note that the assumption of an isotrpic scattering source
is not at all needed for the application of the above describe
algorithm; on the contrary, discrete ordinates methods are
particularly suitable for dealing with scattering anisotropy

In fact, when the anisotrpy of scattering in the laboratory reference
frame is up to the order L, making use of the expansion in
Legendre polynomials, we have

W) s (o= 32 (R k() + ()

dx 1=0
with 0 (x) = [, R )ole.
¢ The discrete ordinate form of this equation is therefore given by
o0(x,u,,) Lor+1
o S (it )= 32 (P )0, ()4 St =L
=0
M
q)l (X) = anpl (Mn )q)(x’un )

n=0
On the basis of this relationship, it is then possible to set up a
solution algorithm quite similar to the one just described for the
case of the isotropic scattering

The one-dimensional case in spherical coordinates

Form of the transport equation

In the figure reported in the next page, an unfortunate feature of
the transport equation in curvilinear coordinates is described; it
consists in the fact that the angular coordinate identifying the
direction of neutrons changes during the rectilinear motion of
neutron

As a consequence of this phenomenon, known as angular
redistribution, the ‘‘streaming” term of the integro-differential
equation involves derivatives in the angular coordinate

In order to obtain the streaming term in spherical coordinates, it is
necessary to remember that it represents a differentiation along the
direction of motion of neutrons
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e In fact, it is
Q- grad;$ = a9
ds

as it can be recognised by putting
r=r(s)=n +Qs={x(s), y(s). z(s)}
with
x(s)=xy+ Q.5 y(s)=y,+ Qs z(s)=2zo + Qs
e In spherical geometry, the radius and the cosine of the angle
between the radius and the direction of motion are taken as
independent coordinates:
rE\/x2+y2+z2 chosezé-L
;
e Making use of these coordinates, we can therefore write
ds Jrds Ouds
translating the problem into the one of expressing the derivatives of
r and p with respect to s
¢ Concerning the derivative of » we have
dr_ords drdy ords
ds Jdxds Odyds Jdzds

Curvilinear coordinates and angular redistribution
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¢ Since making use of the previous definitions it is
or _x ar _y or _z

9x 1 oy r oz r

and
d_o Ay A
ds ds Y ds

it is

r_Xo +2a0 +%0.=0."=y

ds r r Y or r

e Similarly, for the derivative with respect to u we have:
du_d(s 7)_Q {dx~+d_y~ dzk} F(drdx  drdy  ordz
ds ds r) r lds ds® ds oxds dyds dzds

=9~{Qxi+gy}+szzl€} Q. r(xgz +20, +2 Q)

r 1”2 r r r

- .\ - _\2
_1_(9-;») _Ufer) |-
r r3 r r r

¢ The transport equation in spherical coordinates for the monokinetic
case and isotropic scattering becomes therefore

8¢(arru) 1 ru2 aq’é;’“) + 2, (F)o(r,n)= ZST(r)jjl¢(r,u')du'+ S(r,n)

¢ In view of the spatial and angular discretisation, it is convenient to
recast the streaming term into a conservative form, i.e., in a form
that allows integration over a finite volume of the coordinates with
“exact” neutron conservation

¢ In spherical geometry, the control volumes on which we need to
integrate are spherical shells; by integrating the streaming term
over the general shell with inner and outer radiuses , and » and

over all directions, we have:
[ grad,pd@av = [ amdr| 229 -(Cp)du

= J.rz 4m®V - J(r)dr = 4] J(r,) - 4717 T (1;)

¢ In order to make this result be obtained easily after multiplication
by 4nr, the streaming term is rewritten as

o 10 9 , 2 1-p* 90 _ 99  1-p 99
r—zg(r2¢)+;£[(l—u2)¢] {—Ha P«q) (1) . @-Ha"‘T@}
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Itis

" dar 2r[' 2n{*§ aar (20)+ li[(1— uz)(p]}du

—L’%m_( ! 2nu¢du)dr+j 8nrdr| i[(1 12 JoJan
w2 =0

- [ 41920 )ar = 42 (r) = 127 ()

or

e The conservative form of the transport equation in spherical
coordinates is therefore:

B2 (o 21wz, bt =7 1 ol + ()

¢ Finally, introducing the emission density

alr) =2 o+ 50000

we have
%ai(r o)+ ju (-2 b 2, (o) = g(rp) )

Discretised equations
e In similarity with the Cartesian plane case, also in spherical
geometry there is no variation of the angular flux with the angle ¢

¢ Therefore, the angular discretisation affects only p

e The spatial discretisation is made in similarity with what already
observed for the plane case in Cartesian coordinates

¢ The rectangular discretisation domain shown in the Figure at the
bottom of this page is so obtained, where the ‘“diamond”, giving the
name to the already mentioned rule, is clearly shown

¢ By integrating (°) on this domain and in d¢ over 0< ¢ <27, it is:

j o[ dy | “/2{“ ol q>) 18[(1 “z)q’]+2¢ }4nr2dr:0

Won-y/2 Ticij2 r2 or r au

from which we have
ZWIHM/Z [47t +1/2¢(z+1/2 u) 4mr 1/2¢ i-1/2> M]d“

+8m° _[,_i;/; [(1 - lvlm+1/2 )‘1’(7 M2 )— (1 - lvlzm—l/z )¢(r Hopo12 )] rdr

wom[ P an (2,0 - gmridr =0
- 1/2 T -1/2
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e It can be noted that the use of the conservative form of the
transport equation allowed a quite easy integration

¢ The three obtained integral terms are then approximated. For the
first term, it is

2%]51//2 W42 5000 0ot0) 4702 00y )
= 47thHm(Ai+1/2¢i+1/2,m - i—1/2¢i—1/2,m)
where we assumed
Wm = %(}Lm+l/2 —Hm—l/z) Hom = %(}Lm“/? +“m—1/2) Avsip =410
and ¢,,,, , represents the mean angular flux on the angular element
AQ, =4zw, holding fot the two surfaces at the radiuses hiyja OF Tyt

Oixijam = ﬁ _foz " d(PI: ’"“/zd)(riﬂ/z,u)du

n—1/2
¢ The second term is now approximated as:
gn” [ [(1 L )q)(r L) )_ (1 ~H3 2 )(b(” TP )] rdr

Tic12
= 4n(am+1/2¢i,m+l/2 - am—l/Zq)i,m—l/Z)
where ¢, ., is the mean flux over the volume V; (spherical shell

between +_,, and r,,,), corresponding to p,_,, and p,,

q)i,mil/z = V%j;i;/jq)(r,umﬂ/z )4Ttr2dr V.= %n(lﬁm - 1;3_1/2)

while the constants a, , € a,, , represent the effect of anfular
redistribution, whose value will be described later

¢ The third integral is finally approximated as :

A
ﬂm+1/2 ____________ > & RN
e : N
7 N
. i N
o ' N,
7 ! N
# v : N
(N IO * ot i S N A N N i S A, SR
o« : »
N, ) O
N 7,
& ! 2
N ' Y.
Y | /.
» h
S

lum—1/2 ____________ LT
| | | .
! ! ! e
Ly fi Tivi2 r

Angular and space discretisation in spherical geometry
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r-i+l/2 (th) _ q)4nr2d}” =4nw,,V; (Zn‘q)im - Qim)

Tici)2

un‘l
o +l/2dMJ'
um—l/Z

where ¢, and ¢, represent mean values of the angular flux and of
the emission density over AQ, andV; in the spherical shell

B 1 2 el o (i 2
O = gy o 2L, 0l dr

0 Moy Tici)2
_ 1 znd Hm+1/2d Tit12 ( )4 2d
Gim = [ dof " du] " g(rpanrdr
4nmel !‘Lm—l/Z ri—1/2

e Adopting the above approximations, the discretised neutron
transport equation in 1D spherical geometry takes the form

1
W (Ai+1/2¢i+1/2,m - Ai—1/2¢i—1/2,m ) + w_ (am+1/2¢i,m+1/2 - am—l/Zq)i,m—l/Z)

+ V(203 = i) =0
e In order to obtain the angular discretisation coefficients, one
proceeds as follows:
¢ it is noted that for uniform and istropic flux it is
¢i+1/2,m = ¢i—1/2,m = ¢i,m
requiring that streaming term is zero, so that
ZiOim = im 5
then, it must be requested that
L Wi (Ai+1/2 — A ) =Ap-1/2 ~Apmt1)2 (*)
¢ however, in the general case the term depending on the angular
derivative must become zero when integrated over all the

directions; therefore, since it must be
M

Z(am+l/2q)i,m+l/2 - am—1/2¢i,m—1/2 ) = aM+1/2¢i,M+1/2 - al/zq)i,l/z =03

m=1

since ¢,,, and ¢, ,,,,, are arbitrary, it must be also

Ay =Ap4/2 =0
* So, assuming q«,, =0 the equation (*) allows to calculate all the
coefficients a, by recurrence.

Solution algorithm
e The directions are chosen so that

—1=Hyp <Hy <Hap <o <MWy <Kz = 0<Hag/oa <<Hpyoyn <Ha <y =1
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where p,, =-1 is said starting direction, since it is the direction for
starting the calcualtion

e In fact, for a free surface (interface with the void), the boundary
conditions are
Oriyj2m =0 (m=12...M/2)
assuming zero the angular flux related to the directions with
negative u (i.e., “inward” directions)

¢ In the center of the sphere, we must assume that the angular flux
satisfies symmetry conditions generally expressed by imposing

012 p+1-m = Py2m (m=12...M/2)
* Then, the calculation starts with the direction p,, =-1: since the
streaming term does not contain the angular dispersion term, being
1-u? =0, we then have:

Qi 2 = Pici22

+2,0;12 = 9312

Tiv12 —Ti-1)2
in which usally the diamond rule is adopted in the form

¢i—1/2,1/2 = 2¢i,1/2 - ¢i+1/2,1/2
in order to advance the calculation in the direction of decreasing r
starting from the boundary condition of zero inward flux on the
external surface

¢ One then proceeds with all the directions 1<m<M /2 (for n<0)
adopting the diamond rule in the twofold spatial and angular form:
Oiyjom T Picizm  Pin—ija T Oimei2

q)im = 7 = 7

Since the process is performed for decreasing r and increasing u,
the diamond rule is adopted in the two forms
¢i—1/2,m =20;, - ¢i+1/2,m ¢i,m+1/2 =20;, - q)i,m—l/Z

that, introduced into the discretised transport equation, allow to
eliminate the unkown values of the angular flux

1
—Hn (Ai—1/2 + A )¢i+1/2,m + o (am—l/Z T a2 )¢i,m—1/2 +Vidim
q)im = =

—HU, (Ai—l/z + A )+ Wl (am—l/Z Ty )+ ViX,

m
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Zero angular flux

Starting direction
Sample advancement scheme for an Sg method with 10 radial nodes

where use is made of the definition of the angular differentiation
coefficients

¢ Once the values of the angular flux for all the directions with p<0
are computed, the following symmetry condition is used

012 p+1-m = Py2m (m=12...M/2)
in order to assigne the flux in the centre of the sphere for the
directions with p>0. The calculations then proceeds for increasing
r and pu, making use of the diamond rule in the two forms
¢i+1/2,m =20;, — ¢i—1/2,m ¢i,m+1/2 =20, — ¢i,m—1/2

e Even in the spherical case, it is possible to encounter problems

related to the negative fluxes requiring the use of ‘“fix-up” rules

¢ In some cases a non completely correct behaviour of the flux in the
centre of the sphere has be noted, to be attributed to a non-uniform
distribution of truncation erroras a function of r

e The condition
P2 m+1-m = Qy2m (m=12,.,M/2)

has been also considered criticisable, preferring sometimes the
relationship

W
au r—0

discretised imposing that the angular flux at the centre of the
sphere is equal in all the directions
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The multidimensional case in Cartesian coordinates

Discretised equations

¢ In the multidimensional cases it is convenient to write the integro-
differential equation in the form
aivfoolr. @) +2, (ol @) ol 0)=0
where again the following relationship has been used
é . grad;q)(F, é)= div[é(j)(?, é)]

e Considering a volume around the location 7, ={x;,y,.z, it is

Vi

Vijk = Ax;Ay jAZk Ai—1/2, jk = Ai+1/2, jk = Ay jAZk = Al;

i
A = A = AvAz =0 A= A = A Ay =k
i,j=12k = i j+1/2k = R = Ay, ijk=1/2 = Qjjk+1/2 = BXGAY ;= Az,

(i=1....1); (j=1...7) (k=1,...K)
e To the general direction, Q , the solid angle AQ =47mw, is then

assigned. We then define the average values of the flux over the
solid angle and the volume and also on the volume faces
1 1

q)ijk,m = .[ dQ2 _H)dV ¢iil/2,jk,m - J- dk> I(I)dA
4nwmvijk anw,, Vi AW, Aiil/Z,jk anw,  Axy i
1 1
O, j/2.4m = .[ agd J 90dA O x1/2m = J d< I ddA

Anw,, A; jxij2k 4w, 4w, Ajj k+1/2 4nw,,

Ai,jil/Z,k Aj kx12

e By integrating the transport equation over the solid angle

AQ, =4nw, and over V, we have:
A

< Aij’kﬂ/z Ai—1/2,jk

Ay :
\\\\\\ i ’ Az,

o Vijk

" o

y N A 12,k
AN Ax.
Ay,
X Ai+l/2, jk A

ij k—1/2

Reference frame and elementary volume
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[ aa] {dzv[Q(j)(r a) +=, (7)ol Ez)—q(F,é)}dvzo

4nw,, Vi
¢ The first term in this equation can be approximated as follows:
[ dedw[Qq)(r Q)] av= | dQ | dw[gzmq)(r Q )] av= [ dQ j( i, bl 2, )aa
47w, Vi 47w, Vi 47w, Vi

¢ Then, putting

Q={1. MG}
we have

j dQ j( }D(Fém )dA = 475Wm{Hm (Ai+1/2,jk¢i+1/2jk,m - Ai—1/2,jk¢i—1/2jk,m)

41w,

+ T]m( i.j+l/2,k¢ij+1/2k,m - Ai,j—l/Z,kq)ij—l/Zk,m )+ Cm (Aij,k+1/2q)ijk+1/2,m - Aij,k—l/Zq)ijk—l/Z,m )}

¢ Considering the previous definitions, it is:

j d€2 j( }b( )dA 4w szk{u ¢i+l/2jk,m_q)i_l/2jk’m

4TCW Ijk Axi

+tn

: Ay; Az

¢i,j+l/2k,m - q)i,j—l/2k,m ¢ijk+l/2,m - q)ijk—l/Z,m
+G,

e [tis also put

I dQJ. ( ) q(?,fl)}dv 4mw ‘/l]k( z,zjkq)ijk,m_ql'jk,m)
41w, ,Jk
where it is
1 =
Gijem = Wm{[ dszvj gl ©)av

ijk
¢ We finally have
¢i+1/2 jkom ¢i—l/2 jem O; ji2km = Qi jm1/26m i Oiiry2m = Pijk—1/2,m
" Ax; " Ay; " Az
+ 2, Ok = Dijem (i=1..1)(j=1.J)k=1.,K);(m=1..N,)
representing the discrete ordinate form of the transport equation
for the multi-dimensional case

Solution algorithm and choice of directions
e Also in this case the solution algorithm takes into account the
direction of motion of neutrons and then of the sign of direction

cosines 11, 1, and {, of Q
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¢ In particular, in anyone of the three directions, the diamond rule is
adopted accordint ot the following rationale:

{Mm >0 Oivi/2, jkm = 20ijk.m = Oiz12, jkm
W, <0 q)i—l/z,jk,m = 2¢ijk,m - ¢i+1/2,j/<,m
{nm >0 Oi j+1/2.6.m = 20ik.m = i, j—1/2.km
Ny <0 q)i,j—l/Z,k,m =204 — ¢i,j+1/2,k,m
{Cm >0 Oij k+1/2,m = 29i%.m = Pij k—1/2.m
Cn <0 Oijk—1/2,m = 20 m = Vij k+1/2.m

¢ Then, substituting the appropriate form of the diamond rule in the
relation

¢i+1/2 jkom ¢i—1/2 jk.m 0, j+1/2km 0, j-1/2k,m ¢ijk+1/2,m - ¢ijk—l/2,m
m +1,, +C
AXI- ij AZk
+ 2, i Okm = Dijkom (i=1...1):; (j=1....7); (k=1...K); (m=1,....N,)
the equations are solved proceeding for increasing or deacreasing
coordinates, according to the sign of the respective direction cosine

¢ For instance, let us consider to particular cases:
¢ u >0mn,>0C,>0

2“"‘[ 2nlﬂ 2CIT’L
Eq)i—l/Z wm T Eq)ij—l/Zk,m + Iq)ijk—l/lm + ik m
q)ijk,m = l - -
2“[” + an + ZCI’H + Zr lk
Ax, Ay, Az, Y
¢ u, <0m,, >0C, <0
2“"‘[ 2nlﬂ 2Cm
- Eq)m/zjk mt Eq)ij—l/Zk m Eq)ijkﬂ/lm + G m
¢ijk,m = l - -
_ 2l"l’m + 2nm _ ZCm +Z“"k
Ax Ay, A Y

Selection of the directions

e The choice of the directions can be made with a relatively large
freedom, though it is generally required that some fundamental
criteria are respected

e A first criterion consists in imposing that once a given direction
Q, ={u,.n,.C,} has been chosen, such that it must be
M + M+ =1
also the directions {-u,b.m,.¢,.}, 1u,.—M,.¢,} and {u,.n,.—C,} are
consiered admissible:
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this allows imposing in a simple and direct way reflective conditions
orthogonal to the there axes of the reference frame

e Whenever such choice is made, it is possible to consider only the
directions included in a single octant, then translating the results to
the others

¢ A particularly interesting choice is the one consisting in imposing
that the adimissible directions are invariant to 90° rotation around
any axis of the reference frame

e These ‘“level symmetric quadratures” are characterisedby the fact of
being selected making use of asingle degree of freedom. In fact, it is
assumed that the direction cosines are all chosen by a single set,
defined as

1<ty <.<-1, <0<t <.<ty; ;5 <1
¢ Now, let us assume that we select three cosines such that
Wy, =1 My =1 Cn =t
In this case, it must be obviously
i+t 1 =1 (a)

So, making the further choice p, =7

1

and n, =¢;,, in order to
satisfy the normalisation relationships we require that { =7, _;:
1+t g =1 (b)
By subtracting side by side (b) to (a) we get
2 —12 =t} -1}
j+1 J k k-1
Since j and k are arbitrary, we have:
tF =12, +C = =t +({-1)C
Finally, since it must be
1+ 1y, =1
we finally get
2(1-3:2)
M -2
¢ Since such quadratures involve for each axis M /2 positive and M/2
negative values for each direction cosine, they are considered Sy,
quadratures’ (actually the general name is “Sy”’)
e The total number of directions per each octant is M (M +2)/8 and
the overall number on the unity radius sphere is M (M +2)
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For the weighting coefficients, a normalization on each octant is
generally adopted

where w! = is the weighting coefficient for a general direction

related to the first octant
As a consequence the scalar flux in 7; can be obtained by the

angular flux by the relationship
1M (M+2)

q)ijk o Z qu)ljk m

In each octant we also assume that the directions obtained by
permutation of direction cosines have the same weight

However, even considering all these limitations, it is possible to
envisage different choices for the weighting coefficients

For instance, it is possible to request that the maximum possible
degree of Legendre polynomials in the three directions be
integrated exactly; this leads to the so-called LQ, quadratures

Livello m M, W,

S, 1 1/-/3 1

S, 1 0.3500212 0.3333333
2 0.8688903

Se 1 0.2666355 0.1761263
2 0.6815076 0.1572071
3 0.9261808

Sg 1 0.2182179 0.1209877
2 0.5773503 0.0907407
3 0.7867958 0.0925926
4 0.9511897

LQ, parameters for Sy quadratures

e Otherwise, it can be preferred to assign a fraction of the area of the
sphere to any direction, to be used as its weight
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The above considerations, related to the 3D case, can be easily
applied also to 2D systems; in such a case an Sy; method will involve
a total number of directions equal to (M +2)M/2 in the four

quadrants
S, S,
°
S6 SS

Qualitiative indication of the directions for Sy

in the octant with positive direction cosines

Acceleration methods for discrete ordinates

General considerations

In the above treatment it was assumed that the emission density, g,
was assigned

For purely absorption problems this corresponds to the actual
situation, but in most cases having a practical interest the scattering
introduces a variability of emission density as a function of flux

As already mentioned, the problem is solved by iterating on the
scattering source, starting with an initial guess and adopting an
appropriate convergence criterion

As already mentioned, the problem is solved by iterating on the
scattering source, starting with an initial guess of angular flux and
adopting an appropriate convergence criterion
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e However, convergence may not be fast in cases of optically thick
regions and when the scattering within a given energy group is
considerable

¢ In such cases, an acceleration procedure is necessary

“Coarse mesh-rebalance”

¢ This technique is based on the fact that a distribution of angular flux
obtained after reaching convergence must satisfy the neutron balance

¢ On the contrary, this is generally not true for the angular flux
obtained at some iteration, which is based on the scattering source
guessed at the previous iteration

¢ The basic idea of the method is therefore to modify the angular flux
distribution by multiplying it by variable factors to be determined
in ‘“macro-regions” (coarse meshes) just imposing the neutron
balance

e As we already discussed, the neutron continuity equation can be
obtained from the integro-differential equation integrated over the
whole solid angle:

[©- grad;olF.Q)a + [=,F)olF. @)de = [da[£, .0 - hF.a)a + [s(F.0)do
4n 41 4n 4n 41
and then

div [Q0lF, k0 + £, (F) [olr. ok = [ olF. 0 ke [£,F.0- e+ [sF.alke
4T 47 4T 47 47
and, again
divd (F)+ 2, (F)o(F) = £, (F)o(F) + S (r)
or

divi(F)+2,(7)o(F) = S(7)

where we have put £ (F)=2,(r)-Z,(7)

¢ The integration domain, already subdivided into many relatively
small nodes for the solution of the transport equation by the Sy
method, is now subdivided into »~, larger regions (‘“‘coarse
meshes”)

¢ We than impose that the neutron balance is satisfied in every region
V

m
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[divi(F)av + [£,(F)o(F)av = [S(F)av

m m m

obtaining

> [IG)-idr+ [£,Gh@F)av = [sF)av

m m

e For reasons that will be clear in a while, it is convenient to
subdivide the current at each interface between adjoining regions
into the “inward” and the “outward” contributions. It is therefore:

> IJ+(F)dF—Z [7_(F)ar+ [, (F)o(F)av = [$(F)av
ML ML Vi Vin

e In this equation, we now assume that the scalar flux and the
currents are numerically obtained by integrating the angular flux
obtained at the /-th iteration by the Sy method

e Identifying this angular flux distribution by ¢’ (?,Ez), we assume that
it can be multiplied by a coefficient (presently unknown) that is
different for each region. The purpose of this action is to impose the
fulfillment of the neuotrn balance:

o7, 9)= 1,0'(7.9) Fev,
o*(7.0)= 1, (7.Q) Fel, .Q-ii, >0
o1 (7.0)= 7,4 (7. 0) Fel, Qi <0

¢ We can therefore put:

Macro-regions for the “coarse-mesh rebalance”
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j¢“l( a)ae= 1, [§F.8)de= 1, (F)

4
aQ=f, | 3'(7.0)
<0
1.7)= [¢"F.8)ed =y, [§F0)6i0 a=r,TF) Fel .
Q-u,>0 Q-u,>0
¢ By substituting the above formulas in the neutron balance, we have:

Zj] dr+j2 dVJf Z{I] Jm:IS(?)dV

and, puttlng

é . ﬁe dQ = fmjf (7_;) re me'

<

Qi <0

I_F)=| q)”l(?,fz)é.ﬁe

—_— O
=

Zj] dr+j2 o' (F)dv

jJ b, = [S(F)av
VI‘Vl
we have
ammfm - Zamm'fm' :bm (m=1,2,...,Nm)
m'#m

representing a linear system with sparse matrix in the unknowns £,

e The solution of this system allows therefore to obtain the new
approximation of the angular flux to be used as a guess of the next
iteration cycle on the scattering source

Diffusion Synthetic Acceleration (DSA)
e This technique makes use of a low-order approximation of the
transport operator in order to improve convergence

¢ For the sake of simplicity, we will restrict the treatment to the case
of isotropic scattering and independent source; the neutron
transport equation is

Q- grad;¢(17,§2)+ z, (’7)4)( * )

4n 0) [ofr,&)aer = S00)

in 47
e Using an operator notation, we put

H0-=§-grad;-+2t(?)- H1-=Zi(r)
T

[-ag H-=H, —H,-
47
obtaining

6)= Solr)

H(])(?,fl): Hoq)(;’é)_qu)(’:’Q AT
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By integrating both sides of the above equation on all the directions,
it is

[ HolF.Q)ae = 5, (7)

4n
We now introduce the low-order transport operator as the neutron
diffusion operator

H,-=—divD(r)grad: -+%,(r)-

The transport operator can be thus written as the summation of the
lower order operator plus the difference operator

j H, +(H -1, 0)ia = s,F)

Since the diffusmn operator works directly on the scalar flux, the
following notation can be adopted

[ 1,007.8)d0. 1,009

47
thus obtaining

-

H,0(7)= So(F)- [ (1 -, )olF. ©)ag

47
This suggests to use the iterative scheme
H, 0" ()= $0(7)- [ (0 - H,)5' (7. ©)ae
47
or

H, 10 ()-8 ()] = S0(F)- [H9' (2 )ae ©)
4n
where ¢’ (?Ez) is the angular flux obtained by the transport operator
making use of the scalar flux obtained at the /-th iteration and
included in the scattering term:
Ho¥'.8)= 0 . 8)s ) *°)
T
We can now note that
§'F.0)= b F.0)- 1§ F.0)
Ho'\r,Q)|=Hyo \r,Q)-H$ \r,Q
Making use of (°°), the above becomes
~ (- = L =), S g S
4 .8)- 10 6.0) 5010 35 )- o .0 ) S0
Substituting this result into (°), it is found
- (- - ~ =\ <[~ = Sy (r
Ha[q)”l(r)—q)l(r)] =5,(r)- j{Hl[q)l(r,Q)— ¢l(r,Q)]+%}dQ

47
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10" F)-3 ) = [ #,0F.0)-o'F. Gl

e It can be noted that the above allows to obtain a new guess of the
scalar flux operating with the diffusion operator
H,-=—divD(F)grad- - +% ,(r)- H, = Z;—M j dQ’
T
47

Thus obtaining
(div D7) grad; =, P )-8 7)) =2, @6 ) o' ()]
e Therefore, once ¢'(7) and ¢'(7) are known, this “easier” formulation
allows to update the scalar flux for the next iteration.

“Ray effects”

e A classical problem faced by the application of the Sy methods of
limited order is the occurrence of oscillations in the computed
scalar flux having no physical meaning

¢ The amplitude of such oscillations can be reduced by increasing the
order of the Sy method, while their frequency increases

e The reason for such behaviour of Sy methods can be considered a
direct consequence of the discretization in the angular coordinate

¢ In fact, since the scalar flux is calculated as a weighted average of
the angular flux obtained for a limited number of directions, it may
happen that its value is perturbed by the discontinuities that the
angular flux may show in some particular cases

¢ The Figure below reports the case of a neutron source (the central
region) surrounded by a region assumed to be characterised by a
scattering macroscopic cross section sufficiently smaller than the
total one (=, <<x,)
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e By imposing a boundary condition of free surface on the external
boundary, the problem should be typically one-dimensional, and we
should expect that on circles (as the dashed one) the scalar flux
should be constant

¢ It must be recognised that the above case, chose just for purpose of
proposing an example, is very peculiar, because:

- a 1D case should be treated by an appropriate technique taking
advantage of one-dimensionality;

- Cartesian coordinates would anyway approximate the circular
regions with an irregular boundary.

e However, the presented case has the merit to show even more
clearly than other examples reported below in the exercises the
consequence of a ray effect

¢ In fact, assuming to calculate the flux along the dashed circle in the
Figure with the S, method and considering that, owing to the
relatively large value of the absorption cross section, the flux is
mostly made by “first flight” neutrons coming from the source, the
resulting scalar flux would result oscillatory, being larger in the
location B than in A

e This is because the ‘“first flight” neutrons that give a substantial
contribution to the scalar flux can hardly reach the location A from

A

S, S,

Typical situation of the occurrence of the “ray effects”
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the source through the few directions that do not intercept it;
viceversa, in the case of point B there is a direction that itercepts the
point starting from the source, giving a larger contribution to the
angular flux

¢ The mitigation of the problem can be obtained by using more many
directions, e.g. by an S scheme; as it can be argued from the figure
the expected oscillations in the scalar flux will be smaller than with
the S, method, though their number will increase along the
circumference

¢ Another possible solution is to replace the angular discretisation (a
sort of angular ‘‘collocation’’) with angular averages over direction
intervals. These methods improve the effect at low orders, though
they do not completely solve the problem
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GAUSSIAN QUADRATURES

(See Ghelardoni Marzulli “Argomenti di Analisi Numerica” ETS 1980 Vol. I, p. 115 e pp. 132
e sgg.)

Theorem
Considered M distinct values of the abscissa x,x,,...,x,,, in the set of

quadratures having the form
b M
J.a f(x)dx = zWif(Xi)
i=1

there is only one quadrature having exactly the accuracy at least equal
to M-1 (i.e, that provides exact integrations of all the polynomials in
[a,b] having degree up to M-1)

¢ In fact, we need solving the system

M
Zw[- =b—-a
i=1

.A:[leixi :%(bz_az)

M
S =L (oM )
i=1 M
whose (“‘Vandermonde”’) determinant is certainly non-zero

e Whenever the x,x,,..,x,, are not assigned, it is possible to
determine the M coefficients w, and the x;, such that it is possible to

integrate exactly polynomials up to the degree 2M-1. We have in
fact the equations
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Theorem
If the points x,,x,....x,, are the zeroes of the M degree orthogonal

polynomials over [a,b] it is possible to construct a quadrature formula
" F()dx = Y )
having accuracy of order 2M-1 WhO;:el coefficients are the numbers
w; =I:IM_1’,-(x)dx (i=1,.,M)
with [,,_, ;(x) I’i-th interpolating polynomial having degree M-1

(=) (e =2 )or = x4y ) (= )
Xi _xl)"'(xi _xi—l)(xi _xi+1)"'(xi _XM)

lM—l,i(x) = (
¢ Such formulations take the name of Gaussian quadratures
e When the interval of definition is [-1,1], the orthogonal polynomials

are Legendre polynomials and the above formulations take the
name of Gauss-Legendre quadratures
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EXERCISES WITH AN IN-HOUSE CODE

Solution of the Integro-differential Equation of Neutron Transport
in Cartesian 3D Geometry with the Discrete Ordinate Method

1. Description of the Method

The FORTRAN programme is based on the relations already described during

lectures for the Sy methods.

In particular:

¢ the transport equation:

aiviolr, &) +,(FolF.8)-ql7. 2)=0

is spatially discretised as

u ¢i+1/2jk,m - q)i—l/2jk,m +M q)i,j+1/2k,m - (I)i,j—l/2k,m n C.» (I)ijk+1/2,m - q)ijk—l/Z,m
+ 2, 5 Diim = D (i=1..0);(j=1...J)(k=1..K)(m=1,.N,)

¢ the “diamond rule” is applied coherently with the sign of direction cosines:

{Mm >0 ¢i+1/2,jk,m =20k m — ¢i—1/2,jk,m
W, <0 ¢i—1/2,jk,m =204, — ¢i+1/2,jk,m

{ﬂm >0 ¢i,j+1/2,k,m =20;.m — Oi j—1/2.km
My <0 ¢i,j—1/2,k,m =20;4m — ¢i,j+1/2,k,m

{Cm >0 ¢ij,k+1/2,m = 20;%.m = Oij k-1/2,m
Cn <0 Oijk—1/2,m = 206 m = Pij k+1/2,m

obtaining formulations having the form:
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‘ Hm >O’nm >O’Cm >0

2“"‘! 2nm 2CI7’L
Ax. (I)i—l/Z ke +E¢ij—l/2k,m +I¢ijk—l/2,m tGim
q)ijk,m = l : k
2“”’! + znm + ZCH'L + Zt lk
Ax, Ay, Az, v
‘ Hm < O’nm > O’Cm < 0
2“7” 211"1 2CW!
- Eq)m/zjk,m + Ty¢ij—l/2k,m - I¢ijk+l/2,m + G m
(I)ijk,m = I . :
_ 2,'Lm + 2nm _ 2Cm +Z;i‘k
Ax, ij Az, v
e The “step” rule for fix-up” is used when
Do om <O with p >0m >0 >0 :

in place of the diamond rule, it is assumed

¢i+1/2, jkm = q)ijk,m

and the average flux is obtained as

l"l’m 211"1 ZCVH
Ax ¢i—l/2jk,m + Ay ¢ij—l/2k,m + Az ¢ijk—l/2,m + G m
i i k
q)'jk = ! =0, ;
ijk,m 2 2 1+1/2,jk,m
uﬁ‘l + nnl + CV’I + Z

A, Ay, Az 1ijk

¢ L.Q, quadratures are used for the admisssible directions and their weights (up to

Sg)
Level n By w,
S 1 03500212 0.3333333
2 0.8688903
Ss 1 0.2666355 0.1761263
2 0.6815076 0.1572071
1 3 0.9261308
s, 1 s 22 Si 1 0.2182179 0.1209877
12377, 2 0.5773503 0.0907407
3553 3 0.7867958 0.0925926
5, 1 24542 4 0.9511897
11 123321 Si 1 01672126 0.0707626
2 0.4595476 0.0558811
3 0.6280191 00373377
s 1 4 0.7600210 0.0502819
6455 5 0.8722706 0.0258513
121 6 0.9716377
S 1 S 1 0.1389568 0.0489872
16 22 2 0.3922893 0.0413296
353 3 0.5370966 0.0212326
s, 1 4664 4 0.6504264 0.0256207
8,7 47874 5 0.7467506 0.0360486
232 368863 6 0.8319966 0.0144589
L2721 2567652 7 0.9092855 0.0344958
12344321 8 0.9805009 0.0085179

(from E.E. Lewis and W_.F. Miller, Jr. "Computational Methods of Neutron Transport", John Wiley
and Sons, 1984)
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In particular:

» the directions are generated in the octant with N(~N +2)/8 positive direction
cosines, obtaining those in the othe octants by rotation around the Cartesian

axes;
= given from the previous table the value of U, the other values are obtained by:
2(1 -3 )
2 2 . 1
C=u, +i-1)C C=

= the weighting factors are obtained by the previous tables, where the last table
specifies the weighting factors for directions labeled by a given value of n in
the first table

* in the aim to minimize memory use, the value of the angular flux for any
direction is not stored in memory, assigning its contribution to the scalar fux in
an incremental way for each direction

e the scalar flux is calculated as:
N+2

zjk Z mq)zjk m

where the weighting coefficients are normahzed over an octant

e Taking into account this formulation, the emission density must be properly
evaluated; in fact, multiplying by Ax,Ay Az, w, /8 boths sides of the relationship

¢i+1/2 jkm q)i—l/Z Jjk,m +M q)i, J+/2km q)i, j=1/2k,m n C, ¢ijk+l/2,m - q)ijk—l/Z,m
m Ax m Ay m AZk

i J
+ Zt,ijkq)ijk,m =ik, m

and taking the summation over m, it is

m=1

N(N+2) N(N+2)
g{ Z Wm“’m i+1/2 jk,m Z Wm“’mq)i—l/ij,m }ijAZk
1

1

N(N+2) N(N+2)
3 { Z n ¢U+l/2k m Z Wmnm(l)ij—l/Zk,m }AxiAZk
m= m=1

1 N(N+2) N(N+2)
g w,G,,0 Uk+1/2 m Z WmCmq)ijk—l/Z,m }Axiij
m=1 m=1
N(N+2) N(N+2)
+ Itjk 8 Z_;qu)wk mA)C ijAZ g Z_;quijk,mAxiijAzk
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and then

{‘]i+1/2jk 'l?_ Ji—1/2jk ; }ijAZk + {‘]ij+1/2k ) }:_ ‘]ij—1/2k ) } }AxiAZk
+ {jijk+l/2 k- jijk—l/2 -k }A’Y,’ij + Zt,ijkq)ijkAxiijAZk = qijkAxiijAZk

— —

where i, j e k represent the unit vectors parallel to the Cartesian axes and it is

assumed

- R U

‘]iil/Zj l=§ Z mum i+1/2 jk,m

~ _ 1N(N+2)

‘]ijil/Zk ©J —g Z mnmq)ijil/Zk,m
m=l1

- o1 N@2)

‘]ijkil/Z k :g ZW CJ ¢ijki1/2,m
m=1

1 N@=2)
9ijk :g ZW ik m

3
I

The obtained balance equation obviously represents the neutron balance on the

volume.

For the emission density, it is noted that in the case of isotropic scattering and
independent source it is:

1 N(N+2)

qijk,m = qijk - q[jk = g Z quijk,m = q[jk

m=1
where use is made of the relationship
1 N(N+2)
g "
In summary, it is necessary to remember that in the definition of the emission
density the weighting factors are normalised to one instead of 4.

For isotropic sources, it is:

N+2 N+2

q[jk Z wm {Z q)ljk m + Sljk m }_Z o Z wmq)ljk m + S
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and then
Qijkm = Zs(l)ijk + S
Finally, since the emission density contains the scattring source, it is possible

to iterate on the flux starting from an estimate of the emission density based on the

independent source only:

0 —
qijk,m - sijk

2. Structure of the program input file

An example of input file is reported hereafter.

Number of x layers Number of y layers Number of z layers Order of the SN Method
1 1 1 6
x Layer Thickness Number of nodes in each x layer (repeat for each layer)
4. 40
y Layer Thickness Number of nodes in each y layer (repeat for each layer)
4. 40
z Layer Thickness Number of nodes in each z layer (repeat for each layer)
10. 40
Sigma Tot. in general Sigma Scatt. in general Source in general
0.750000 0.500000 0.

Number of regions with properties different from the general ones
4

Characteristics of the regions:

x1 x2 yl y2 zl z2 SigmaTot. SigmaScatt. Source

0.5 1.5 1.5 2.5 2 8. 0.750000 0.500000 1.
1.5 2.5 0.5 1.5 2. 8. 0.750000 0.500000 1.
2.5 3.5 1.5 2.5 2 8. 0.750000 0.500000 1.
1.5 2.5 2.5 3.5 2. 8. 0.750000 0.500000 1.

Boundary conditions: value of the flux on the six lateral surfaces
West Face East Face South Face North Face Bottom Face Top Face
0. 0. 0. 0. 0. 0.
Max. Error on Flux

1.d-05

As it can be noted, the programme allows defining different discretization steps in
different layers along the three axes.
General nuclear properties are assigned for the material in the integration

domain, though in parallelepipedal regions it is possible to specify different values
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for the cross sections and the source. In this way, it is possible to specify problems
characterized by different sources and property distributions.

It is possible to assign over the six lateral surfaces boundary conditions in
terms of inward angular fluxes (isotropic for the inward directions). Imposing that
these fluxes are zero, an isolated body is considered. By convention, assigning

negative fluxes, pure reflective conditions are assumed by the code.
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3. First Applications

Isolated Cube Made of Absorbing Material

with Internal Source in a Cubical Region

, S=1
1
1
» 1
" A T
y T Y, =3/4
= A
4 E }'______ ) Z.v_2/32t
Iz A SR
X L’
//
Y 4
¢ Input deck
Number of x layers Number of y layers Number of z layers Order of the SN Method
1 1 1 2
x Layer Thickness Number of nodes in each x layer (repeat for each layer)
4. 40
y Layer Thickness Number of nodes in each y layer (repeat for each layer)
4. 40
z Layer Thickness Number of nodes in each z layer (repeat for each layer)
4. 40
Sigma Tot. in general Sigma Scatt. in general Source in general
0.750000 0.500000 0.
Number of regions with properties different from the general ones
1
Characteristics of the regions:
x1 x2 vl y2 zl z2 SigmaTot. SigmaScatt. Source
1. 3. 1. 3. 1. 3. 0.750000 0.500000 1.
Boundary conditions: value of the flux on the six lateral surfaces
West Face East Face South Face North Face Bottom Face Top Face
0. 0. 0. 0. 0. 0.

Max. Error on Flux

1.d4-05

e Check on the distribution of the discrete ordinates for the different orders of the

method
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S, approximation

‘
2020 0.00 0.
n

20 0.40 0.60 0.80 1.00

1.00 1.00
0.80 -| 0.80
0.60 | . . 0.60 -
0.40 0.40 1
0.20 0.20
= 0.00 s 0.00
-0.20 -0.20
-0.40 -0.40
-0.60 - - - -0.60 =
-0.80 -0.80
-1.00 ! ! ! ! ! -1.00 ! !
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 -1.00 -0.80 -0.60 -0.40
[
1.00
0.80
0.60 -
0.40 4
0.20 4
s 0.00 -
0.20
-0.40
-0.60 =
-0.80
-1.00 ! ! ! !
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
n
S4 approxtmatlon
1.00 1.00
. . .
0.80 0.80
0.60 | 0.60 |
0.40 - 0.40 -
. . . . .
0.20 0.20
= 0.00 | s 0.00 1
-0.20 1 -0.20 1
| ] | | | | | ] | ]
-0.40 -0.40
-0.60 -0.60
-0.80 1 -0.80 1
. .
-1.00 ! ! ! ! ! ! -1.00 ! !
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 -1.00 -0.80 -0.60 -0.40
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1.00
. .
0.80 -
0.60
0.40
0.20 -
s 0.00
-0.20
-0.40 -
-0.60 -
-0.80
. .
-1.00 T T T
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
n
Ss approximation
1.00 1.00
- - | | | ]
0.80 0.80
| | | ] | | | | L] - -
0.60 - 0.60
0.40 - 0.40
| ] | | | ] | | | | | | ] ] | | | ]
0.20 0.20
= 0.00 s 0.00
-0.20 - -0.20 -
| ] | | | ] | | | | | | L] - - -
-0.40 -0.40 -
-0.60 -0.60 -
| | | ] | | | | - - -
-0.80 - -0.80
| ] | | | | | ]
-1.00 T T T T T -1.00 T T T T
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
m
1.00
. .
0.80 -
0.60
0.40
| | | | | | | ] | | | |
0.20 -
s 0.00
-0.20
-0.40 -
-0.60 -
-0.80
. .
-1.00 T T T
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
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Ssapproximation

1.00 1.00
u - u -
0.80 = u m [ 0.80 = u m [
0.60 " w L w ] L] 0.60 " w L w ] L]
0.40 0.40
020" m n u m » T 020" # n u m » T
= 0.00 0.00
-0.20 w w u | = -0.20 1w w u ] w
-0.40 -0.40
-0.60 - . - u - = o -0.60 - . - u - = o
-0.80 - " = -0.80 - " =
-1.00 — -1.00 —
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00
" M
1.00
u B
0.80 = u
0.60 - [ L] L . ] L]
0.40
020 |2 » » »
s 0.00 -
0201w @ = u - . T
-0.40
0.60 . = u - = |
-0.80 - - = " -
u -
-1.00 T T T
-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

e [t can be noted that:

n

= Increasing the order of the approximation, the unity radius sphere is gradually

populated by directions;

= the directions are the same for £90° rotations with respect to any frame axis.

NMNR-Unit-5 — Neutron Transport Theory Fundamentals and Solution Methods — Part 2 12



Results:

Cubic Source Problem
Grid: 40x40x40 with S2 Approximation

S RS S

SRS ) S N

S ‘\:\\“ SOSSS . Planez=Lz/2
SR

7/
% T
20700, S5 ‘\\\\\ >
S XSS SIS
SESEELEIS SRS
S SIS

8!
S S SR SIS IS SIS ST
S
SESSIID
SIS
oS>

Plane z =0

The explanation of the behaviour observed on the lateral surfaces becomes evident
considering that the adimissible directions are in a too small number to provide a
sufficiently detailed representation of the scalar flux.

For instance, in the position illustrated in the following figure the 8 directions

do not intersect the source, resulting in a minimum of the scalar flux.

- L

This occurs with perfect symmetry for any lateral surface.
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Cubic Source Problem
Grid: 40x40x40 with S4 Approximation
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Cubic Source Problem
Grid: 40x40x40 with S6 Approximation
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Cubic Source Problem
Grid: 40x40x40 with S8 Approximation

Planez=1z/2
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* The “ray effect” is particularly clear in the case of the S, approximation, that
provides a totally unrealistic trend of the scalar flux on the plane z = 0, to be
considered in view of the only eight admissible directaion (one per each octant).

* By increasing the number of directions, the problem is mitigated, though
oscillatory trends are anyway observed, to be put in relation with ray effects.
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Square Cell with Cylindrical Rod

The calculation is performed with the S8 approximation, making use of the following

input file, where the absolute of the negative value of y2 indicates radius of the rode

centered in (x1,yl).

Number of x layers Number of y layers Number of z layers Order of the SN Method
1 1 1 8
x Layer Thickness Number of nodes in each x layer (repeat for each layer)
2. 40
y Layer Thickness Number of nodes in each y layer (repeat for each layer)
2. 40
z Layer Thickness Number of nodes in each z layer (repeat for each layer)
4. 40
Sigma Tot. in general Sigma Scatt. in general Source in general
0.50000 0.500000 1.

Number of regions with properties different from the general ones
1

Characteristics of the regions:

x1 x2 yl y2 z1 z2 SigmaTot. SigmaScatt. Source
1. -0.5 1. 0. 0. 4. 0.750000 0.500000 0.
Boundary conditions: value of the flux on the six lateral surfaces
West Face East Face South Face North Face Bottom Face Top Face
-1. -1. -1. -1. -1. -1.

Max. Error on Flux

1.d4-05

Note that the values of the cross sections are purely parametric.
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The results show a classical spatial trend of the thermal flux (the source is located in
the moderator). A considerable depression of the flux is noted in the rod in the plane

z = L,/2. Flux oscillations due to the "ray effects" are again observed.

It is also interesting to note that that along an axial plane the flus is absolutely
independent from the z coordinate, testifying for the effectiveness of the choice of
reflective boundary conditions on the top and bottom planes in transforming the 3D

problem into a 2D one.
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Plane z=2 cm

Plane y =0
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Benchmark Problem Iron-Water

(v. H. Khalil, Nucl. Sci. Eng., 90, pp.263-280, 1985)

VACUUM BOUNDARY

| o
i+1777777777
w1

T\
[ 2en —o 3| 6em o 9cn

REFLECTING BOUNDARY

5 \ SOURCE_STRENGTH
COMPOSITION (cm') c {em 3.5
1 (WATER) 333 0994 10
2 (WATER) 3.3 0.994 0.0
3 (IRON)  1.33 083 00

Fig. 2. Geometry and material properties for the iron-

water benchmark problem.

VACUUM BOUNDARY

TABLE IV
Results of the Iron-Water Benchmark Problem*

Number of X-Y

mesh cells, / x J 6x6 10x 10 20 x 20
Maximum 7, 20.0 10.0 5.0
Minimum 7, 4.0 4.0 2.0
Number of

synthetic

iterations 4 4 4

Computing time
for diffusion
iterations (s) 0.18 0.39 1.73

Computing time
for transport

sweeps (s) 0.06 0.14 0.51
Total solution
time (s) 0.24 0.53 2.24
Average flux by
composition®
(cm~2.571)
4.0060+1° 4.0652+1 4.0900+1
2 1.5896+0 1.5259+0 1.4164+0
3 2.3885—1 2.1782-1 2.2744-1

*Directional approximation = S,.
*See Fig. 2.
YRead as 4.0060 x 10'.

The problem is simulated in 3D version with reflective conditions on the faces

orthogonal to the z axis. The input file is the following

Number of x layers
1 1

Number of y layers

x Layer Thickness

30.

y Layer Thickness

30.

z Layer Thickness

10.

Sigma Tot. in general

3.33

Number of z layers

Sigma Scatt. in general

Order of the SN Method
1 8

Number of nodes in each x layer (repeat for each layer)

Number of nodes in each y layer (repeat for each layer)

Number of nodes in each z layer (repeat for each layer)

Source in general

0.

Number of regions with properties different from the general ones

Characteristics of the regions:

3
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Source

SigmaScatt.

SigmaTot.

z2
10.
10.
10.

z1

y2
12.
21.

yl

x2
12.
21.

x1

.31
1.105
1.105

.33
.33
.33

15.

21.

15.

21.

value of the flux on the six lateral surfaces

Boundary conditions:

East Face South Face North Face Bottom Face Top Face

West Face

-40.

-40.

-40.

-40.

Error on Flux

Max.
1.d-05

solution of the transport equation in agreement with the sign of direction

assignement of directions and of the related weights;
cosines;

updating the emission density.

calculation:

e Analyse the computer program trying to indentify the following phases of the

It can be noted that the average value of the flux in region 1 is 4.09e01, in in

agreement with tabulated data.

4. Proposed activities

21
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c c
c c
c Program for the solution of the integrodifferential equation c
c for transport in 3D geometry c
c c
c This programme has been set up for teaching purposes c
c and was not subjected to a sifficiently thorough validation c
c to assure the quantitative correctness of the results c
c c
c W. Ambrosini, DIMNP, Dicember 2000 c
c c
c
program tras3d
implicit double precision (a-h,o-z)
c
include 'tras3dc.for'
c
open (unit=5,file='schermo.dat"')
open (unit=6,file='tras3d.out')
open (unit=7,file='tras3d.ord')
open (unit=8,file='trasxy.txt')
open (unit=9,file='trasxz.txt')
open (unit=10,file='trasyz.txt')
open (unit=11,file='trasxyl.txt')
open (unit=12,file='trasxzl.txt')
open (unit=13,file='trasyzl.txt')
open (unit=14,file='trasxy2.txt')
open (unit=15,file='trasxz2.txt')
open (unit=16,file='trasyz2.txt')
c
c Pi is calculaetd
c
pi = 4.d00 * datan (1.d00)
c
c Reading the number of layers along the thtee axes and of the order of the method
c
read (5,%)
read (5,*) nlax,nlay,nlaz,nordin
c
c Reading of the thickness of the layer and assignment of the node coordinates (x)
c
read (5,%)
c
x(1) = 0.d00
i=1
c
do ilax = 1,nlax
read (5,*) deltx,nlx
dx = deltx / dfloat (nlx)
c
do ix = 1,nlx
i=1i+1
x(i) = x(i-1) + dx
xm(i-1) = x(i-1) + 0.5d00 * dx
enddo
c
enddo
c
nx =i-1
c
c Reading of the thickness of the layer and assignment of the node coordinates (y)
c
read (5,%*)
c
y(1) = 0.d00
j=1
c
do ilay = 1,nlay
read (5,%*) delty,nly
dy = delty / dfloat (nly)
c
do iy = 1,nly
j=3+1
y(3) = y(3-1) + dy
ym(j-1) = y(j-1) + 0.5d00 * dy
enddo
c
enddo
c
ny =3j-1
c
c Reading of the thickness of the layer and assignment of the node coordinates (z)
c
read (5,%*)
c
z(1) = 0.d00
k=1
c
do ilaz = 1,nlaz

read (5,*) deltz,nlz
dz = deltz / dfloat (nlz)
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z(k) = z(k-1)

+ dz

zm(k-1) = z(k-1) + 0.5d00 * dz

enddo
c
enddo
c
nz =k -1

c Reading of cross sections and of the source for general nodes

read (5,%)
read (5,*) sigmat, sigmas, sourt
c
do i = 1,nx
do j = 1,ny
do k = 1,nz
sigt (i, j, k) = sigmat
sigs(i, j, k) = sigmas
sour (i, j, k) = sourt
enddo
enddo
enddo
c
c Reading of the number and of the position of the regions having
c properties different from the general ones
c
read (5,%)
read (5,*) nreg
c
read (5,%*)
read (5,%*)
c
do ir = 1,nreg
read (5,*) x1,x2,yl,y2,zl,z2,sigmat, sigmas, sval
c
if (x2.gt.0.d00) then
do i = 1,nx
do j = 1,ny
do k = 1,nz
if( (xm(i).ge.xl) .and. (xm(i) .le.x2)
E .and. (ym(j) .ge.yl) .and. (ym(J) .le.y2)
.and. (zm(k) .ge.zl) .and. (zm(k) .1le.z2) ) then
sour (i, j, k) = sval
sigt (i, j, k) = sigmat
sigs (i, j, k) = sigmas
endif
enddo
enddo
enddo
c
else
radius = dabs ( x2 )
c
do i = 1,nx
distx = xm(i) - x1
c
do j = 1,ny
disty = ym(j) - yl
rad = dsqgrt ( distx * distx + disty * disty )
c
do k = 1,nz
if( (rad.le.radius)
E .and. (zm(k) .ge.zl) .and. (zm(k) .1le.z2) ) then
sour (i, j, k) = sval
sigt (i, j, k) = sigmat
sigs (i, j, k) = sigmas
endif
enddo
enddo
enddo
c
endif
c
enddo
c
c Reading of the inward fluxes at the six lateral surfaces
c
read (5,%)
read (5,%)
read (5,*) phiawf,phiaef,phiasf,phianf,phiabf,phiatf
c
c Definition of the maximum erro between two subsequent iterations
c

read (5,%*)
read (5,%*) epsphi

o]

Assignmenet of the discrete ordinates
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call diradm

c
c Assignement of the initial value of the source and of the fluxes at previous iteration
c
do i = 1,nx
do j = 1,ny
do k = 1,nz
q(i,j, k) = sour(i,j, k)
c
oldphi (i, j, k) = 0.d00
c
enddo
enddo
enddo
c
do im = 1,nm
c
do j = 1,ny
do k = 1,nz
phiaem(j,k,im) = dabs (phiaef)
phiawm(j,k,im) = dabs (phiawf)
enddo
enddo
c
do i = 1,nx
do k = 1,nz
phiasm(i,k,im) = dabs (phiasf)
phianm(i,k,im) = dabs (phianf)
enddo
enddo
c
do i = 1,nx
do j = 1,ny
phiabm(i, j,im) = dabs (phiabf)
phiatm(i, j,im) = dabs (phiatf)
enddo
enddo
c
enddo
c
c Loop for iteration on te scattering source
c
do iscat = 1,10000000
c
call trasp
c
call sscat
c
c Cechk on convergence on flux
c
dphimx = 0.d00
c
imax = 1
jmax = 1
kmax = 1
c
do i = 1,nx
do j = 1,ny
do k = 1,nz
c
absdif = dabs ( phi(i,j, k) - oldphi(i,Jj,k) )
c
if (dphimx.1lt.absdif) then
dphimx = absdif
imax = i
jmax = j
kmax = k
endif
c
enddo
enddo
enddo
c
write(*,100) iscat,dphimx
write(*,*) imax, jmax, kmax
write(*,*) phi (imax, jmax, kmax), oldphi (imax, jmax, kmax)
write(6,100) iscat,dphimx
c
c Criterion for stopping the iterations
c
if (dphimx.1lt.epsphi) goto 10
c
c Assigning the flux at the old iterations
c
do i = 1,nx
do j = 1,ny
do k = 1,nz
c
oldphi (i, j,k) = phi(i,j, k)
c

enddo
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enddo
enddo

enddo
10 continue
nxh

nyh
nzh

nx /
ny /
/

nz

NN

o]

Mapa for the planes z = zmax / 2 and z = 0

do i = 1,nx
do j = 1,ny
write(8,200) xm(i),ym(3j),phi(i,j, nzh)
write(11,200) xm(i),ym(j),phi(i,], 1)
write(14,200) xm(i),ym(j),phi(i, ], nz)

enddo
enddo

c Maps for the plane y = ymax / 2 and y = 0

do i = 1,nx

do k = 1,nz
c
write(9,200) xm(i), zm(k),phi(i,nyh, k)
write(12,200) xm(i),zm(k),phi(i,1,k)
write(15,200) xm(i),zm(k),phi(i,ny, k)
c
enddo
enddo
c
c Maps for the plane x = xmax / 2 and x = 0
c
do j = 1,ny
do k = 1,nz
c
write (10,200) ym(j),zm(k),phi(nxh, j, k)
write(13,200) ym(j),zm(k),phi(1,3, k)
write (16,200) ym(j),zm(k),phi(nx, j, k)
c
enddo
enddo
c
stop
100 format(/,1x,' Iterazione sulla Sorgente di Scattering N. ',i6,
' Errphi = ',el4.7,/)
200 format (3(1lx,el4d.7))
end
c
c c
c Subroutine generating admissible directins in an octant c
c c
c
subroutine diradm
implicit double precision (a-h,o-z)
c
include 'tras3dc.for'
c
c
c Assignement of the discrete ordinetes and of their weights
c
nm = nordin * ( nordin + 2 )
noct = nm / 8
c
c Parameters for the quadrature LQ2
c
if (nordin.eq.2) then
c
rsqr3 = 1.d00 / dsqrt (3.d400)
c
ami(l) = rsqr3
eta(l) = rsqr3
zeta(l) = rsqr3
c
w(l) = 1.d00
c
call rotoct (1)
c
c Parameters for the quadrature LQ4
c
elseif (nordin.eq.4) then
c

amil = 0.3500212d00
ami2 = dsqrt ( 1.d00 - 2.d00 * amil * amil )

weight = 1.400 / 3.d00
c
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ami(l) = amil
eta(l) = amil
zeta(l) = ami2

w(l) = weight

call rotoct (1)

ami (2) = amil
eta(2) = ami2
zeta(2) = amil

w(2) = weight

c
call rotoct (2)
c
c
ami (3) = ami2
eta(3) = amil
zeta(3) = amil
c
w(3) = weight
c
call rotoct (3)
c
c Parameters for the quadrature LQ6
c
elseif (nordin.eq.6) then
c
c
amil = 0.2666355d00
c
cost = 2.d00 * ( 1.d00 - 3.d00 * amil * amil )
B / dfloat ( nordin - 2 )
ami2 = dsqrt ( amil * amil + cost )
c
ami3 = dsqrt ( amil * amil + 2.d00 * cost )
c
weighl = 0.1761263d00
weigh2 = ( 1.d00 - 3.d00 * weighl ) / 3.d00
c
c
ami(l) = amil
eta(l) = amil
zeta(l) = ami3
c
w(l) = weighl
c
call rotoct (1)
c
c
ami (2) = amil
eta(2) = ami3
zeta(2) = amil
c
w(2) = weighl
c
call rotoct (2)
c
c
ami(3) = ami3
eta(3) = amil
zeta (3) = amil
c
w(3) = weighl
c
call rotoct (3)
c
c
ami (4) = ami2
eta(4) = ami2
zeta(4) = amil
c
w(4) = weigh2
c
call rotoct (4)
c
c
ami (5) = ami2
eta(5) = amil
zeta(5) = ami2
c
w(5) = weigh2
c
call rotoct (5)
c
c
ami(6) = amil
eta(6) = ami2
zeta (6) = ami2
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w(6) = weigh2
call rotoct (6)
c Parameters for the quadrature LQ8

elseif (nordin.eq.8) then

amil = 0.2182179d00

cost = 2.d00 * ( 1.d00 - 3.d00 * amil * amil )
B / dfloat ( nordin - 2 )
ami2 = dsqrt ( amil * amil + cost )

c
ami3 = dsqrt ( amil * amil + 2.d00 * cost )
c
ami4 = dsqrt ( amil * amil + 3.d00 * cost )
c
weighl = 0.1209877d00
weigh2 = 0.0907407d00
weigh3 = ( 1.d00 - 3.d00 * weighl - 6.d00 * weigh2 )
c
c
ami(l) = amil
eta(l) = amil
zeta(l) = ami4
c
w(l) = weighl
c
call rotoct (1)
c
c
ami (2) = amil
eta(2) = ami4
zeta (2) = amil
c
w(2) = weighl
c
call rotoct (2)
c
c
ami (3) = ami4
eta(3) = amil
zeta(3) = amil
c
w(3) = weighl
c

call rotoct (3)

ami (4) = amil
eta(4) = ami2
zeta(4) = ami3

w(4) = weigh2

call rotoct (4)

ami (5) = ami2
eta(5) = amil
zeta (5) = ami3
w(5) = weigh2
c
call rotoct (5)
c
c
ami(6) = amil
eta(6) = ami3
zeta (6) = ami2
c
w(6) = weigh2
c
call rotoct (6)
c
c
ami(7) = ami2
eta(7) = ami3
zeta(7) = amil
c
w(7) = weigh2
c
call rotoct (7)
c
c
ami (8) = ami3
eta(8) = amil
zeta (8) = ami2
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w(8) = weigh2

c
call rotoct (8)
c
c
ami(9) = ami3
eta(9) = ami2
zeta (9) = amil
c
w(9) = weigh2
c
call rotoct (9)
c
c
ami (10) = ami2
eta(10) = ami2
zeta (10) = ami2
c
w(10) = weigh3
c
call rotoct (10)
c
endif
c
do im = 1,nm
c
c Assignement of the corresponding diretions by rotation around the coordinate axes
c
do imr = 1,nm
if ( (ami(imr) .eq.-ami(im)) .and. (eta(imr) .eq.eta(im))
.and. (zeta(imr) .eq.zeta(im)) ) irx(im) = imr
if ( (ami(imr).eq.ami(im)) .and. (eta(imr) .eq.-eta(im))
.and. (zeta(imr) .eq.zeta(im)) ) iry(im) = imr
if ( (ami(imr).eq.ami(im)) .and. (eta(imr) .eq.eta(im))
.and. (zeta(imr) .eq.-zeta(im)) ) irz(im) = imr
enddo
c
c Check on the normalisation of direction cosines
c
check = ami (im) *ami (im) + eta(im) *eta(im) + zeta(im) *zeta (im)
c
write(7,100) im,ami (im),eta(im), zeta(im),w(im),h check
c
enddo
c
return
100 format (1x,i5,5(1x,e14.7))
end
c
c c
c Subroutine to generate direction in the octants with c
c negative direction cosine c
c c
c
subroutine rotoct (i)
implicit double precision (a-h,o-z)
c
include 'tras3dc.for'
c
im = i + noct
c
c ami < 0 , eta > 0 , zeta > 0
c
w(im) = w(i)
c
ami (im) = - eta(i)
eta(im) = ami (i)
zeta (im) = zeta (i)
c
c ami < 0 , eta < 0 , zeta > 0
c
im = i + noct * 2
c
w(im) = w(i)
c
ami (im) = - ami (i)
eta(im) = - eta(i)
zeta (im) = zeta (i)
c
c ami > 0 , eta < 0 , zeta > 0
c
im = i + noct * 3
c
w(im) = w(i)
c
ami (im) = eta(i)
eta(im) = - ami (i)
zeta (im) = zeta (i)
c
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c ami > 0 , eta > 0 , zeta < 0

c
im = i + noct * 4
c
w(im) = w(i)
c
ami (im) = ami (i)
eta(im) = eta(i)
zeta(im) = - zeta (i)
c
c ami < 0 , eta > 0 , zeta < O
c
im = i + noct * 5
c
w(im) = w(i)
c
ami (im) = - eta(i)
eta(im) = ami (i)
zeta(im) = - zeta (i)
c
c ami < 0 , eta < 0 , zeta < O
c
im = i + noct * 6
c
w(im) = w(i)
c
ami (im) = - ami (i)
eta(im) = - eta(i)
zeta (im) = - zeta (i)
c
c ami > 0 , eta < 0 , zeta < 0
c
im = i + noct * 7
c
w(im) = w(i)
c
ami (im) = eta(i)
eta(im) = - ami(i)
zeta(im) = - zeta (i)
c
return
end
c
c c
c Subroutine for solving 3D transport equations c
c c
c
subroutine trasp
implicit double precision (a-h,o-z)
c
include 'tras3dc.for'
c
c Zeroing the scalar flux
c
do i = 1,nx
do j = 1,ny
do k = 1,nz
c
phi(i, j, k) = 0.d400
c
enddo
enddo
enddo
c
c Loop on the directions
c
do im = 1,nm
c

write(*,100) im
write(6,100) im
100 format (1x,' Processamento della direzione ',i6)

c
c Discussion of the sign of direction cosines and
c boundary conditions: assignef flux or reflection
c
[o]
c BC along the x axis
[o]
if (ami (im) .gt.0.d00) then
il =1
i2 = nx
ist =1
c

do j = 1,ny

do k = 1,nz
if (phiawf.ge.0.d00) then

phiax (1, j, k) = phiawf
else

phiax (1, j, k) = phiawm(j, k,irx(im))
endif

enddo
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enddo

c
else
il = nx
i2 =1
ist = -1
c
do j = 1,ny
do k = 1,nz
if (phiaef.ge.0.d00) then
phiax (nx+1, j, k) = phiaef
else
phiax (nx+1, j, k) = phiaem(j, k,irx(im))
endif
enddo
enddo
c
endif
c
c BC along the y axis
c
if (eta(im) .gt.0.d00) then
jl1 =1
j2 = ny
jst =1
c
do i = 1,nx
do k = 1,nz
if (phiasf.ge.0.d00) then
phiay(i,1,k) = phiasf
else
phiay(i,1,k) = phiasm(i,k,iry(im))
endif
enddo
enddo
c
else
il = ny
j2 =1
jst = -1
c
do i = 1,nx
do k = 1,nz
if (phianf.ge.0.d00) then
phiay (i, ny+1l,k) = phianf
else
phiay (i,ny+1l,k) = phianm(i, k,iry(im))
endif
enddo
enddo
c
endif
c
c BC along the z axis
c
if (zeta(im) .gt.0.d00) then
k1 =1
k2 = nz
kst = 1
c
do i = 1,nx
do j = 1,ny
if (phiabf.ge.0.d00) then
phiaz (i, j, 1) = phiabf
else
phiaz (i, j,1) = phiabm(i, j,irz(im))
endif
enddo
enddo
c
else
k1l = nz
k2 =1
kst = -1
c
do i = 1,nx
do j = 1,ny
if (phiatf.ge.0.d00) then
phiaz (i, j,nz+1l) = phiatf
else
phiaz (i, j,nz+1l) = phiatm(i, j,irz(im))
endif
enddo
enddo
c
endif
c
c Solution of neuutron balance equations
c sweeping the three spatial axes accordin to the sign of direction cosines
c
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do
dx

i=1il,i2,ist
= x(i+l) - x(i)
auxx = 2.d00 * dabs(ami(im)) / dx

do j = 31,32, jst
dy = y(3+1) - y(3)

a

Constru

Evalua

20

Applic,
use of

111

uxy = 2.d00 * dabs(eta(im)) / dy
do k = k1,k2,kst

dz = z(k+l) - z(k)

auxz = 2.d00 * dabs(zeta(im)) / dz
ction of some useful quantities

if(ist.eq.1l) then
addx = auxx * phiax(i,j, k)
else
addx = auxx * phiax(i+l, j, k)
endif

if(jst.eq.1l) then
addy = auxy * phiay(i, j, k)
else
addy = auxy * phiay(i, j+1,k)
endif

if(kst.eq.1) then
addz = auxz * phiaz (i, j, k)
else
addz = auxz * phiaz(i,j, k+1)
endif

tion of tye central flus by the neutron balanve

ifixx = 0
ifixy = 0
ifixz = 0

denom = auxx + auxy + auxz + sigt (i, j, k)
phiac(i, j, k) = ( addx + addy + addz + gq(i,j, k) ) / denom

ation of the diamond rule and, in case of negative interface flux,
the "step" fix-up rule, then recalculating the central flux

if(ist.eq.1l) then

if(ifixx.eq.0) then
phiax(i+l,3j,k) = 2.d00 * phiac(i,j, k) - phiax(i, j, k)
else
phiax(i+l, j, k) = phiac(i, j, k)
endif

if (phiax(i+1,3j,k).1t.0.d00) then
auxx = dabs (ami (im)) / dx
addx = auxx * phiax(i,j, k)
ifixx = ifixx + 1
write(*,111) im,i,Jj,k
write(6,111) im,i,Jj,k
format (1x, ' Fix-up lungo x: direzione ',i5,' nodo ', 3i6)
goto 20
endif

else

if(ifixx.eq.0) then
phiax (i, j, k) = 2.d00 * phiac(i,j, k) - phiax(i+l1,3j, k)
else
phiax (i, j, k) = phiac(i, j, k)
endif

if (phiax (i, j, k) .1t.0.d00) then

auxx = dabs (ami (im)) / dx

addx = auxx * phiax(i+l, j, k)

ifixx = ifixx + 1
write(*,111) im,i,j, k
write(6,111) im,i,j, k
goto 20
endif

endif
if(jst.eq.1) then
if(ifixy.eq.0) then
phiay (i, j+1,k) = 2.d00 * phiac(i,j, k) - phiay(i, j, k)
else
phiay (i, j+1,k) = phiac(i, 3, k)
endif

if (phiay (i, j+1,k).1t.0.d00) then
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112

113

auxy = dabs(eta(im)) / dy
addy = auxy * phiay(i, j, k)
ifixy = ifixy + 1
write(*,112) im,i,j, k
write(6,112) im,i,j, k
format (1x, ' Fix-up lungo y: direzione
goto 20
endif

',1i5, ' nodo

else

if(ifixy.eq.0) then
phiay (i, j,k) = 2.d00 * phiac(i,j, k) - phiay(i,j+1,k)
else
phiay (i, j, k) = phiac(i, j, k)
endif

if (phiay (i, j, k) .1t.0.d00) then

auxy = dabs(eta(im)) / dy

addy = auxy * phiay(i, j+1,k)

ifixy = ifixy + 1
write(*,112) im,i,Jj,k
write(6,112) im,i,Jj,k
goto 20
endif

endif
if(kst.eq.1) then

if(ifixz.eq.0) then
phiaz (i, j,k+1) = 2.d00 * phiac(i,j, k) - phiaz(i,j, k)
else
phiaz (i, j, k+1) = phiac(i, j, k)
endif

if (phiaz (i, j, k+1).1t.0.d00) then
auxz = dabs (zeta(im)) / dz
addz = auxz * phiaz (i, j, k)

ifixz = ifixz + 1
write(*,113) im,i,j, k
write(6,113) im,i,j, k

format (1x, ' Fix-up lungo z: direzione
goto 20
endif

',1i5, ' nodo

else

if(ifixz.eq.0) then
phiaz (i, j, k) = 2.d00 * phiac(i,j, k) - phiaz(i,j, k+1)
else
phiaz(i,j, k) = phiac(i, 3, k)
endif

if (phiaz (i, j,k).1t.0.d00) then

auxz = dabs (zeta(im)) / dz
addz = auxz * phiaz(i,j, k+1)
ifixz = ifixz + 1

write(*,113) im,i,j, k
write(6,113) im,i,j, k
goto 20

endif

endif

', 3i6)

', 3i6)

Assignment of the contribution of the direction ot the scalar flux

phi(i,j,k) = phi(i,j, k) + 0.125d00 * phiac(i,j, k) * w(im)

Assignement of the angular flux on thelateral surface
to allow imposing pure reflection boundary conditions

if(i.eq.1) then
phiawm(j, k,im) = phiax (i, j, k)
elseif (i.eq.nx) then
phiaem(j, k,im) = phiax(nx+1, j, k)
endif

if(j.eq.1l) then
phiasm(i, k,im) = phiay(i,j, k)
elseif (j.eq.ny) then
phianm(i, k,im) = phiay(i,ny+1, k)
endif

if(k.eq.1) then
phiabm(i, j,im) = phiaz (i, j, k)
elseif (k.eq.nz) then
phiatm(i, j,im) = phiaz (i, j,nz+1)
endif

enddo
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enddo

enddo

enddo

return
end

aooaoaoaan0aQn

Subroutine for undating the emission density
from the new scattering source

10000

o]
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subroutine sscat
implicit double precision (a-h,o-z)

include 'tras3dc.for'
Assignement of density emission

do i = 1,nx
do j = 1,ny
do k = 1,nz
q(i,j, k) = sour(i,j, k) + sigs(i,3j, k)

enddo
enddo
enddo

return
end

* phi(i, J, k)
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Suggested personal work: new calculations cases to be analysed:

a) Benchmark Problem IAEA EIR-2 (v. H. Khalil, Nucl. Sci. Eng., 90, pp.263-280, 1985)

VACUUM BOUNDARY
—+| 18em Je— 30cm —+—30cn-a| Bom jo—

18cm
E 25cm 4 3 z
o Q
x k3
2 >
g e
] 2
g g
£ 25¢m ! 2 s
18cm COMPOSITION 5 5
.
VACUUM BOUNDARY
5, I,  SOURCE STRENGTH
COMPOSITION (em™  (em™) (e 35"
1 060 0.53 1.0
2 048 020 0.0
3 070 066 1.0
4 065 050 0.0
5 0.90 0.89 00

Fig. 1. Geometry and material properties for the IAEA
EIR-2 benchmark problem.

TABLE IlI
Comparison of SYNAPSE and TWODANT Results for the IAEA EIR-2 Problem*
TWODANT
SYNAPSE TWODANT (Reference)
Number of X-Y mesh cells, 7 x J 36 x 30 54 x 46 144 x 120
Number of synthetic iterations 5 10 6
Solution time? (s) 13 ~31 -127
Average flux by composition® (cm~2-s")
1 1.1956+1¢ 1.1958+1 1.1960+1
2 5.4050—1 5.4038—1 5.3968~1
3 1.9193+1 1.9200+1 1.9202+1
4 8.3562—1 8.3358—1 8.3364-1
5 1.5285+0 1.5291+0 1.5263+0

‘Dlrecuonal approximation = Sg.
Soluuon times do not include the “overhead” associated with input processing and output editing.

SeeFxg 1.
‘Read as 1.1956 x 10'.

b) Prism with imposed inner flux

c) Different sources in a prisamtic domain

d) Parametric analyses of the already analysed cases, discussing the results

e) Comparison between the results that can be obtained by different
approximations for the angular discretisation
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