
NMNR-Unit-3 – More on Discretisation Methods and Sample Applications 1/42

Lecture Notes for the Course on

NUMERICAL METHODS FOR NUCLEAR REACTORS

Prof. WALTER AMBROSINI

University of Pisa, Italy

Unit-3 – More on Discretisation Methods

and Sample Applications to Eigenvalue Problems

NOTICE: These notes were prepared by Prof. Ambrosini mainly on the basis of the material adopted by Prof. Bruno

Montagnini for the lectures he held up to years ago, when he left to Prof. Ambrosini the charge of the course held for

the Degree in Nuclear Engineering at the University of Pisa. This material is freely distributed to Course attendees or to

anyone else requesting it. It has not the worth of a textbook and it is not intended to be an official publication. It was

conceived as the notes that the teacher himself would take of his own lectures in the paradoxical case he could be both

teacher and student at the same time (sometimes space and time stretch and fold in strange ways). It is also used as slides

to be projected during lectures to assure a minimum of uniform, constant quality lecturing, regardless of the teacher’s

good and bad days. As such, the material contains reference to classical textbooks and material whose direct reading is

warmly recommended to students for a more accurate understanding. In the attempt to make these notes as original as

feasible and reasonable, considering their purely educational purpose, most of the material has been completely re-

interpreted in the teacher’s own view and personal preferences about notation. In this effort, errors in details may have

been introduced which will be promptly corrected in further versions after discovery. Requests of clarification,

suggestions, complaints or even sharp judgements in relation to this material can be directly addressed to Prof.

Ambrosini at the e-mail address: walter.ambrosini@ing.unipi.it

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

2

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

3

DISCRETISATION METHODS

• In the previous units we assumed a rather heuristic way to

discretise equations by “finite difference” or “finite volume”

approaches

• Let us now come back on this aspect, by looking more carefully to

the different possible choices available to obtain the approximate

solution of a partial differential equation problem

• The figure below summarises the main steps to be performed in the

process of solving partial differential equation problems by suitable

discretization schemes

• The characteristics of the main available discretization methods will

be summarised in the following

• Generally speaking we have three main techniques of discretizing

neutron diffusion and transport equations:
o the finite difference method, i.e., the substitution of partial derivatives

with difference expressions (already considered);

o the finite volume method, i.e., writing equations in integral form over

control volumes (already considered and to be further applied later);

o the finite element methods, i.e., making use of the “weighted residuals

method” to get more accurate local approximations, as in the “coarse-

mesh method” that we will describe below.

DDIIFFFFEERREENNTTIIAALL

PPRROOBBLLEEMM

DDiissccrreettiizzaattiioonn

AALLGGEEBBRRAAIICC PPRROOBBLLEEMM

((EEqquuaattiioonnss ++ iinniittiiaall

aanndd bboouunnddaarryy ccoonnddiittiioonnss))

SSoolluuttiioonn ooff tthhee

aallggeebbrraaiicc eeqquuaattiioonnss

AAPPPPRROOXXIIMMAATTEE

SSOOLLUUTTIIOONN

IInniittiiaall aanndd bboouunnddaarryy

ccoonnddiittiioonnss

DDiiffffeerreennttiiaall

eeqquuaattiioonnss

CChhooiiccee ooff

aa ddiissccrreettiissaattiioonn mmeetthhoodd
GGeeoommeettrriiccaall ddoommaaiinn

ddiissccrreettiissaattiioonn

((““ggrriiddddiinngg””))

CCoonnvveerrggeennccee ccrriitteerriiaa
SSoolluuttiioonn ooff lliinneeaarr aanndd nnoonn--lliinneeaarr

aallggeebbrraaiicc eeqquuaattiioonn ssyysstteemmss

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

4

WEIGHTED RESIDUALS METHOD

We search for the solution of the diffusion (or any other)

partial differential equation written in the form

0L Sφ + =

that is a compact way to write

0adiv D grad Sφ Σ φ− + =

with some assigned boundary conditions.

We now search for an approximate solution of this

equation in a narrower class of functions than generally

eligible for the application of the differential operator:

() ()
1

N

app j j

j

r c u rφ
=

=∑
� �

where:

• ()i
u r
�

 are trial functions that are sufficiently regular and

must satisfy the boundary conditions;

• jc = appropriate coefficients-

 The “residual” of the differential equation, obtained upon

substitution in it of the approximate solution, will be generally

different from zero

() 0appL S R rφ + = ≠
�

In order to obtain a good approximation of the solution of

the differential equation, we can impose that the residual be

sufficiently small in some integral sense.

 In this purpose, we search for N “weighting functions”

()iw r
�

 imposing that the weighted residual be zero in the

average over the considered volume:

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

5

() () ()0 1, ,i

V

R r w r dV i N= =∫
� �

…

meaning that

() () ()0 1, ,app i

V

L S w r dV i Nφ + = =∫
�

…

 Making use of a notation of “inner product” between

functions (as in vector spaces), we have

() () () ()
1

, , , 0
N

i i j j i i

jV

R w R r w r dV L c u w S w
=

 
= = + = 

 
∑∫

� �

Since the trial functions and the weighting functions are

known, imposing this relationship implies to select an

appropriate value of the coefficients of the expansion in the

approximation.

In fact, a linear system in the unknown coefficients is thus

obtained:

() ()

()

1

1

, , 0

0 1, ,

N

j j i i

j

N

j ij i

j

c Lu w S w

c a s i N

=

=

+ =

⇒ + = =

∑

∑ …

Generalising the concept of orthogonality between vectors to

the case of functions, we can say that the residual is imposed

to be “orthogonal” to each weighting function. So, increasing

the number of weighing functions, we can obtain more and

more accurate approximations (i.e., “orthogonal to many

functions”).

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

6

 The choice of “trial functions” is generally left to good

practice:

• they should be simple enough to be differentiated and

integrated at ease;

• they should provide trends similar to the expected exact

solution at least locally.

For the above reasons, low order polynomials are often

chosen in this purpose, but their selection is not mandatory.

On the other hand, the selection of weighting functions

characterizes the method according to classical choices

• in the GALERKIN METHOD, the “weighting functions”

are the same as the “trial functions”

() ()i i
w r u r=
� �

 in the case of a polynomial of n-th degree, for instance, it is:

() () 2

0 1 2

0

N
n

app j j n

j

x c u x c c x c x c xφ
=

= = + + + +∑ …

 and a Galerking weighting can make use of

() ()0, ,k

i
w x x k N= = …

• in the SUBDOMAIN METHOD, it is assumed that the

weighting function is “unity” in the selected subdomain:

() 1
i m

w r r V= ∈
� �

 and () 0
i m

w r r V= ∉
� �

In the case of neutron diffusion this is equivalent to impose that

the neutronic balance is satisfied

in a global (integral) sense in the volume

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

7

In fact:

() 0

m

app a app

V

div D grad S dVφ Σ φ− + =∫

0

m m m

app a app

S V V

leakage absorption source

D grad n dS dV S dVφ Σ φ− − ⋅ − + =∫ ∫ ∫
�

��������� ����� �����

 This is an important requirement that should be required

to any numerical scheme:

the integral balance of neutrons should be satisfied

within each volume by the adopted approximation

It is moreover necessary to impose that

neutron balance is satisfied everywhere in the whole domain

by imposing appropriate

continuity conditions of current at the interfaces.

• in the COLLOCATION METHOD, a Dirac’s “delta

function” is used for weighting

() ()i i
w r r rδ= −
� � �

This is equivalent to impose that the residual is zero

at a certain point i
r
�

() () () 0
app i i

V

L S r r dV R rφ δ+ − = =∫
� � �

This means that the partial differential equation is solved

exactly at that location by the approximating function:

of course, this does not mean

that the solution is exact in that place

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

8

SAMPLE APPLICATION

OF THE WEIGHTED RESIDUAL METHOD:

 “COARSE MESH” METHODS

Reactor calculations with large meshes are required in static

and dynamic reactor analyses

The considerable complication of composition of nuclear

reactors requires to perform calculations after convenient

homogenization of properties at different levels

1. Cell level homogenisation

Coolant moderator

Cladding

• The rod is considered together with the

moderator/coolant assigned to it and to the cladding

• Neutron transport codes are used to obtain the nuclear

parameters with few energy groups

• Many calculations are needed to consider the multiple

values of enrichment, burn-up, burnable poisons, etc..

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

9

2. Fuel assembly level homogenisation

• The fuel element is then considered as obtained by

different homogenised cells

• Actually an assembly calculation can be made even

starting from the original more complex cell structure

 Making use of transport codes, the few group constants

are calculated for the different axial locations where the

composition is known

 The few group parameters for each large “node” are so

obtained as a function of:

♦♦♦♦ composition of the element box;

♦♦♦♦ moderator temperature;

♦♦♦♦ void fraction;

♦♦♦♦ burn-up;

♦♦♦♦ fuel temperature.

 These “libraries” of tables are used to obtain by

interpolation the parameters applicable to each case, in both

static and dynamic calculations

The “coarse-mesh” methods are used to perform

calculations in 3D on the whole reactor on the basis of the

obtained parameters

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

10

They are more efficient than the finite difference methods

since they allow the use of a lower number of nodes with the

same accuracy

This technique is described here since it was developed in

the past at the University of Pisa. Alternative techniques are

used in specific codes set up in different research groups

QUABOX Method

•••• The reactor is subdivided into parallelepiped volumes

centred on the points in which it is chosen to calculate the

neutron flux

•••• Each node is considered as “homogeneous” in terms of

material and the neutron flux is approximated in it by a

second order polynomial in the different directions

φφφφ(x,y,z) = φφφφ(ξξξξ,ηηηη,ζζζζ) = φφφφijl (1 + ax,ijl ξξξξ + bx,ijl ξξξξ2

+ ay,ijl ηηηη + by,ijl ηηηη2 + az,ijl ζζζζ + bz,ijl ζζζζ2)

where the local coordinates are defined as

ξξξξ =
x - xi

hxi
 ηηηη =

y - yj

hyj
 ζζζζ =

z- zl

hzl

[-1/2,1/2] and φφφφijl is the neutron flux in the node centre.

P
ijl

h
xi

h
yj

h
zl

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

11

 The “a” and “b” coefficients are related to the values of

the neutron flux at the interfaces:

φφφφi-½.j.l = φφφφijl










1 -
ax

2
 +

bx

4

φφφφi+½.j.l = φφφφijl










1 +
ax

2
 +

bx

4

This allows calculating their values in terms of interface fluxes

ax =
φφφφi+½.j.l - φφφφi-½.j.l

φφφφijl
 bx = 2

φφφφi+½.j.l - 2 φφφφijl + φφφφi-½.j.l

φφφφijl

with similar relations holding for the y and z directions.

It is then imposed that the neutron balance is satisfied in the

node: this corresponds to the subdomain method:

⌡


⌠

 Sijl

 D grad φφφφ . n
→→→→

 dS +
⌡

⌠

 Vijl







νννν ΣΣΣΣf

k
 - ΣΣΣΣa φφφφ dV = 0

 These integrals are evaluated on the basis of the

quadratic polynomial, obtaining:

2 Dijl









bx

h
2

xi

 +
by

h
2

yj

 +
bz

h
2

zl

 φφφφijl +

+








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl









1 +
 bx + by + bz

12
 φφφφijl = 0

 Remembering the above defined expression for the

coefficients of the polynomial, a seven point formula is

obtained, relating the interfacial fluxes to the centre flux.

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

12









 Dijl +
h

2

xi

24









νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl

φφφφi+½.j.l - 2 φφφφijl + φφφφi-½.j.l

(h

xi/2)2

+








 Dijl +
h

2

yj

24









νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl

φφφφi.j+½.l - 2 φφφφijl + φφφφi.j-½.l

(h

yj/2)2

+








 Dijl +
h

2

zl

24









νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl

φφφφi.j.l+½ - 2 φφφφijl + φφφφi.j.l-½

(h

zl/2)2
 (*)

+








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl φφφφijl = 0

 It must be now noted that this expression represents the

neutron balance “within the node”. In order to satisfy the

overall balance everywhere in the calculation domain (i.e., in

the system containing all the parallelepiped volumes), it must

be completed by conditions expressing the “neutron balance at

the interfaces between the nodes”:

we have six current continuity equations as the following one

- Di.j.l








∂φ∂φ∂φ∂φ

∂∂∂∂x

 x
-
i+½

 = - Di+1.j.l








∂φ∂φ∂φ∂φ

∂∂∂∂x

 x
+
i+1-½

Di.j.l

h

xi

  
3 φφφφi+½.j.l - 4 φφφφi.j.l + φφφφi-½.j.l =

=
Di+1.j.l

h

xi+1

  
 -3 φφφφi+1-½.j.l + 4 φφφφi+1.j.l - 3 φφφφi+1+½.j.l

The other 5 are quite similar.

 These equations serve to assure the overall neutron

balance in the domain and allow “to express the interface

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

13

fluxes in terms of node centred fluxes”, being the true

unknowns of the problem:

φφφφi+½.j.l =

4








1 -
1

4

φφφφi-½.j.l

φφφφi.j.l

3









1 +
h

xi

 Di+1.j.l

h

xi+1

 Di.j.l

 φφφφi.j.l +

4








1 -
1

4

φφφφi+1+½.j.l

φφφφi+1.j.l

3









1 +
h

xi+1

 Di.j.l

h

xi

 Di+1.j.l

 φφφφi+1.j.l

 This is very similar to what already noted in the 1D cases,

in which the interface fluxes are eliminated in favour of node

centred fluxes.

The apparent difficulty noted here is that the interface

fluxes, actually, still appear in the final formulations as

coefficients (see the terms in red). Actually, there is no

problem since, in view of an iterative solution, these interface

fluxes are updated “at each iteration”. So, they can be

considered “known” at each step.

So, as usual, we have that interface fluxes are expressed

as:

φφφφi+½,j,l = ααααi,i+1,jl φφφφi,j,l + ββββi,i+1,jl φφφφi+1,j,l

 It is remarked that this is the same structure obtained for

1D cases (see Unit 1), that is now repeated (with more complex

coefficients!) in three directions.

By substituting this formulation in the balance equation

(*) (see the pages above) we obtain a classical 7-point

formulation, as it is in the case of the simple finite difference or

finite volume cases:

i,j,l φφφφi,j,l + i,j,l φφφφi-1,j,l + i,j,l φφφφi+1,j,l + i,j,l φφφφi,j-1,l

+ i,j,l φφφφi,j+1,l + i,j,l φφφφi,j,l-1 + i,j,l φφφφi,j,l+1 = 0

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

14

 Obviously enough, the coefficients of this expression are

much more complex than the ones obtained by a finite

difference scheme. This means that they need more computing

time to be calculated.

However, the higher accuracy that can be obtained by the

quadratic approximation in the nodes allows the use of a

smaller number of nodes with a final advantage.

CUBBOX Method

In order to further improve accuracy, a cubic polynomial can

be chosen to represent the trend of neutron flux in each node:

φφφφ(x,y,z) = φφφφ(ξξξξ,ηηηη,ζζζζ) = φφφφijl (1 + ax,ijl ξξξξ + bx,ijl ξξξξ2 + cx,ijl ξ ξ ξ ξ (ξξξξ2 -
1

4
)

+ ay,ijl ηηηη + by,ijl ηηηη2 + cy,ijl η η η η (ηηηη2 -
1

4
)

+ az,ijl ζζζζ + bz,ijl ζζζζ2 + cz,ijl ζ ζ ζ ζ (ζζζζ2 -
1

4
)

The particular form of the cubic terms (it is actually a linear +

cubic expression), is chosen in a skilled way to simplify

calculations. In fact:

•••• it does not contribute to the expressions of the coefficients a

and b in terms of interfacial fluxes (it is zero at -1/2 and 1/2)

•••• since it is an odd-degree term to be integrated between -1/2

and +1/2, its contribution to the neutron balance is also zero

 So, the relations obtained for QUABOX still hold in this

case: very nice and simplifying result!

 The further effort to be made in this case is the evaluation

of the “c” coefficients. This requires a further use of the

Weighted Residuals Method:

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

15

⌡

⌠

 Vijl









 div D grad φφφφ +
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ wx dV = 0

⌡

⌠

 Vijl









 div D grad φφφφ +
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ wy dV = 0

⌡

⌠

 Vijl









 div D grad φφφφ +
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ wz dV = 0

The choice in this case is in terms of a “Galerkin” weighting

wx (ξξξξ) = ξ ξ ξ ξ (ξξξξ2 -
1

4
) wy (ηηηη) = η η η η (ηηηη2 -

1

4
)

wz (ζζζζ) = ζ ζ ζ ζ (ζζζζ2 -
1

4
)

 In further works, a similar “collocation” method was

selected (Prof. Montagnini and coworkers):

wx (ξξξξ) = δδδδ(ξ −ξ −ξ −ξ −
1

2
) - δδδδ(ξ +ξ +ξ +ξ +

1

2
)

wx (ηηηη) = δδδδ(ηηηη − − − −
1

2
) - δδδδ(ηηηη + + + +

1

2
)

wx (ζζζζ) = δδδδ(ζζζζ − − − −
1

2
) - δδδδ(ζζζζ + + + +

1

2
)

 Note that both the above Galerkin and the collocation

formulations for the weighting make us of “odd” functions

 So, we are now in the position to calculate the “c”

coefficients, which allow a better accuracy than in the case of

quadratic polynomials.

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

16

 Continuity equations for currents at the interfaces must

be then imposed to obtain again a seven point formula in the

node centred values of the neutron flux.

 We are now in the position to draw some conclusions:

• “coarse-mesh” methods allow for a more accurate

evaluation of neutron flux, with the same number of nodes,

than finite volume techniques

• the formulations obtained are more complex, though they

finally revert to 3 or 5 or 7 point equations respectively in

1D, 2D and 3D: this is a characteristics embedded in the

different discretization schemes due to the leakage terms

• so, the advantage of the greater accuracy is paid by a larger

computational effort per node

• the computational effort is larger in the cubic with respect

to the quadratic formulation

• however, a lower number of nodes can be used to get still

better accuracy that by finite volume techniques: this

represents the advantage

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

17

Simplified Example of Eigenvalue Calculations

Foreword

The following material can be used as a basis for hands-on

exercises to be performed by the students, to make them

achieve awareness that even the simplest techniques discussed

during lectures may provide reasonable results

Of course, more sophisticated techniques will provide more

“professional” evaluations: however, simplicity of the analysis

is considered an important ingredient to make students “see”

that the basis of complex techniques is already embedded into

the simplest ones

The selected system is an infinite almost-cylindrical reactor,

with a realistic distribution of assemblies, assumed each one to

be internally homogeneous

It must be borne in mind that the use of the simple one-energy

group equation actually makes impossible to accurately evaluate

details like the actual effect of reflector or the effectiveness of

absorbing elements (simulating control rods)

However, the treatment was purposely kept “simple” to have

a student level treatment whose results can be sometime

checked by simple hand calculations

In some sense, with due time and some skills in programming,

students could have themselves produced both the theory and

the software developed for this purpose

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

18

1. Inner iterations

•••• Balance equation to be discretised

div D grad φφφφ - ΣΣΣΣa φφφφ + S = 0 (1)

 Basic choices:

♦♦♦♦ square domain in 2D (x and y, infinite z coordinate)

♦♦♦♦ nuclear parameters variable from node to node

♦♦♦♦ simple finite volume discretisation

♦♦♦♦ equal discretisation step along x and y

i,ji-1,j

i,j-1

i+1,j

i,j+1

x

y
h
x

= h
y

= h

The discretised form of (1) can be expressed as:

+ (incoming current) × (related lateral surface)

- (outgoing current) × (related lateral surface)

- (absorption rate) × (node volume)

+ (fixed source) × (node volume) = 0

or

- h Di,j










(φφφφi,j - φφφφi-½,j)
2

h
 + (φφφφi,j - φφφφi,j-½)

2

h

+ h Di,j










(φφφφi+½,j - φφφφi,j)
2

h
 + (φφφφi,j+½ - φφφφi,j)

2

h
 (2)

- h2 ΣΣΣΣa i,j φφφφi.j + h2 Si,j = 0

(i = 2, ..., N-1) (j = 2, ..., N-1)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

19

As we know from previous developments in 1D geometry,

for any internal node we can eliminate the fluxes at the

interfaces by imposing current continuity. For instance

-2
Di.j

h
 (φφφφi+½.j - φφφφi.j) = -2

Di+1.j

h
 (φφφφi+1.j - φφφφi+½.j) (3)

and then

φφφφi+½.j =
 Di.j φφφφi.j + Di+1.j φφφφi+1.j

 Di.j + Di+1.j
 (4)

Similar formulations apply for the other three lateral surfaces.

Note that in the above definition of the interface flux, the node

spacing has no role “just because it is equal everywhere”

(compare with the 1D case in Unit 1).

 It can be easily proven that for internal nodes (2) it is:

OOOOi.j φφφφi.j = WWWWiiii.j φφφφi-1.j + EEEEi.j φφφφi+1.j + SSSSi.j φφφφi.j-1 + NNNNi.j φφφφi.j+1 + h2 Si.j

 (5)

where

WWWWi.j =
2 Di.j Di-1.j

Di.j + Di-1.j
 EEEEi.j =

2 Di.j Di+1.j

Di.j + Di+1.j

(6)

SSSSi.j =
2 Di.j Di.j-1

Di.j + Di.j-1
 NNNNi.j =

2 Di.j Di.j+1

Di.j + Di.j+1

In fact, it is for instance:

- h Di,j










(φφφφi,j - φφφφi-½,j)
2

h
 = - h Di,j











(φφφφi,j -
 Di.j φφφφi.j + Di-1.j φφφφi-1.j

 Di.j + Di-1.j
)

2

h

= - h Di,j










(
 Di-1.j φφφφi.j - Di-1.j φφφφi-1.j

 Di.j + Di-1.j
)

2

h
 =

2 Di.j Di-1.j

Di.j + Di-1.j
 (φφφφi,j - φφφφi-1,j)

Walter Ambrosini
Richiamo
-

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

20

It can be also noted that it is:

OOOOi.j = WWWWi.j + EEEEi.j + SSSSi.j + NNNNi.j + h2 ΣΣΣΣa i.j (7)

(note, again and again, the diagonal dominance of the system

matrix).

 In "boundary nodes", we have to restart from the

balance equation (2) and impose the needed boundary

conditions.

For simplicity of treatment, we will employ some trick

that should not be adopted in “professional” calculations,

since their simplicity is paid by a useless increase in

computational effort, which is not justified in real

applications.

In particular, though the system to be considered is

modelled as a complex boundary on which we should impose

the neutron flux to be zero (“extrapolated boundary”), we will

impose the flux to be zero on the boundary of the larger square.

This is simpler and can be obtained assuming that the fluxes in

“fictitious nodes” with indices 0 and N+1 is zero.

Nocciolo

Riflettore
Esterno

External region
Reflector

Core

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

21

In particular, the boundary conditions are imposed as:

•••• i = 1 WWWWi.j = 2 Di.j φφφφ0.j = 0

•••• i = N EEEEi.j = 2 Di.j φφφφN+1.j = 0

(8)

•••• j = 1 SSSSi.j = 2 Di.j φφφφi.0 = 0

•••• j = N NNNNi.j = 2 Di.j φφφφi.N+1 = 0

 Let’s consider, as an example, the case i=1. It is:

- h D1,j










(φφφφ1,j - φφφφ0,j)
2

h
 + (φφφφ1,j - φφφφ1,j-½)

2

h

+ h D1,j










(φφφφ1+½,j - φφφφi,j)
2

h
 + (φφφφ1,j+½ - φφφφ1,j)

2

h
 (9)

- h2 ΣΣΣΣa 1,j φφφφ1.j + h2 S1,j = 0

 (j = 2, ..., N-1)

It is noted that, after we have replaced the interface node with

φφφφ0,j = 0 the “west” coefficient becomes WWWWi.j = 2 Di.j.

 The way of imposing the “really wanted” boundary

conditions around the periphery of the reflector is specified

hereafter.

Reactor Model Description

• As seen in the previous sketch, nuclear parameters are

assigned for “core” nodes, and “reflector” nodes

• It is also possible to redefine single node parameters, e.g. for

simulating localized absorption (control rods)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

22

• The trick adopted to assign the condition of zero flux on the

outer surface of the reflector on the basis of the zero flux

assigned on the external contour of the square region

consists in assigning a very large value of the diffusion

coefficient in the “external region”; in fact:

o whatever the leakage current, a large diffusion

coefficient means a low neutron flux gradient

o the low neutron flux gradient, in turn, makes the flux on

the external surface of the reflector to be very close to the

one on the outer surface of the square region (assigned

to be zero)

• In addition the absorption cross section in the external

region is also assigned to be large

• This numerical trick allows:

o simplifying the input deck and the solution algorithm,

operating on a simple square domain

o maintain the diagonal dominance of the system matrix

(the absorption cross section is large)

• On the other hand, the disadvantage of this technique is to

calculate “useless nodes”, in which the neutron flux is

anyway zero:

an optimized program should not work in this way

Adopted linear system solution methods:

1. Jacobi

OOOOi.j φφφφ
(m+1)

i.j
 = WWWWi.j φφφφ

(m)

i-1.j
 + EEEEi.j φφφφ

(m)

i+1.j
 + SSSSi.j φφφφ

(m)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1

+ h2 Si.j (10)

Walter Ambrosini
Rettangolo

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

23

2. Gauss-Seidel

 OOOOi.j φφφφ
(m+1)

i.j
 =

WWWWi.j φφφφ
(m+1)

i-1.j
 + EEEEi.j φφφφ

(m)

i+1.j
 + SSSSi.j φφφφ

(m+1)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1
 + h2 Si.j

(11)

3. SOR

 φφφφ(m+1)

i.j
 = ωωωω









φφφφ(m+1)

i.j
 - φφφφ(m)

i.j GS
 + φφφφ(m)

i.j
 (12)

4. LOR

- WWWWi.j φφφφ
(m+1)

i-1.j
 + OOOOi.j φφφφ

(m+1)

i.j
 - EEEEi.j φφφφ

(m+1)

i+1.j
 =

+ ωωωω








 SSSSi.j φφφφ
(m+1)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1
 + h2 Si.j (13)

+ (1 - ωωωω)








 - WWWWi.j φφφφ
(m)

i-1.j
 + OOOOi.j φφφφ

(m)

i.j
 - EEEEi.j φφφφ

(m)

i+1.j

•••• Outer Iterations

The power method is used. We put:

M
=

 = diag
i

 (νΣνΣνΣνΣf)i (14)

and then

A
=

 φφφφ
-
 =

1

k
 M
=

 φφφφ
-
 =

1

k
 ψψψψ
-

 (15)

obtaining

K
=

 φφφφ
-
 = k φφφφ

-
 (16)

where

K
=

 = A
=

-1 M
=

 (17)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

24

The iterative process has the “theoretical” form:

φφφφ
-

(n+1)

 =
 1

 k
(n)

 K
=

 φφφφ
-

(n)

 (18)

and it is

k(n+1) = k(n)

 ∑
i=1

N

ψψψψ
(n+1)

i

 ∑
i=1

N

ψψψψ
(n)

i

 (19)

Actually, the solution procedure is the following:

•••• diffusion equations are solved with the chosen iterative

scheme starting with a guessed source

•••• making use of the new fluxes the source is updated

•••• the value of k is therefore updated

•••• iterations are performed until convergence

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

25

FORTRAN Programme
c--c
c c
c Programma T P R S c
c c
c Teaching Purpose Reactor Simulation c
c c
c W. Ambrosini, Ottobre 1997 c
c c
c--c

 program core

 implicit double precision (a-h,o-z)

 character*80 riga

c

 parameter (m = 101)

 common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid

 common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m)

 common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff

 common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m)

 dimension oldsou(m,m),class(m,m)

c

 open (unit=5,file='core.dat')

 open (unit=6,file='core.out')

 open (unit=7,file='core.pla')

 open (unit=8,file='core.txt')

c
c lettura dei dati generali
c

 read(5,100) riga

 read(5,*) aleng,rcore,rrefl,n,method,omega

c
c primo processamento per ottenere costanti di interesse
c (first pre-processing for preparing relevant constants)
c
 h = aleng / dfloat (n)
 halfal = 0.5d00 * aleng
 halfh = 0.5d00 * h
 pi = 4.d00 * datan (1.d00)
c
c lettura delle costanti nucleari del nocciolo
c (reading the nuclear constants of the reactor core)
c

 read(5,100) riga

 read(5,*) dcore,sigcor,anisic

c
c lettura delle costanti nucleari del riflettore
c (option for printing on the video)
c

 read(5,100)

 read(5,*) drefl,sigref

c
c opzione di stampa a video
c (option for printing on the video)
c

 write(*,*) ' Video printing ? (1=yes; 0=no) '

 read(*,*) istvid

c
c assegnazione delle costanti nucleari nei nodi
c (assigning nuclear constants in the nodes)
c
 sumsou = 0.d00

 do 10 i = 1,n

 xi = h * dfloat(i) - halfh
 deltxi = xi - halfal

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

26

c

 do 10 j = 1,n

 yj = h * dfloat(j) - halfh
 deltyj = yj - halfal
c
 radius = dsqrt (deltxi * deltxi + deltyj * deltyj)
c
c nodi del nocciolo
c (core nodes)

 if(radius.le.rcore) then

 diff(i,j) = dcore
 sigma(i,j) = sigcor
 anisif(i,j) = anisic
 ratr = radius / rcore
c
 soucor = 1.84d13
 source(i,j) = soucor * dcos (0.5d00 * pi * ratr)
 sumsou = sumsou + source(i,j)
 oldsou(i,j) = source(i,j)

 class(i,j) = 2.d00

c
c nodi del riflettore
c (reflector nodes)

 elseif(radius.le.rrefl) then

 diff(i,j) = drefl
 sigma(i,j) = sigref
 source(i,j) = 0.d00

 class(i,j) = 1.d00

c
c nodi esterni
c (external nodes)

 else

 diff(i,j) = 1.d05
 sigma(i,j) = 1.d05
 source(i,j) = 0.d00

 class(i,j) = 0.d00

 endif

c

 10 continue

c
c assegnazione delle costanti in nodi particolari (npart > 0)
c (assigning constants in particular nodes (if npart > 0)
c

 read(5,100) riga

 read(5,*) npart

c

 if(npart.gt.0) then

 read(5,100) riga

 do 20 ipart = 1,npart

 read(5,*) ip,jp,diff(ip,jp),sigma(ip,jp),anisif(ip,jp)

 xip = h * dfloat(ip) - halfh
 yjp = h * dfloat(jp) - halfh

 class(ip,jp) = 3.d00

 20 continue

 endif

c
c costruzione dei coefficienti dell'equazione della diffusione
c (the coefficients of the diffusion equation are set up)
c

 do 30 i = 1,n

 do 30 j = 1,n

c

 if(i.eq.1) then

 cw(i,j) = 2.d00 * diff(i,j)

 else

 cw(i,j) = 2.d00 * diff(i,j) * diff(i-1,j)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

27

 & / (diff(i,j) + diff(i-1,j))

 endif

c

 if(i.eq.n) then

 ce(i,j) = 2.d00 * diff(i,j)

 else

 ce(i,j) = 2.d00 * diff(i,j) * diff(i+1,j)
 & / (diff(i,j) + diff(i+1,j))

 endif

c

 if(j.eq.1) then

 cs(i,j) = 2.d00 * diff(i,j)

 else

 cs(i,j) = 2.d00 * diff(i,j) * diff(i,j-1)
 & / (diff(i,j) + diff(i,j-1))

 endif

c

 if(j.eq.n) then

 cn(i,j) = 2.d00 * diff(i,j)

 else

 cn(i,j) = 2.d00 * diff(i,j) * diff(i,j+1)
 & / (diff(i,j) + diff(i,j+1))

 endif

c
 co(i,j) = ce(i,j) + cw(i,j) + cn(i,j) + cs(i,j)
 & + h * h * sigma(i,j)
c

 30 continue

c
c iterazioni esterne
c (external iterations)
c

 call gettim(ihr,imin,isec,icent)

 time0 = 3600.d00 * ihr + 60.d00 * imin + isec + 0.01d00 * icent
c
 akeff = 1.d00

 do 50 itext = 1,100000

c
c soluzione del sistema con il metodo prescelto
c (algebraic system solution with the selected method)
c

 if(method.eq.1) call jacobi (iter,rspect,itext)

 if(method.eq.2) call gseid (iter,itext)

 if(method.eq.3) call sor (iter,itext)

 if(method.eq.4) call lor (iter,itext)

c
 oldak = akeff
 oldsum = sumsou
c
 sumsou = 0.d00

 do 40 i = 1,n

 do 40 j = 1,n

 source(i,j) = anisif(i,j) * phi(i,j)
 sumsou = sumsou + source(i,j)

 40 continue

c
 akeff = oldak * sumsou / oldsum
c

 if(istvid.eq.1) then

 write(*,120) itext,akeff

 endif

 write(6,120) itext,akeff

c

 if(dabs(akeff-oldak).lt.1.d-7) goto 55

 50 continue

c

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

28

c

 55 continue

c

 call gettim(ihr,imin,isec,icent)

 time1 = 3600.d00 * ihr + 60.d00 * imin + isec + 0.01d00 * icent
 tcpu = time1 - time0
c

 if(method.eq.1) then

 omeopt = 2.d00 / (1.d00 + dsqrt (1.d00 - rspect * rspect))

 if(istvid.eq.1) then

 write(*,130) rspect

 write(*,135) omeopt

 endif

 write(6,130) rspect

 write(6,135) omeopt

 endif

c
c scrittura dei valori del flusso
c
 area = 0.d00
 totpow = 0.d00
 powmax = 0.d00
 phimed = 0.d00
 sumasf = 0.d00

 do 60 i = 1,n

 xi = h * dfloat(i) - halfh

 do 60 j = 1,n

 yj = h * dfloat(j) - halfh
c
 sumasf = sumasf + anisif(i,j)
 phiasf = phi(i,j) * anisif(i,j)
 pow = phiasf / (2.5d00 * 3.1e10)
 phimed = phimed + phiasf
 totpow = totpow + pow * h * h * 365.76d00

 if(powmax.lt.pow) powmax = pow

c

 write(7,160) xi,yj,class(i,j)

 60 write(8,110) xi,yj,phi(i,j)

 phimed = phimed / sumasf
 powavg = totpow / (pi * rcore * rcore * 365.76d00)
 fattpc = powmax / powavg
 react = (akeff - 1.d00) / akeff
c

 if(istvid.eq.1) then

 write(*,170) react

 write(*,180) totpow

 write(*,190) phimed

 write(*,140) fattpc

 write(*,150) tcpu

 endif

c

 write(6,121) itext,akeff

 write(6,170) react

 write(6,180) totpow

 write(6,190) phimed

 write(6,140) fattpc

 write(6,150) tcpu

c

 stop

 100 format (a80)

 110 format (3(1x,e14.7))

 120 format (/,1x,' External Iteration n. ',i5,' Keff = ',f12.9)

 121 format (/,1x,' External Iteration number = ',i5,' Keff = ',f12.9)

 130 format (/,1x,' Jacobi matrix spectral radius = ',f12.9)

 135 format (1x,' Optimal Overrelaxation Parameter = ',f12.9)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

29

 140 format (1x,' Radial Peaking Factor = ',f12.9)

 150 format (/,1x,' Processing time = ',f7.2,' s ')

 160 format (3(1x,e14.7))

 170 format (/,1x,' Reactivity = ',f12.9)

 180 format (1x,' Total Thermal Power = ',1pe14.7,' W ')

 190 format (1x,' Average Flux = ',1pe14.7,' n/(cm2.s)')

 end

c--c
c c
c Soluzione delle Equazioni della Diffusione con Jacobi c
c (Solving the diffusion equations with the Jacobi method) c
c c
c--c

 subroutine jacobi (iter,rspect,itext)

 implicit double precision (a-h,o-z)

c

 parameter (m = 101)

 common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid

 common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m)

 common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff

 common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m)

c
c assegnazione dell'approssimazione iniziale
c (the initial approximation is assigned)
c
 np1 = n + 1
 h2 = h * h

 do 10 i = 0,np1

 do 10 j = 0,np1

c

 if(itext.eq.1) then

 if((i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1)) then

 phi(i,j) = 0.d00
 oldphi(i,j) = 0.d00

 else

 phi(i,j) = h2 * source(i,j) / co(i,j) / akeff
 oldphi(i,j) = phi(i,j)

 endif

 else

 oldphi(i,j) = phi(i,j)

 endif

c

 10 continue

c
 oldel2 = 1.d00

 do 30 iter = 1,10000000

c
 ratmax = 0.d00
 del2su = 0.d00
c

 do 20 j = 1,n

 do 20 i = 1,n

 tm = ce(i,j) * oldphi(i+1,j) + cn(i,j) * oldphi(i,j+1)
 & + cw(i,j) * oldphi(i-1,j) + cs(i,j) * oldphi(i,j-1)
c
 phi(i,j) = (tm + h2 * source(i,j) / akeff) / co(i,j)
c
 delphi = phi(i,j) - oldphi(i,j)
 del2su = del2su + delphi * delphi
c ratio = dabs (delphi) / (phi(i,j) + 1.d-10)
 ratio = dabs (delphi)

 if(ratio.gt.ratmax) ratmax = ratio

c

 20 continue

c

 do 25 i = 1,n

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

30

 do 25 j = 1,n

 oldphi(i,j) = phi(i,j)

 25 continue

c
 rspect = dsqrt (del2su / oldel2)
 oldel2 = del2su
c

 if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35

c

 if(istvid.eq.1) write(*,101) iter,ratmax

 write(6,101) iter,ratmax

 30 continue

 write(6,100)

c

 35 return

 100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>')

 101 format (' Jacobi Internal Iteration n. ',i6,

 & ' Max. Error = ',e14.7)

 end

c--c
c c
c Soluzione delle Equazioni della Diffusione con Gauss-Seidel c
c (Solving the diffusion equations with the Gauss-Seidel method) c
c c
c--c

 subroutine gseid (iter,itext)

 implicit double precision (a-h,o-z)

c

 parameter (m = 101)

 common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid

 common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m)

 common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff

 common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m)

c
c assegnazione dell'approssimazione iniziale
c (the initial approximation is assigned)
c
 np1 = n + 1
 h2 = h * h

 do 10 i = 0,np1

 do 10 j = 0,np1

c

 if(itext.eq.1) then

 if((i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1)) then

 phi(i,j) = 0.d00
 oldphi(i,j) = 0.d00

 else

 phi(i,j) = h2 * source(i,j) / co(i,j) / akeff
 oldphi(i,j) = phi(i,j)

 endif

 else

 oldphi(i,j) = phi(i,j)

 endif

c

 10 continue

c

 do 30 iter = 1,10000000

c
 ratmax = 0.d00
c

 do 20 j = 1,n

 do 20 i = 1,n

 tm = ce(i,j) * phi(i+1,j) + cn(i,j) * phi(i,j+1)
 tmp1 = cw(i,j) * phi(i-1,j) + cs(i,j) * phi(i,j-1)
c
 phi(i,j) = (tm + tmp1 + h2 * source(i,j) / akeff) / co(i,j)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

31

c
 delphi = phi(i,j) - oldphi(i,j)
c ratio = dabs (delphi) / (phi(i,j) + 1.d-10)
 ratio = dabs (delphi)

 if(ratio.gt.ratmax) ratmax = ratio

c
 oldphi(i,j) = phi(i,j)
c

 20 continue

c

 if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35

c

 if(istvid.eq.1) write(*,101) iter,ratmax

 write(6,101) iter,ratmax

 30 continue

 write(6,100)

c

 35 return

 100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>')

 101 format (' GS Internal Iteration n. ',i6,

 & ' Max. Error = ',e14.7)

 end

c--c
c c
c Soluzione delle Equazioni della Diffusione con SOR c
c (Solving the diffusion equations with the SOR method) c
c c
c--c

 subroutine sor (iter,itext)

 implicit double precision (a-h,o-z)

c

 parameter (m = 101)

 common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid

 common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m)

 common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff

 common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m)

c
c assegnazione dell'approssimazione iniziale
c (the initial approximation is assigned)
c
 np1 = n + 1
 h2 = h * h

 do 10 i = 0,np1

 do 10 j = 0,np1

c

 if(itext.eq.1) then

 if((i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1)) then

 phi(i,j) = 0.d00
 oldphi(i,j) = 0.d00

 else

 phi(i,j) = h2 * source(i,j) / co(i,j) / akeff
 oldphi(i,j) = phi(i,j)

 endif

 else

 oldphi(i,j) = phi(i,j)

 endif

c

 10 continue

c

 do 30 iter = 1,10000000

c
 ratmax = 0.d00
c

 do 20 j = 1,n

 do 20 i = 1,n

 tm = ce(i,j) * phi(i+1,j) + cn(i,j) * phi(i,j+1)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

32

 tmp1 = cw(i,j) * phi(i-1,j) + cs(i,j) * phi(i,j-1)
c
 phi(i,j) = (tm + tmp1 + h2 * source(i,j) / akeff) / co(i,j)
c
c sovrarilassamento
c (overrelaxation)
c
 phi(i,j) = (phi(i,j) - oldphi(i,j)) * omega + oldphi(i,j)
c
 delphi = phi(i,j) - oldphi(i,j)
c ratio = dabs (delphi) / (phi(i,j) + 1.d-10)
 ratio = dabs (delphi)

 if(ratio.gt.ratmax) ratmax = ratio

c
 oldphi(i,j) = phi(i,j)
c

 20 continue

c

 if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35

c

 if(istvid.eq.1) write(*,101) iter,ratmax

 write(6,101) iter,ratmax

 30 continue

 write(6,100)

c

 35 return

 100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>')

 101 format (' SOR Internal Iteration n. ',i6,

 & ' Max. Error = ',e14.7)

 end

c--c
c c
c Soluzione delle Equazioni della Diffusione con LOR c
c (Solving the diffusion equations with the LOR method) c
c c
c--c

 subroutine lor (iter,itext)

 implicit double precision (a-h,o-z)

c

 parameter (m = 101)

 common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid

 common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m)

 common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff

 common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m)

c

 dimension a(m),b(m),c(m),d(m),v(m),alef(m),bet(m)

c
c assegnazione dell'approssimazione iniziale
c (the initial approximation is assigned)
c
 np1 = n + 1
 h2 = h * h

 do 10 i = 0,np1

 do 10 j = 0,np1

c

 if(itext.eq.1) then

 if((i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1)) then

 phi(i,j) = 0.d00
 oldphi(i,j) = 0.d00

 else

 phi(i,j) = h2 * source(i,j) / co(i,j) / akeff
 oldphi(i,j) = phi(i,j)

 endif

 else

 oldphi(i,j) = phi(i,j)

 endif

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

33

c

 10 continue

c

 do 40 iter = 1,10000000

c
 ratmax = 0.d00
c
c ciclo sull'indice che definisce le linee orizzontali
c (loop on the index defining the horizontal lines)
c

 do 30 j = 1,n

c
c assegnazione dei coefficienti della matrice tridiagonale di linea
c (assigning the coefficients of the tridiagonal matrix for the line)
c

 do 20 i = 1,n

 a(i) = - cw(i,j)
 b(i) = co(i,j)
 c(i) = - ce(i,j)
 d(i) = omega * (h2 * source(i,j) / akeff
 & + cs(i,j) * phi(i,j-1) + cn(i,j) * phi(i,j+1))
 & + (1.d00 - omega) * (- cw(i,j) * phi(i-1,j)
 & + co(i,j) * phi(i,j) - ce(i,j) * phi(i+1,j))

 20 continue

c
c soluzione del sistema tridiagonale
c (solution of the tri-diagonal system)
c

 call tdma (a,b,c,d,v,alef,bet,n,m)

c
c assegnazione dei valori del flusso sulla linea j = costante
c e valutazione dell'errore massimo
c (assigning the values of the fluxes on the line at j = constant
c and maximum error evaluation)
c

 do 25 i = 1,n

 oldphi(i,j) = phi(i,j)
 phi(i,j) = v(i)
c
 delphi = phi(i,j) - oldphi(i,j)
c ratio = dabs (delphi) / (phi(i,j) + 1.d-10)
 ratio = dabs (delphi)

 if(ratio.gt.ratmax) ratmax = ratio

 25 continue

c

 30 continue

c

 if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 45

c

 if(istvid.eq.1) write(*,101) iter,ratmax

 write(6,101) iter,ratmax

 40 continue

 write(6,100)

c

 45 return

 100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>')

 101 format (' LOR Internal Iteration n. ',i6,

 & ' Max. Error = ',e14.7)

 end

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

34

c--c
c c
c Soluzione di Sistemi Tridiagonali con l'Algoritmo di Thomas c
c (Solution of systems with Tridiagonal matrix c
c by the Thomas algorithm) c
c c
c--c

 subroutine tdma (a,b,c,d,v,alef,bet,n,ld)

 implicit double precision (a-h,o-z)

 dimension a(ld),b(ld),c(ld),d(ld),v(ld),alef(ld),bet(ld)

 ub=1.d00/b(1)
 alef(1)=c(1)*ub
 bet(1)=d(1)*ub

 do 10 i=2,n

 l=i-1
 qz=b(i)-a(i)*alef(l)
 uqz=1.d00/qz
 alef(i)=c(i)*uqz
 10 bet(i)=(d(i)-a(i)*bet(l))*uqz
 nm1=n-1
 v(n)=bet(n)

 do 20 i=1,nm1

 ii=n-i
 l=ii+1
 20 v(ii)=bet(ii)-alef(ii)*v(l)

 return

 end

Proposed activity: read the programme trying to understand its working

principles. A minimum knowledge of programming structures is needed.

1. Consider the way in which nuclear constants are assigned

2. Consider the way in which “east”, “west”, “north” and “south”

coefficients are assigned considering the boundary conditions

3. Identify the loop for “outer iterations” and the computation of Keff with

the “generational formulation”

4. Identify the loop for “inner iterations”

5. Consider the “slight” difference in programming Jacobi and Gauss-Seidel

methods

6. Consider the difference between Gauss-Seidel and SOR

7. Consider the structure of programming LOR by lines and understand

what possible changes should be made for programing the same scheme

by columns (THIS WILL CLARIFY SOME OF THE DOUBTS RAISED

DURING LECTURES)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

35

APPLICATION EXAMPLES

1. Bare Cylindrical Reactor (file: nudo.dat)

Reference data

 Square domain with a side of 300 cm

 Square cells with a side of 10 cm

 Core radius = 125 cm

Analytical solution:

o The neutron flux distribution is: φφφφ(r) = φφφφ0 J0








2.4048 r

R

The radial peaking factor is:

F⊥⊥⊥⊥ =
φφφφmax

φφφφmed
 =

φφφφ0

φφφφ0

ππππ R2

⌡


⌠

 0

 R

J0








2.4048 r

R
 2ππππ r dr

 ≈≈≈≈ 2.316...

where B2 =








2.4048

R

2

o Assuming:

ΣΣΣΣa = 0.08 cm-1 νΣνΣνΣνΣf = 0.0807 cm-1 D = 0.4 cm

it is expected

Keff =
νΣνΣνΣνΣf

ΣΣΣΣa + D B2
 ≈≈≈≈ 1.006887

Input deck:

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

36

Run this case by the following procedure:

o copy by a text editor the content of “nudo.dat” into the

file “core.dat” and save

o click on Critical-32.exe or Critical-64.exe for 32 bit or

64 bit processors)

o select “1” on the screen if you want displaying the

iterations

o open the “core.out” file by a text editor and look at the

results; for this case you have a long file whose last part

is:

It can be noted that:

o the Keff is close to the analytical prediction for a “cylindircal

reactor” (ask yourself if the present one is really cylindrical…)

o the radial peaking factor is also close to the theoretical prediction

o the spectral radius of the Jacobi iteration matrix is quite low

o the thermal power was assigned arbitrarily: never mind…

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

37

o on your PC you will certainly find different computing times

(maybe different from time to time…)

o you can see how many “outer iterations” are needed for this case

without proper acceleration

o open the MATLAB file “critical.m” and run it to visualize the

core description and the flux distribution (click on the first figure

to see the second one)

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

2.5

x 10
14

 Flux

o run now with different values of “method” (2 to 4) for GS, SOR,

LOR you will find not so much difference in the number of inner

iterations because in this case the spectral radius of the Jacobi

matrix is already low; potspone judgement on this feature…

2. Cylindrical reactor with reflector (file: reflect.dat)

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

2.5

x 10
14

 Flux

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

38

NB: There is a bug in the Matlab file that I was not able to identify. It is cutting one

line and one column in the visualization (see above). Sorry ! Whoever solves it will

have 0.1/30 more on the final vote of his examinations ;-) .

Repeat the same analyses with the reflector case (again, copy the

content of the input file into the core.dat file); you will find:

• a greater value of the Keff: why?

• a slightly different nrutron flux distribution (not so much);

• an increased number of inner iterations:

• e.g., with Jacobi you will find the following:

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

39

Selecting the GS method it is found:

i.e. the same Keff, but with a lower number of inner iterations: not

halved as asymptotically expected… why? try answering…

Obviously it is because now the spectral radius of the Jacobi matrix

has increased (look in the output of the Jacobi case) because of less

average absorption; shifting to GS is now more effective. Try now

with SOR and the suggested optimal ωωωω parameter.

Further suggested activity: Play with the radius of the core restricting

it very much (small fissile region) in order to see increasing the

spectral radius of the Jacobi matrix. Use now the different numerical

schemes to see the difference: Jacobi vs. GS vs. SOR vs. LOR.

3. Cylindrical reactor with reflector and four control rods

♦♦♦♦ at the vertices of a square (file: 4rodssqu.dat)

♦♦♦♦ at the reactor core centre (file: 4rodsmid.dat)

♦♦♦♦ placed laterally (file: 4rodslat.dat)

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

40

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

2.5

x 10
14

 Flux

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

2.5

x 10
14

 Flux

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

2.5

x 10
14

 Flux

• Compare the different configurations of the control rods an

draw conclusions about their worth.

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

41

• Play with the different numerical solution schemes and

draw conclusions

4. Cylindrical reactor with reflector and many control rods

 (file: manyrods.dat)

50 100 150 200 250

50

100

150

200

250

 Reactor Composition

0

100

200

300

0

100

200

300
0

0.5

1

1.5

2

x 10
14

 Flux

• Play with the different numerical solution schemes and

draw conclusions

Finally, discuss with your teacher the limited realism

obtained by the use of a single energy group equations

NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems

42

FURTHER PROPOSED ACTIVITIES

1. Study the effect of a single control rod placed in different

locations in the reactor

 Hint:

 make plots of ∆ρ∆ρ∆ρ∆ρ as a function of the local squared neutron

flux

2. Study the best positioning of four control rods for getting

the minimum Keff

3. Optimise the positioning of the control rod pattern starting

with the file manyrods.dat

