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DISCRETISATION METHODS 
 
• In the previous units we assumed a rather heuristic way to 

discretise equations by “finite difference” or “finite volume” 

approaches 

• Let us now come back on this aspect, by looking more carefully to 

the different possible choices available to obtain the approximate 

solution of a partial differential equation problem 

• The figure below summarises the main steps to be performed in the 

process of solving partial differential equation problems by suitable 

discretization schemes 

• The characteristics of the main available discretization methods will 

be summarised in the following 

 
• Generally speaking we have three main techniques of discretizing 

neutron diffusion and transport equations:  
o the finite difference method, i.e., the substitution of partial derivatives 

with difference expressions (already considered); 

o the finite volume method, i.e., writing equations in integral form over 

control volumes (already considered and to be further applied later); 

o the finite element methods, i.e., making use of the “weighted residuals 

method” to get more accurate local approximations, as in the “coarse-

mesh method” that we will describe below. 

DDIIFFFFEERREENNTTIIAALL  

PPRROOBBLLEEMM  

DDiissccrreettiizzaattiioonn  

AALLGGEEBBRRAAIICC  PPRROOBBLLEEMM  

((EEqquuaattiioonnss  ++  iinniittiiaall    

aanndd  bboouunnddaarryy  ccoonnddiittiioonnss))  

SSoolluuttiioonn  ooff  tthhee    

aallggeebbrraaiicc  eeqquuaattiioonnss  

AAPPPPRROOXXIIMMAATTEE  

SSOOLLUUTTIIOONN  

IInniittiiaall  aanndd  bboouunnddaarryy  

ccoonnddiittiioonnss  

DDiiffffeerreennttiiaall  

eeqquuaattiioonnss  

CChhooiiccee  ooff    

aa  ddiissccrreettiissaattiioonn  mmeetthhoodd  
GGeeoommeettrriiccaall  ddoommaaiinn  

ddiissccrreettiissaattiioonn  

((““ggrriiddddiinngg””))  

CCoonnvveerrggeennccee  ccrriitteerriiaa  
SSoolluuttiioonn  ooff  lliinneeaarr  aanndd  nnoonn--lliinneeaarr  

aallggeebbrraaiicc  eeqquuaattiioonn  ssyysstteemmss  
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WEIGHTED RESIDUALS METHOD 

 
We search for the solution of the diffusion (or any other) 

partial differential equation written in the form 

0L Sφ + =  

that is a compact way to write 

0adiv D grad Sφ Σ φ− + =  

with some assigned boundary conditions. 

We now search for an approximate solution of this 

equation in a narrower class of functions than generally 

eligible for the application of the differential operator:  

( ) ( )
1

N

app j j

j

r c u rφ
=

=∑
� �

 

where: 

• ( )i
u r
�

 are trial functions that are sufficiently regular and 

must satisfy the boundary conditions; 

• jc = appropriate coefficients- 

 The “residual” of the differential equation, obtained upon 

substitution in it of the approximate solution, will be generally 

different from zero  

( ) 0appL S R rφ + = ≠
�

 

In order to obtain a good approximation of the solution of 

the differential equation, we can impose that the residual be 

sufficiently small in some integral sense.  

 In this purpose, we search for N “weighting functions” 

( )iw r
�

 imposing that the weighted residual be zero in the 

average over the considered volume: 
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( ) ( ) ( )0 1, ,i

V

R r w r dV i N= =∫
� �

…

 

meaning that 

( ) ( ) ( )0 1, ,app i

V

L S w r dV i Nφ + = =∫
�

…

 

 Making use of a notation of “inner product” between 

functions (as in vector spaces), we have  

( ) ( ) ( ) ( )
1

, , , 0
N

i i j j i i

jV

R w R r w r dV L c u w S w
=

 
= = + = 

 
∑∫

� �

 

Since the trial functions and the weighting functions are 

known, imposing this relationship implies to select an 

appropriate value of the coefficients of the expansion in the 

approximation.  

In fact, a linear system in the unknown coefficients is thus 

obtained:  

( ) ( )

( )

1

1

, , 0

0 1, ,

N

j j i i

j

N

j ij i

j

c Lu w S w

c a s i N

=

=

+ =

⇒ + = =

∑

∑ …
 

Generalising the concept of orthogonality between vectors to 

the case of functions, we can say that the residual is imposed 

to be “orthogonal” to each weighting function. So, increasing 

the number of weighing functions, we can obtain more and 

more accurate approximations (i.e., “orthogonal to many 

functions”). 
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 The choice of “trial functions” is generally left to good 

practice: 

• they should be simple enough to be differentiated and 

integrated at ease; 

• they should provide trends similar to the expected exact 

solution at least locally. 

For the above reasons, low order polynomials are often 

chosen in this purpose, but their selection is not mandatory. 

On the other hand, the selection of weighting functions 

characterizes the method according to classical choices 

• in the GALERKIN METHOD, the “weighting functions” 

are the same as the “trial functions” 

( ) ( )i i
w r u r=
� �

 

 in the case of a polynomial of n-th degree, for instance, it is:  

( ) ( ) 2

0 1 2

0

N
n

app j j n

j

x c u x c c x c x c xφ
=

= = + + + +∑ …
 

 and a Galerking weighting can make use of 

( ) ( )0, ,k

i
w x x k N= = …  

• in the SUBDOMAIN METHOD, it is assumed that the 

weighting function is “unity” in the selected subdomain: 

( ) 1
i m

w r r V= ∈
� �

  and ( ) 0
i m

w r r V= ∉
� �

 

 

In the case of neutron diffusion this is equivalent to impose that 

the neutronic balance is satisfied  

in a global (integral) sense in the volume 



NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems 

 

7

In fact: 

( ) 0

m

app a app

V

div D grad S dVφ Σ φ− + =∫  

0

m m m

app a app

S V V

leakage absorption source

D grad n dS dV S dVφ Σ φ− − ⋅ − + =∫ ∫ ∫
�

��������� ����� �����
 

  This is an important requirement that should be required 

to any numerical scheme: 

the integral balance of neutrons should be satisfied  

within each volume by the adopted approximation 

 

It is moreover necessary to impose that 

neutron balance is satisfied everywhere in the whole domain 

by imposing appropriate  

continuity conditions of current at the interfaces. 

 

• in the COLLOCATION METHOD, a Dirac’s “delta 

function” is used for weighting 

( ) ( )i i
w r r rδ= −
� � �

 

This is equivalent to impose that the residual is zero  

at a certain point i
r
�

  

( ) ( ) ( ) 0
app i i

V

L S r r dV R rφ δ+ − = =∫
� � �

 

This means that the partial differential equation is solved 

exactly at that location by the approximating function:  

of course, this does not mean  

that the solution is exact in that place 
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SAMPLE APPLICATION  

OF THE WEIGHTED RESIDUAL METHOD: 

 “COARSE MESH” METHODS 

 

Reactor calculations with large meshes are required in static 

and dynamic reactor analyses 

The considerable complication of composition of nuclear 

reactors requires to perform calculations after convenient 

homogenization of properties at different levels 

1. Cell level homogenisation 

Coolant moderator 

 

Cladding 

• The rod is considered together with the 

moderator/coolant assigned to it and to the cladding 

• Neutron transport codes are used to obtain the nuclear 

parameters with few energy groups 

• Many calculations are needed to consider the multiple 

values of enrichment, burn-up, burnable poisons, etc.. 
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2. Fuel assembly level homogenisation 

• The fuel element is then considered as obtained by 

different homogenised cells 

 

 

• Actually an assembly calculation can be made even 

starting from the original more complex cell structure 

 Making use of transport codes, the few group constants 

are calculated for the different axial locations where the 

composition is known  

  The few group parameters for each large “node” are so 

obtained as a function of: 

♦♦♦♦ composition of the element box; 

♦♦♦♦ moderator temperature; 

♦♦♦♦ void fraction; 

♦♦♦♦ burn-up; 

♦♦♦♦ fuel temperature. 

 These “libraries” of tables are used to obtain by 

interpolation the parameters applicable to each case, in both 

static and dynamic calculations 

The “coarse-mesh” methods are used to perform 

calculations in 3D on the whole reactor on the basis of the 

obtained parameters 
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They are more efficient than the finite difference methods 

since they allow the use of a lower number of nodes with the 

same accuracy 

This technique is described here since it was developed in 

the past at the University of Pisa. Alternative techniques are 

used in specific codes set up in different research groups 

 

QUABOX Method 

•••• The reactor is subdivided into parallelepiped volumes 

centred on the points in which it is chosen to calculate the 

neutron flux 

 

 

 

 

 

•••• Each node is considered as “homogeneous” in terms of 

material and the neutron flux is approximated in it by a 

second order polynomial in the different directions 

φφφφ(x,y,z) = φφφφ(ξξξξ,ηηηη,ζζζζ) = φφφφijl (1 + ax,ijl ξξξξ + bx,ijl ξξξξ2 

+ ay,ijl ηηηη + by,ijl ηηηη2 + az,ijl ζζζζ + bz,ijl ζζζζ2 ) 

where the local coordinates are defined as  

ξξξξ = 
x - xi

hxi
   ηηηη = 

y - yj

hyj
   ζζζζ = 

z- zl

hzl
 

[-1/2,1/2] and φφφφijl is the neutron flux in the node centre. 

P
ijl

h
xi

h
yj

h
zl
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 The “a” and “b” coefficients are related to the values of 

the neutron flux at the interfaces: 

φφφφi-½.j.l = φφφφijl 










1 - 
ax

2
 + 

bx

4
 

φφφφi+½.j.l = φφφφijl 










1 + 
ax

2
 + 

bx

4
 

This allows calculating their values in terms of interface fluxes 

ax = 
φφφφi+½.j.l - φφφφi-½.j.l

φφφφijl
   bx = 2 

φφφφi+½.j.l - 2 φφφφijl + φφφφi-½.j.l

φφφφijl
 

with similar relations holding for the y and z directions. 

It is then imposed that the neutron balance is satisfied in the 

node: this corresponds to the subdomain method: 

⌡


⌠

  Sijl

 D grad φφφφ . n
→→→→

 dS + 
⌡

⌠

  Vijl

 

  






νννν ΣΣΣΣf

k
 - ΣΣΣΣa  φφφφ dV = 0  

 These integrals are evaluated on the basis of the 

quadratic polynomial, obtaining: 

2 Dijl 









bx

h
2

xi

 + 
by

h
2

yj

 + 
bz

h
2

zl

 φφφφijl +  

+ 








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl  









1 + 
 bx + by + bz

12
 φφφφijl = 0 

 Remembering the above defined expression for the 

coefficients of the polynomial, a seven point formula is 

obtained, relating the interfacial fluxes to the centre flux.  
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







 Dijl + 
h

2

xi

24
 








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl  

φφφφi+½.j.l - 2 φφφφijl + φφφφi-½.j.l

(h
 

xi/2)2
  

+ 








 Dijl + 
h

2

yj

24
 








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl  

φφφφi.j+½.l - 2 φφφφijl + φφφφi.j-½.l

(h
 

yj/2)2
  

+ 








 Dijl + 
h

2

zl

24
 








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl  

φφφφi.j.l+½ - 2 φφφφijl + φφφφi.j.l-½

(h
 

zl/2)2
    (*) 

+ 








νΣνΣνΣνΣf.ijl

k
 - ΣΣΣΣa.ijl  φφφφijl  = 0   

 It must be now noted that this expression represents the 

neutron balance “within the node”. In order to satisfy the 

overall balance everywhere in the calculation domain (i.e., in 

the system containing all the parallelepiped volumes), it must 

be completed by conditions expressing the “neutron balance at 

the interfaces between the nodes”:  

we have six current continuity equations as the following one 

- Di.j.l  








∂φ∂φ∂φ∂φ

∂∂∂∂x

 

 x
-
i+½

 = - Di+1.j.l  








∂φ∂φ∂φ∂φ

∂∂∂∂x

 

 x
+
i+1-½

 

Di.j.l

h
 
xi

  
3 φφφφi+½.j.l - 4 φφφφi.j.l + φφφφi-½.j.l  =  

= 
Di+1.j.l

h
 
xi+1

  
 -3 φφφφi+1-½.j.l + 4 φφφφi+1.j.l - 3 φφφφi+1+½.j.l  

The other 5 are quite similar. 

  These equations serve to assure the overall neutron 

balance in the domain and allow “to express the interface 
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fluxes in terms of node centred fluxes”, being the true 

unknowns of the problem: 

φφφφi+½.j.l = 

4








1 - 
1

4
 
φφφφi-½.j.l

φφφφi.j.l

3









1 + 
h

 
xi

 Di+1.j.l

h
 
xi+1

 Di.j.l

 φφφφi.j.l + 

4








1 - 
1

4
 
φφφφi+1+½.j.l

φφφφi+1.j.l

3









1 + 
h

 
xi+1

 Di.j.l

h
 
xi

 Di+1.j.l

 φφφφi+1.j.l  

 This is very similar to what already noted in the 1D cases, 

in which  the interface fluxes are eliminated in favour of node 

centred fluxes. 

The apparent difficulty noted here is that the interface 

fluxes, actually, still appear in the final formulations as 

coefficients (see the terms in red). Actually, there is no 

problem since, in view of an iterative solution, these interface 

fluxes are updated “at each iteration”. So, they can be 

considered “known” at each step.  

So, as usual, we have that interface fluxes are expressed 

as:  

φφφφi+½,j,l = ααααi,i+1,jl φφφφi,j,l + ββββi,i+1,jl φφφφi+1,j,l  

 It is remarked that this is the same structure obtained for 

1D cases (see Unit 1), that is now repeated (with more complex 

coefficients!) in three directions.  

By substituting this formulation in the balance equation 

(*) (see the pages above) we obtain a classical 7-point 

formulation, as it is in the case of the simple finite difference or 

finite volume cases: 

i,j,l φφφφi,j,l + i,j,l φφφφi-1,j,l + i,j,l φφφφi+1,j,l + i,j,l φφφφi,j-1,l  

+ i,j,l φφφφi,j+1,l + i,j,l φφφφi,j,l-1 + i,j,l φφφφi,j,l+1 = 0 
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 Obviously enough, the coefficients of this expression are 

much more complex than the ones obtained by a finite 

difference scheme. This means that they need more computing 

time to be calculated.  

However, the higher accuracy that can be obtained by the 

quadratic approximation in the nodes allows the use of a 

smaller number of nodes with a final advantage.  

 

CUBBOX Method 

In order to further improve accuracy, a cubic polynomial can 

be chosen to represent the trend of neutron flux in each node:  

φφφφ(x,y,z) = φφφφ(ξξξξ,ηηηη,ζζζζ) = φφφφijl (1 + ax,ijl ξξξξ + bx,ijl ξξξξ2 + cx,ijl ξ ξ ξ ξ (ξξξξ2 - 
1

4
) 

+ ay,ijl ηηηη + by,ijl ηηηη2 + cy,ijl η η η η (ηηηη2 - 
1

4
) 

+ az,ijl ζζζζ + bz,ijl ζζζζ2 + cz,ijl ζ ζ ζ ζ (ζζζζ2 - 
1

4
) 

The particular form of the cubic terms (it is actually a linear + 

cubic expression), is chosen in a skilled way to simplify 

calculations. In fact: 

•••• it does not contribute to the expressions of the coefficients a 

and b in terms of interfacial fluxes (it is zero at -1/2 and 1/2) 

•••• since it is an odd-degree term to be integrated between -1/2 

and +1/2, its contribution to the neutron balance is also zero 

 So, the relations obtained for QUABOX still hold in this 

case: very nice and simplifying result! 

 The further effort to be made in this case is the evaluation 

of the “c” coefficients. This requires a further use of the 

Weighted Residuals Method: 
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⌡

⌠

  Vijl

 








 div D grad φφφφ +  
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ  wx dV = 0  

⌡

⌠

  Vijl

 








 div D grad φφφφ +  
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ  wy dV = 0  

⌡

⌠

  Vijl

 








 div D grad φφφφ +  
νννν ΣΣΣΣf

k
 φφφφ - ΣΣΣΣa φφφφ  wz dV = 0  

The choice in this case is in terms of a “Galerkin” weighting 

wx (ξξξξ) =  ξ ξ ξ ξ (ξξξξ2 - 
1

4
)   wy (ηηηη) =  η η η η (ηηηη2 - 

1

4
) 

wz (ζζζζ) =  ζ ζ ζ ζ (ζζζζ2 - 
1

4
) 

 In further works, a similar “collocation” method was 

selected (Prof. Montagnini and coworkers): 

wx (ξξξξ) =  δδδδ(ξ −ξ −ξ −ξ − 
1

2
) - δδδδ(ξ +ξ +ξ +ξ + 

1

2
) 

wx (ηηηη) =  δδδδ(ηηηη − − − − 
1

2
) - δδδδ(ηηηη + + + + 

1

2
)  

wx (ζζζζ) =  δδδδ(ζζζζ − − − − 
1

2
) - δδδδ(ζζζζ + + + + 

1

2
)  

 Note that both the above Galerkin and the collocation 

formulations for the weighting make us of “odd” functions 

 So, we are now in the position to calculate the “c” 

coefficients, which allow a better accuracy than in the case of 

quadratic polynomials. 
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 Continuity equations for currents at the interfaces must 

be then imposed to obtain again a seven point formula in the 

node centred values of the neutron flux. 

 We are now in the position to draw some conclusions: 

• “coarse-mesh” methods allow for a more accurate 

evaluation of neutron flux, with the same number of nodes, 

than finite volume techniques 

• the formulations obtained are more complex, though they 

finally revert to 3 or 5 or 7 point equations respectively in 

1D, 2D and 3D: this is a characteristics embedded in the 

different discretization schemes due to the leakage terms 

• so, the advantage of the greater accuracy is paid by a larger 

computational effort per node 

• the computational effort is larger in the cubic with respect 

to the quadratic formulation 

• however, a lower number of nodes can be used to get still 

better accuracy that by finite volume techniques: this 

represents the advantage 
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Simplified Example of Eigenvalue Calculations 

 

Foreword 

 

The following material can be used as a basis for hands-on 

exercises to be performed by the students, to make them 

achieve awareness that even the simplest techniques discussed 

during lectures may provide reasonable results 

 

Of course, more sophisticated techniques will provide more 

“professional” evaluations: however, simplicity of the analysis 

is considered an important ingredient to make students “see” 

that the basis of complex techniques is already embedded into 

the simplest ones 

 

The selected system is an infinite almost-cylindrical reactor, 

with a realistic distribution of assemblies, assumed each one to 

be internally homogeneous 

 

It must be borne in mind that the use of the simple one-energy 

group equation actually makes impossible to accurately evaluate 

details like the actual effect of reflector or the effectiveness of 

absorbing elements (simulating control rods) 

 

However, the treatment was purposely kept “simple” to have 

a student level treatment whose results can be sometime 

checked by simple hand calculations 

 

In some sense, with due time and some skills in programming, 

students could have themselves produced both the theory and 

the software developed for this purpose   
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1. Inner iterations 

 

•••• Balance equation to be discretised 

 

div D grad φφφφ - ΣΣΣΣa φφφφ + S = 0   (1) 

 
 Basic choices: 

♦♦♦♦ square domain in 2D (x and y, infinite z coordinate) 

♦♦♦♦ nuclear parameters variable from node to node 

♦♦♦♦ simple finite volume discretisation 

♦♦♦♦ equal discretisation step along x and y 

 

i,ji-1,j

i,j-1

i+1,j

i,j+1

x

y
h
x

= h
y

= h

 
The discretised form of (1) can be expressed as: 

+ (incoming current) × (related lateral surface) 

- (outgoing current) × (related lateral surface) 

- (absorption rate) × (node volume) 

+ (fixed source) × (node volume) = 0 

or 

- h Di,j 










(φφφφi,j - φφφφi-½,j) 
2

h
 + (φφφφi,j - φφφφi,j-½) 

2

h
  

+ h Di,j 










(φφφφi+½,j - φφφφi,j) 
2

h
 + (φφφφi,j+½ - φφφφi,j) 

2

h
   (2) 

- h2 ΣΣΣΣa i,j φφφφi.j + h2 Si,j = 0 

(i = 2, ..., N-1)   (j = 2, ..., N-1) 
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As we know from previous developments in 1D geometry, 

for any internal node we can eliminate the fluxes at the 

interfaces by imposing current continuity. For instance 

-2 
Di.j

h
 (φφφφi+½.j - φφφφi.j) = -2 

Di+1.j

h
 (φφφφi+1.j - φφφφi+½.j)  (3) 

and then 

φφφφi+½.j = 
 Di.j φφφφi.j + Di+1.j φφφφi+1.j 

 Di.j + Di+1.j 
    (4) 

Similar formulations apply for the other three lateral surfaces. 

Note that in the above definition of the interface flux, the node 

spacing has no role “just because it is equal everywhere” 

(compare with the 1D case in Unit 1). 

 

 It can be easily proven that for internal nodes (2) it is: 

OOOOi.j φφφφi.j = WWWWiiii.j φφφφi-1.j + EEEEi.j φφφφi+1.j + SSSSi.j φφφφi.j-1 + NNNNi.j φφφφi.j+1 + h2 Si.j

 (5) 

where 

WWWWi.j = 
2 Di.j Di-1.j

Di.j + Di-1.j
   EEEEi.j = 

2 Di.j Di+1.j

Di.j + Di+1.j
    

    

(6) 

SSSSi.j = 
2 Di.j Di.j-1

Di.j + Di.j-1
   NNNNi.j = 

2 Di.j Di.j+1

Di.j + Di.j+1
    

   

In fact, it is for instance: 

- h Di,j 










(φφφφi,j - φφφφi-½,j) 
2

h
  = - h Di,j 











(φφφφi,j - 
 Di.j φφφφi.j + Di-1.j φφφφi-1.j 

 Di.j + Di-1.j 
) 

2

h
  

= - h Di,j 










(
 Di-1.j φφφφi.j - Di-1.j φφφφi-1.j 

 Di.j + Di-1.j 
) 

2

h
  =

2 Di.j Di-1.j

Di.j + Di-1.j
 (φφφφi,j - φφφφi-1,j) 

Walter Ambrosini
Richiamo
-
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It can be also noted that it is: 

 

OOOOi.j = WWWWi.j + EEEEi.j + SSSSi.j + NNNNi.j + h2 ΣΣΣΣa i.j   (7) 

   

(note, again and again, the diagonal dominance of the system 

matrix). 

 In "boundary nodes", we have to restart from the 

balance equation (2) and impose the needed boundary 

conditions. 

For simplicity of treatment, we will employ some trick 

that should not be adopted in “professional” calculations, 

since their simplicity is paid by a useless increase in 

computational effort, which is not justified in real 

applications. 

In particular, though the system to be considered is 

modelled as a complex boundary on which we should impose 

the neutron flux to be zero (“extrapolated boundary”), we will 

impose the flux to be zero on the boundary of the larger square. 

This is simpler and can be obtained assuming that the fluxes in 

“fictitious nodes” with indices 0 and N+1 is zero.  

 

Nocciolo

Riflettore
Esterno

 

External region 
Reflector 

Core 
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In particular, the boundary conditions are imposed as: 

•••• i = 1   WWWWi.j = 2 Di.j  φφφφ0.j = 0 

•••• i = N  EEEEi.j = 2 Di.j  φφφφN+1.j = 0 

(8) 

•••• j = 1   SSSSi.j = 2 Di.j  φφφφi.0 = 0 

•••• j = N  NNNNi.j = 2 Di.j  φφφφi.N+1 = 0 

 

 Let’s consider, as an example, the case i=1. It is: 

- h D1,j 










(φφφφ1,j - φφφφ0,j) 
2

h
 + (φφφφ1,j - φφφφ1,j-½) 

2

h
  

+ h D1,j 










(φφφφ1+½,j - φφφφi,j) 
2

h
 + (φφφφ1,j+½ - φφφφ1,j) 

2

h
   (9) 

- h2 ΣΣΣΣa 1,j φφφφ1.j + h2 S1,j = 0 

 (j = 2, ..., N-1) 

It is noted that, after we have replaced the interface node with 

φφφφ0,j = 0 the “west” coefficient becomes WWWWi.j = 2 Di.j.  

 The way of imposing the “really wanted” boundary 

conditions around the periphery of the reflector is specified 

hereafter. 

 

Reactor Model Description 

• As seen in the previous sketch, nuclear parameters are 

assigned for “core” nodes, and “reflector” nodes 

• It is also possible to redefine single node parameters, e.g. for 

simulating localized absorption (control rods) 
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• The trick adopted to assign the condition of zero flux on the 

outer surface of the reflector on the basis of the zero flux 

assigned on the external contour of the square region 

consists in assigning a very large value of the diffusion 

coefficient in the “external region”; in fact: 

o whatever the leakage current, a large diffusion 

coefficient means a low neutron flux gradient 

o the low neutron flux gradient, in turn, makes the flux on 

the external surface of the reflector to be very close to the 

one on the outer surface of the square region (assigned 

to be zero) 

• In addition the absorption cross section in the external 

region is also assigned to be large 

• This numerical trick allows: 

o simplifying the input deck and the solution algorithm, 

operating on a simple square domain 

o maintain the diagonal dominance of the system matrix 

(the absorption cross section is large)  

• On the other hand, the disadvantage of this technique is to 

calculate “useless nodes”, in which the neutron flux is 

anyway zero: 

an optimized program should not work in this way 

 

 

Adopted linear system solution methods: 

1. Jacobi 

OOOOi.j φφφφ
(m+1)

i.j
 = WWWWi.j φφφφ

(m)

i-1.j
 + EEEEi.j φφφφ

(m)

i+1.j
 + SSSSi.j φφφφ

(m)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1
  

+ h2 Si.j  (10) 

Walter Ambrosini
Rettangolo
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2. Gauss-Seidel 

 OOOOi.j φφφφ
(m+1)

i.j
 = 

WWWWi.j φφφφ
(m+1)

i-1.j
 + EEEEi.j φφφφ

(m)

i+1.j
 + SSSSi.j φφφφ

(m+1)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1
 + h2 Si.j 

(11) 

3. SOR 

  φφφφ(m+1)

i.j
 = ωωωω 









φφφφ(m+1)

i.j
 - φφφφ(m)

i.j GS
 + φφφφ(m)

i.j
   (12) 

4. LOR 

- WWWWi.j φφφφ
(m+1)

i-1.j
 + OOOOi.j φφφφ

(m+1)

i.j
 - EEEEi.j φφφφ

(m+1)

i+1.j
 = 

+ ωωωω 








 SSSSi.j φφφφ
(m+1)

i.j-1
 + NNNNi.j φφφφ

(m)

i.j+1
 + h2 Si.j     (13) 

+ (1 - ωωωω) 








 - WWWWi.j φφφφ
(m)

i-1.j
 + OOOOi.j φφφφ

(m)

i.j
 - EEEEi.j φφφφ

(m)

i+1.j
 

 

 

•••• Outer Iterations 

The power method is used. We put: 

M
=

 = diag
i

 (νΣνΣνΣνΣf)i      (14) 

and then 

A
=

 φφφφ
-
 = 

1

k
 M
=

 φφφφ
-
 = 

1

k
 ψψψψ
-

     (15) 

obtaining 

K
=

 φφφφ
-
 = k φφφφ

-
      (16) 

where 

K
=

 = A
=

-1 M
=

      (17) 
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The iterative process has the “theoretical” form: 

φφφφ
-

(n+1)

  = 
 1 

 k
(n)

 

 K
=

 φφφφ
-

(n)

      (18) 

and it is 

k(n+1) = k(n) 

 ∑
i=1

N

ψψψψ
(n+1)

i

 ∑
i=1

N

ψψψψ
(n)

i

       (19) 

Actually, the solution procedure is the following: 

•••• diffusion equations are solved with the chosen iterative 

scheme starting with a guessed source 

•••• making use of the new fluxes the source is updated 

•••• the value of k is therefore updated 

•••• iterations are performed until convergence 
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FORTRAN Programme 
c----------------------------------------------------------------------c 
c                                                                      c 
c                        Programma   T P R S                           c 
c                                                                      c 
c                 Teaching Purpose Reactor Simulation                  c 
c                                                                      c 
c                     W. Ambrosini, Ottobre 1997                       c 
c                                                                      c 
c----------------------------------------------------------------------c 

      program core 

      implicit double precision (a-h,o-z) 

      character*80 riga 

c 

      parameter (m = 101) 

      common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid 

      common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m) 

      common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff 

      common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m) 

      dimension oldsou(m,m),class(m,m) 

c 

      open (unit=5,file='core.dat') 

      open (unit=6,file='core.out') 

      open (unit=7,file='core.pla') 

      open (unit=8,file='core.txt') 

c 
c   lettura dei dati generali 
c 

      read(5,100) riga 

      read(5,*) aleng,rcore,rrefl,n,method,omega 

c 
c   primo processamento per ottenere costanti di interesse 
c   (first pre-processing for preparing relevant constants) 
c 
      h = aleng / dfloat (n) 
      halfal = 0.5d00 * aleng 
      halfh = 0.5d00 * h 
      pi = 4.d00 * datan (1.d00) 
c 
c   lettura delle costanti nucleari del nocciolo 
c   (reading the nuclear constants of the reactor core) 
c 

      read(5,100) riga 

      read(5,*) dcore,sigcor,anisic 

c 
c   lettura delle costanti nucleari del riflettore 
c   (option for printing on the video) 
c 

      read(5,100) 

      read(5,*) drefl,sigref 

c 
c   opzione di stampa a video 
c   (option for printing on the video) 
c 

      write(*,*) ' Video printing ? (1=yes; 0=no) ' 

      read(*,*) istvid 

c 
c   assegnazione delle costanti nucleari nei nodi 
c   (assigning nuclear constants in the nodes) 
c 
      sumsou = 0.d00 

      do 10 i = 1,n 

      xi = h * dfloat(i) - halfh 
      deltxi = xi - halfal 



NMNR-Unit-3 – More on Discretisation Methods and Sample Applications to Eigenvalue Problems 

 

26

c 

      do 10 j = 1,n 

      yj = h * dfloat(j) - halfh 
      deltyj = yj - halfal 
c 
      radius = dsqrt ( deltxi * deltxi + deltyj * deltyj ) 
c 
c  nodi del nocciolo 
c  (core nodes) 

         if(radius.le.rcore) then 

         diff(i,j) = dcore 
         sigma(i,j) = sigcor 
         anisif(i,j) = anisic 
         ratr = radius / rcore 
c 
         soucor = 1.84d13 
         source(i,j) = soucor * dcos ( 0.5d00 * pi * ratr ) 
         sumsou = sumsou + source(i,j) 
         oldsou(i,j) = source(i,j) 

         class(i,j) = 2.d00 

c 
c  nodi del riflettore 
c  (reflector nodes) 

         elseif(radius.le.rrefl) then 

         diff(i,j) = drefl 
         sigma(i,j) = sigref 
         source(i,j) = 0.d00 

         class(i,j) = 1.d00 

c 
c  nodi esterni 
c  (external nodes) 

         else 

         diff(i,j) = 1.d05 
         sigma(i,j) = 1.d05 
         source(i,j) = 0.d00 

         class(i,j) = 0.d00 

         endif 

c 

   10 continue 

c 
c   assegnazione delle costanti in nodi particolari (npart > 0) 
c   (assigning constants in particular nodes (if npart > 0) 
c 

      read(5,100) riga 

      read(5,*) npart 

c 

         if(npart.gt.0) then 

         read(5,100) riga 

         do 20 ipart = 1,npart 

         read(5,*) ip,jp,diff(ip,jp),sigma(ip,jp),anisif(ip,jp) 

         xip = h * dfloat(ip) - halfh 
         yjp = h * dfloat(jp) - halfh 

         class(ip,jp) = 3.d00 

   20    continue 

         endif 

c 
c   costruzione dei coefficienti dell'equazione della diffusione 
c   (the coefficients of the diffusion equation are set up) 
c 

      do 30 i = 1,n 

      do 30 j = 1,n 

c 

         if(i.eq.1) then 

         cw(i,j) = 2.d00 * diff(i,j) 

         else 

         cw(i,j) = 2.d00 * diff(i,j) * diff(i-1,j) 
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     &                   / ( diff(i,j) + diff(i-1,j) ) 

         endif 

c 

         if(i.eq.n) then 

         ce(i,j) = 2.d00 * diff(i,j) 

         else 

         ce(i,j) = 2.d00 * diff(i,j) * diff(i+1,j) 
     &                   / ( diff(i,j) + diff(i+1,j) ) 

         endif 

c 

         if(j.eq.1) then 

         cs(i,j) = 2.d00 * diff(i,j) 

         else 

         cs(i,j) = 2.d00 * diff(i,j) * diff(i,j-1) 
     &                   / ( diff(i,j) + diff(i,j-1) ) 

         endif 

c 

         if(j.eq.n) then 

         cn(i,j) = 2.d00 * diff(i,j) 

         else 

         cn(i,j) = 2.d00 * diff(i,j) * diff(i,j+1) 
     &                   / ( diff(i,j) + diff(i,j+1) ) 

         endif 

c 
      co(i,j) = ce(i,j) + cw(i,j) + cn(i,j) + cs(i,j) 
     &                  + h * h * sigma(i,j) 
c 

   30 continue 

c 
c   iterazioni esterne 
c   (external iterations) 
c 

      call gettim(ihr,imin,isec,icent) 

      time0 = 3600.d00 * ihr + 60.d00 * imin + isec + 0.01d00 * icent 
c 
      akeff = 1.d00 

      do 50 itext = 1,100000 

c 
c   soluzione del sistema con il metodo prescelto 
c   (algebraic system solution with the selected method) 
c 

      if(method.eq.1) call jacobi (iter,rspect,itext) 

      if(method.eq.2) call gseid (iter,itext) 

      if(method.eq.3) call sor (iter,itext) 

      if(method.eq.4) call lor (iter,itext) 

c 
      oldak = akeff 
      oldsum = sumsou 
c 
      sumsou = 0.d00 

      do 40 i = 1,n 

      do 40 j = 1,n 

      source(i,j) = anisif(i,j) * phi(i,j) 
      sumsou = sumsou + source(i,j) 

   40 continue 

c 
      akeff = oldak * sumsou / oldsum 
c 

         if(istvid.eq.1) then 

         write(*,120) itext,akeff 

         endif 

      write(6,120) itext,akeff 

c 

      if(dabs(akeff-oldak).lt.1.d-7) goto 55 

   50 continue 

c 
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c 

   55 continue 

c 

      call gettim(ihr,imin,isec,icent) 

      time1 = 3600.d00 * ihr + 60.d00 * imin + isec + 0.01d00 * icent 
      tcpu = time1 - time0 
c 

          if(method.eq.1) then 

          omeopt = 2.d00 / ( 1.d00 + dsqrt ( 1.d00 - rspect * rspect ) ) 

               if(istvid.eq.1) then 

               write(*,130) rspect 

               write(*,135) omeopt 

               endif 

          write(6,130) rspect 

          write(6,135) omeopt 

          endif 

c 
c   scrittura dei valori del flusso 
c 
      area = 0.d00 
      totpow = 0.d00 
      powmax = 0.d00 
      phimed = 0.d00 
      sumasf = 0.d00 

      do 60 i = 1,n 

      xi = h * dfloat(i) - halfh 

      do 60 j = 1,n 

      yj = h * dfloat(j) - halfh 
c 
      sumasf = sumasf + anisif(i,j) 
      phiasf = phi(i,j) * anisif(i,j) 
      pow = phiasf / ( 2.5d00 * 3.1e10 ) 
      phimed = phimed + phiasf 
      totpow = totpow + pow * h * h * 365.76d00 

      if(powmax.lt.pow) powmax = pow 

c 

      write(7,160) xi,yj,class(i,j) 

   60 write(8,110) xi,yj,phi(i,j) 

      phimed = phimed / sumasf 
      powavg = totpow / ( pi * rcore * rcore * 365.76d00 ) 
      fattpc = powmax / powavg 
      react = ( akeff - 1.d00 ) / akeff 
c 

         if(istvid.eq.1) then 

         write(*,170) react 

         write(*,180) totpow 

         write(*,190) phimed 

         write(*,140) fattpc 

         write(*,150) tcpu 

         endif 

c 

      write(6,121) itext,akeff 

      write(6,170) react 

      write(6,180) totpow 

      write(6,190) phimed 

      write(6,140) fattpc 

      write(6,150) tcpu 

c 

      stop 

  100 format (a80) 

  110 format (3(1x,e14.7)) 

  120 format (/,1x,' External Iteration n. ',i5,' Keff = ',f12.9) 

  121 format (/,1x,' External Iteration number = ',i5,' Keff = ',f12.9) 

  130 format (/,1x,' Jacobi matrix spectral radius = ',f12.9) 

  135 format (1x,' Optimal Overrelaxation Parameter = ',f12.9) 
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  140 format (1x,' Radial Peaking Factor = ',f12.9) 

  150 format (/,1x,' Processing time = ',f7.2,' s ') 

  160 format (3(1x,e14.7)) 

  170 format (/,1x,' Reactivity = ',f12.9) 

  180 format (1x,' Total Thermal Power = ',1pe14.7,' W ') 

  190 format (1x,' Average Flux = ',1pe14.7,' n/(cm2.s)') 

      end 

c----------------------------------------------------------------------c 
c                                                                      c 
c     Soluzione delle Equazioni della Diffusione con Jacobi            c 
c     (Solving the diffusion equations with the Jacobi method)         c 
c                                                                      c 
c----------------------------------------------------------------------c 

      subroutine jacobi (iter,rspect,itext) 

      implicit double precision (a-h,o-z) 

c 

      parameter (m = 101) 

      common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid 

      common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m) 

      common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff 

      common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m) 

c 
c   assegnazione dell'approssimazione iniziale 
c   (the initial approximation is assigned) 
c 
      np1 = n + 1 
      h2 = h * h 

      do 10 i = 0,np1 

      do 10 j = 0,np1 

c 

       if(itext.eq.1) then 

         if( (i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1) ) then 

         phi(i,j) = 0.d00 
         oldphi(i,j) = 0.d00 

         else 

         phi(i,j) = h2 * source(i,j) / co(i,j) / akeff 
         oldphi(i,j) = phi(i,j) 

         endif 

       else 

       oldphi(i,j) = phi(i,j) 

       endif 

c 

   10 continue 

c 
      oldel2 = 1.d00 

      do 30 iter = 1,10000000 

c 
      ratmax = 0.d00 
      del2su = 0.d00 
c 

      do 20 j = 1,n 

      do 20 i = 1,n 

      tm = ce(i,j) * oldphi(i+1,j) + cn(i,j) * oldphi(i,j+1) 
     &   + cw(i,j) * oldphi(i-1,j) + cs(i,j) * oldphi(i,j-1) 
c 
      phi(i,j) = ( tm + h2 * source(i,j) / akeff ) / co(i,j) 
c 
      delphi = phi(i,j) - oldphi(i,j) 
      del2su = del2su + delphi * delphi 
c     ratio = dabs (delphi) / ( phi(i,j) + 1.d-10 ) 
      ratio = dabs (delphi) 

      if(ratio.gt.ratmax) ratmax = ratio 

c 

   20 continue 

c 

      do 25 i = 1,n 
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      do 25 j = 1,n 

      oldphi(i,j) = phi(i,j) 

   25 continue 

c 
      rspect = dsqrt ( del2su / oldel2 ) 
      oldel2 = del2su 
c 

      if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35 

c 

      if(istvid.eq.1) write(*,101) iter,ratmax 

      write(6,101) iter,ratmax 

   30 continue 

      write(6,100) 

c 

   35 return 

  100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>') 

  101 format (' Jacobi Internal Iteration n. ',i6, 

     & ' Max. Error = ',e14.7) 

      end 

c----------------------------------------------------------------------c 
c                                                                      c 
c     Soluzione delle Equazioni della Diffusione con Gauss-Seidel      c 
c     (Solving the diffusion equations with the Gauss-Seidel method)   c 
c                                                                      c 
c----------------------------------------------------------------------c 

      subroutine gseid (iter,itext) 

      implicit double precision (a-h,o-z) 

c 

      parameter (m = 101) 

      common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid 

      common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m) 

      common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff 

      common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m) 

c 
c   assegnazione dell'approssimazione iniziale 
c   (the initial approximation is assigned) 
c 
      np1 = n + 1 
      h2 = h * h 

      do 10 i = 0,np1 

      do 10 j = 0,np1 

c 

       if(itext.eq.1) then 

         if( (i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1) ) then 

         phi(i,j) = 0.d00 
         oldphi(i,j) = 0.d00 

         else 

         phi(i,j) = h2 * source(i,j) / co(i,j) / akeff 
         oldphi(i,j) = phi(i,j) 

         endif 

       else 

       oldphi(i,j) = phi(i,j) 

       endif 

c 

   10 continue 

c 

      do 30 iter = 1,10000000 

c 
      ratmax = 0.d00 
c 

      do 20 j = 1,n 

      do 20 i = 1,n 

      tm = ce(i,j) * phi(i+1,j) + cn(i,j) * phi(i,j+1) 
      tmp1 = cw(i,j) * phi(i-1,j) + cs(i,j) * phi(i,j-1) 
c 
      phi(i,j) = ( tm + tmp1 + h2 * source(i,j) / akeff ) / co(i,j) 
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c 
      delphi = phi(i,j) - oldphi(i,j) 
c     ratio = dabs (delphi) / ( phi(i,j) + 1.d-10 ) 
      ratio = dabs (delphi) 

      if(ratio.gt.ratmax) ratmax = ratio 

c 
      oldphi(i,j) = phi(i,j) 
c 

   20 continue 

c 

      if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35 

c 

      if(istvid.eq.1) write(*,101) iter,ratmax 

      write(6,101) iter,ratmax 

   30 continue 

      write(6,100) 

c 

   35 return 

  100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>') 

  101 format (' GS Internal Iteration n. ',i6, 

     & ' Max. Error = ',e14.7) 

      end 

c----------------------------------------------------------------------c 
c                                                                      c 
c     Soluzione delle Equazioni della Diffusione con SOR               c 
c     (Solving the diffusion equations with the SOR method)            c 
c                                                                      c 
c----------------------------------------------------------------------c 

      subroutine sor (iter,itext) 

      implicit double precision (a-h,o-z) 

c 

      parameter (m = 101) 

      common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid 

      common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m) 

      common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff 

      common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m) 

c 
c   assegnazione dell'approssimazione iniziale 
c   (the initial approximation is assigned) 
c 
      np1 = n + 1 
      h2 = h * h 

      do 10 i = 0,np1 

      do 10 j = 0,np1 

c 

       if(itext.eq.1) then 

         if( (i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1) ) then 

         phi(i,j) = 0.d00 
         oldphi(i,j) = 0.d00 

         else 

         phi(i,j) = h2 * source(i,j) / co(i,j) / akeff 
         oldphi(i,j) = phi(i,j) 

         endif 

       else 

       oldphi(i,j) = phi(i,j) 

       endif 

c 

   10 continue 

c 

      do 30 iter = 1,10000000 

c 
      ratmax = 0.d00 
c 

      do 20 j = 1,n 

      do 20 i = 1,n 

      tm = ce(i,j) * phi(i+1,j) + cn(i,j) * phi(i,j+1) 
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      tmp1 = cw(i,j) * phi(i-1,j) + cs(i,j) * phi(i,j-1) 
c 
      phi(i,j) = ( tm + tmp1 + h2 * source(i,j) / akeff ) / co(i,j) 
c 
c   sovrarilassamento 
c   (overrelaxation) 
c 
      phi(i,j) = ( phi(i,j) - oldphi(i,j) ) * omega + oldphi(i,j) 
c 
      delphi = phi(i,j) - oldphi(i,j) 
c     ratio = dabs (delphi) / ( phi(i,j) + 1.d-10 ) 
      ratio = dabs (delphi) 

      if(ratio.gt.ratmax) ratmax = ratio 

c 
      oldphi(i,j) = phi(i,j) 
c 

   20 continue 

c 

      if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 35 

c 

      if(istvid.eq.1) write(*,101) iter,ratmax 

      write(6,101) iter,ratmax 

   30 continue 

      write(6,100) 

c 

   35 return 

  100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>') 

  101 format (' SOR Internal Iteration n. ',i6, 

     & ' Max. Error = ',e14.7) 

      end 

c----------------------------------------------------------------------c 
c                                                                      c 
c     Soluzione delle Equazioni della Diffusione con LOR               c 
c     (Solving the diffusion equations with the LOR method)            c 
c                                                                      c 
c----------------------------------------------------------------------c 

      subroutine lor (iter,itext) 

      implicit double precision (a-h,o-z) 

c 

      parameter (m = 101) 

      common /generl/ h,aleng,rcore,rrefl,omega,n,method,istvid 

      common /nuclea/ diff(m,m),sigma(m,m),anisif(m,m),source(m,m) 

      common /flux/ phi(0:m,0:m),oldphi(0:m,0:m),akeff 

      common /winds/ ce(m,m),cw(m,m),cn(m,m),cs(m,m),co(m,m) 

c 

      dimension a(m),b(m),c(m),d(m),v(m),alef(m),bet(m) 

c 
c   assegnazione dell'approssimazione iniziale 
c   (the initial approximation is assigned) 
c 
      np1 = n + 1 
      h2 = h * h 

      do 10 i = 0,np1 

      do 10 j = 0,np1 

c 

       if(itext.eq.1) then 

         if( (i.eq.0).or.(j.eq.0).or.(i.eq.np1).or.(j.eq.np1) ) then 

         phi(i,j) = 0.d00 
         oldphi(i,j) = 0.d00 

         else 

         phi(i,j) = h2 * source(i,j) / co(i,j) / akeff 
         oldphi(i,j) = phi(i,j) 

         endif 

       else 

       oldphi(i,j) = phi(i,j) 

       endif 
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c 

   10 continue 

c 

      do 40 iter = 1,10000000 

c 
      ratmax = 0.d00 
c 
c  ciclo sull'indice che definisce le linee orizzontali 
c  (loop on the index defining the horizontal lines) 
c 

      do 30 j = 1,n 

c 
c  assegnazione dei coefficienti della matrice tridiagonale di linea 
c  (assigning the coefficients of the tridiagonal matrix for the line) 
c 

      do 20 i = 1,n 

      a(i) = - cw(i,j) 
      b(i) = co(i,j) 
      c(i) = - ce(i,j) 
      d(i) = omega * ( h2 * source(i,j) / akeff 
     &                 + cs(i,j) * phi(i,j-1) + cn(i,j) * phi(i,j+1) ) 
     &  + (1.d00 - omega) * ( - cw(i,j) * phi(i-1,j) 
     &            + co(i,j) * phi(i,j) - ce(i,j) * phi(i+1,j) ) 

   20 continue 

c 
c  soluzione del sistema tridiagonale 
c  (solution of the tri-diagonal system) 
c 

      call tdma (a,b,c,d,v,alef,bet,n,m) 

c 
c  assegnazione dei valori del flusso sulla linea j = costante 
c  e valutazione dell'errore massimo 
c  (assigning the values of the fluxes on the line at j = constant 
c  and maximum error evaluation) 
c 

      do 25 i = 1,n 

      oldphi(i,j) = phi(i,j) 
      phi(i,j) = v(i) 
c 
      delphi = phi(i,j) - oldphi(i,j) 
c     ratio = dabs (delphi) / ( phi(i,j) + 1.d-10 ) 
      ratio = dabs (delphi) 

      if(ratio.gt.ratmax) ratmax = ratio 

   25 continue 

c 

   30 continue 

c 

      if((ratmax.lt.1.d00).and.(iter.ne.1)) goto 45 

c 

      if(istvid.eq.1) write(*,101) iter,ratmax 

      write(6,101) iter,ratmax 

   40 continue 

      write(6,100) 

c 

   45 return 

  100 format (/,1x,'<<<<< Warning: Convergence Problems >>>>>') 

  101 format (' LOR Internal Iteration n. ',i6, 

     & ' Max. Error = ',e14.7) 

      end 
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c----------------------------------------------------------------------c 
c                                                                      c 
c   Soluzione di Sistemi Tridiagonali con l'Algoritmo di Thomas        c 
c   (Solution of systems with Tridiagonal matrix                       c 
c    by the Thomas algorithm)                                          c 
c                                                                      c 
c----------------------------------------------------------------------c 

      subroutine tdma (a,b,c,d,v,alef,bet,n,ld) 

      implicit double precision (a-h,o-z) 

      dimension a(ld),b(ld),c(ld),d(ld),v(ld),alef(ld),bet(ld) 

      ub=1.d00/b(1) 
      alef(1)=c(1)*ub 
      bet(1)=d(1)*ub 

      do 10 i=2,n 

      l=i-1 
      qz=b(i)-a(i)*alef(l) 
      uqz=1.d00/qz 
      alef(i)=c(i)*uqz 
   10 bet(i)=(d(i)-a(i)*bet(l))*uqz 
      nm1=n-1 
      v(n)=bet(n) 

      do 20 i=1,nm1 

      ii=n-i 
      l=ii+1 
   20 v(ii)=bet(ii)-alef(ii)*v(l) 

      return 

      end 

 

Proposed activity: read the programme trying to understand its working 

principles. A minimum knowledge of programming structures is needed. 

1. Consider the way in which nuclear constants are assigned 

2. Consider the way in which “east”, “west”, “north” and “south” 

coefficients are assigned considering the boundary conditions 

3. Identify the loop for “outer iterations” and the computation of Keff with 

the “generational formulation” 

4. Identify the loop for “inner iterations” 

5. Consider the “slight” difference in programming Jacobi and Gauss-Seidel 

methods 

6. Consider the difference between Gauss-Seidel and SOR 

7. Consider the structure of programming LOR by lines and understand 

what possible changes should be made for programing the same scheme 

by columns (THIS WILL CLARIFY SOME OF THE DOUBTS RAISED 

DURING LECTURES) 
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APPLICATION EXAMPLES 
 

1. Bare Cylindrical Reactor (file: nudo.dat) 

Reference data 

 Square domain with a side of 300 cm 

 Square cells with a side of 10 cm 

 Core radius = 125 cm 

Analytical solution: 

o The neutron flux distribution is: φφφφ(r) = φφφφ0 J0








2.4048 r

R
 

The radial peaking factor is: 

F⊥⊥⊥⊥ = 
φφφφmax

φφφφmed
 = 

φφφφ0

 
φφφφ0

ππππ R2
 
⌡


⌠

 0

   R

J0








2.4048 r

R
 2ππππ r dr

 ≈≈≈≈ 2.316... 

where B2 = 








2.4048

R
 
2

 

o Assuming:  

ΣΣΣΣa = 0.08 cm-1 νΣνΣνΣνΣf = 0.0807 cm-1 D = 0.4 cm 

it is expected 

Keff = 
νΣνΣνΣνΣf

ΣΣΣΣa + D B2
 ≈≈≈≈ 1.006887 

Input deck: 
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Run this case by the following procedure: 

o copy by a text editor the content of “nudo.dat” into the 

file “core.dat” and save 

o click on Critical-32.exe or Critical-64.exe for 32 bit or 

64 bit processors) 

o select “1” on the screen if you want displaying the 

iterations 

o open the “core.out” file by a text editor and look at the 

results; for this case you have a long file whose last part 

is: 

 

It can be noted that:  

o the Keff is close to the analytical prediction for a “cylindircal 

reactor” (ask yourself if the present one is really cylindrical…) 

o the radial peaking factor is also close to the theoretical prediction 

o the spectral radius of the Jacobi iteration matrix is quite low 

o the thermal power was assigned arbitrarily: never mind… 
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o on your PC you will certainly find different computing times 

(maybe different from time to time…) 

o you can see how many “outer iterations” are needed for this case 

without proper acceleration 

o open the MATLAB file “critical.m” and run it to visualize the 

core description and the flux distribution (click on the first figure 

to see the second one) 
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o run now with different values of “method” (2 to 4) for GS, SOR, 

LOR you will find not so much difference in the number of inner 

iterations because in this case the spectral radius of the Jacobi 

matrix is already low; potspone judgement on this feature…  

2. Cylindrical reactor with reflector (file: reflect.dat) 
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NB: There is a bug in the Matlab file that I was not able to identify. It is cutting one 

line and one column in the visualization (see above). Sorry ! Whoever solves it will 

have 0.1/30 more on the final vote of his examinations ;-) . 

Repeat the same analyses with the reflector case (again, copy the 

content of the input file into the core.dat file); you will find: 

• a greater value of the Keff: why? 

• a slightly different nrutron flux distribution (not so much); 

• an increased number of inner iterations: 

• e.g., with Jacobi you will find the following: 
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Selecting the GS method it is found:  

 

i.e. the same Keff, but with a lower number of inner iterations: not 

halved as asymptotically expected…  why? try answering… 

Obviously it is because now the spectral radius of the Jacobi matrix 

has increased (look in the output of the Jacobi case) because of less 

average absorption; shifting to GS is now more effective. Try now 

with SOR and the suggested optimal ωωωω parameter. 

Further suggested activity: Play with the radius of the core restricting 

it very much (small fissile region) in order to see increasing the 

spectral radius of the Jacobi matrix. Use now the different numerical 

schemes to see the difference: Jacobi vs. GS vs. SOR vs. LOR. 

3. Cylindrical reactor with reflector and four control rods 

♦♦♦♦ at the vertices of a square (file: 4rodssqu.dat) 

♦♦♦♦ at the reactor core centre (file: 4rodsmid.dat) 

♦♦♦♦ placed laterally (file: 4rodslat.dat) 
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• Compare the different configurations of the control rods an 

draw conclusions about their worth. 
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• Play with the different numerical solution schemes and 

draw conclusions  

4. Cylindrical reactor with reflector and many control rods 

 (file: manyrods.dat) 
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• Play with the different numerical solution schemes and 

draw conclusions  

 

Finally, discuss with your teacher the limited realism 

obtained by the use of a single energy group equations 
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FURTHER PROPOSED ACTIVITIES 

 

 

1.  Study the effect of a single control rod placed in different 

locations in the reactor 

 

  Hint:  

 make plots of ∆ρ∆ρ∆ρ∆ρ as a function of the local squared neutron 

flux 

 

2. Study the best positioning of four control rods for getting 

the minimum Keff 

 

3. Optimise the positioning of the control rod pattern starting 

with the file manyrods.dat 

 


