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MULTIGROUP CRITICALITY PROBLEMS 
Existence of the Fundamental Eigenvalue 

 

• The multi-group steady-state equation can be written in vector 

form making use of the differential operators in matrix form 
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• Putting 
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 it is    
1

k
− =L Mφ φφ φφ φφ φ  
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• By introducing the inverse operator of −L , identified by H , it is 

1
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• From the condition 
1−= − ⇒ − ⋅ =H L L H I  it is possible to obtain 

indication on the components of the integral matrix operator H  
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( )G G r r dVg g

V

⋅ = ′ → ⋅ ′∫
� �

 

 For instance, putting  

( ),
f

rψ< > =M νΣ χφ = φ χφ = φ χφ = φ χφ = φ χ
�

 

with 

( ) ( ) ( ) { }, 1 2,

1

, , ...,
G

f f g g G

g

r r rψ ν φ χ χ χ
=

=< > = Σ ≡∑νΣ φ χφ χφ χφ χ
� � �
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It is important to point out the “positivity” of the operator H 

 

• In fact, Green integral operators are “positive”, i.e., they transform 

positive sources in positive fluxes: therefore, also the Hij are positive 

in this regard 

• Putting 

HM K====  

the criticality problem can be put in the eigenvalue problem form 

k=K φ φφ φφ φφ φ       (°°) 

where K  is a matrix integral operator which, actually, transforms 

non negative fluxes into non negative fluxes ; so it is note exactly a 

“positive” operator 

• In fact, non-zero distributions of neutron flux only in non 

multiplicating regions of the reactor could be transformed into zero 

flux distributions 

• In order to find an eigenvalue problem expressed in terms of a 

“positive” operator, the relationship (°°) can be scalarly multiplied 

at both sides by the vector f
νΣ  

f f
k< = <νΣ K νΣ, φ > , φ >, φ > , φ >, φ > , φ >, φ > , φ >   with 
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f f f r K rψ ψ< =< <νΣ K νΣ HM νΣ H χ, φ > , φ > = , > =, φ > , φ > = , > =, φ > , φ > = , > =, φ > , φ > = , > =
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 Putting 

( ) ( )rkrK
��

ψ=ψˆ
 ( r active core∈

�
)  (°°°) 

the operator ˆ
f

K =< νΣ H χ, >, >, >, >� � is a positive operator, if at least 

the following requirements are satisfied: 

χ1 0>   ( ) ( )νΣ f
G

r
�

> 0   Σ s g g, − → >1 0  

This allows to apply the Jentsch’s Theorem stating that (°°°): 

♦ a positive fundamental eigenvalue (i.e., k k k= > ≥1 2 ... ) exists 

♦ in relation to this eigenvalue, a single positive eigenfunction 

exists 

• Since the eigenvalue problems (°°) e (°°°) are equivalent, we have 

the proof of the existence and uniqueness of the fundamental 

eigenvalue (°°) 
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MULTIGROUP CRITICALITY PROBLEMS 
Discretised Form 

 

• Once the diffusion equations are discretised in space, matrix 

integral operators become just matrices. It is 

k=K φ φφ φφ φφ φ  

 where it is meant that 

( ) ( )square matrix N G N G= × × ×K  

N G vector× −φ =φ =φ =φ =  

N number of  spatial nodes====  

• The results obtained for the problem in the continuum space can be 

extended to the case of the discretised problem by the: 

 

Perron Theorem. Assigned a matrix M having all positive entries (a 

“positive” matrix), it is: 

a) M has a simple and positive eigenvalue µ 1  such that for any 

other eigenvalue µn  it is µ µ1 > n . This is termed the fundamental 

eigenvalue 

b) a single eigenvector 1ϕϕϕϕ  is related to the eigenvalue µ 1 , having all 

positive components: this is the single one having this “positivity” 

property and is said fundamental eigenvector 

c) µ 1  increases by increasing any entry of M. 

Frobenius Thorem. If M is a matrix with non-negative entries and 

irreducible, it is: 

a) M has a simple and positive eigenvalue µ 1  such that for any 

other eigenvalue µn  it is µ µ1 ≥ n . 

b) and c) as for Perron theorem. 

 

In our purposes this means that  

in order to estimate the fundamental eigenvalue of a criticality problem  

it is possible to make use of the “power method” 
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THE POWER METHOD 
 
 

• This is the method adopted to calculate the fundamentaleigenvalue 

and eigenvector 

 

• If we assume that M has a fundamental eigenvalue, the sequence 
2, , , ...q Mq M q  

converges to the related eigenvector 

Limiting the illustration to the case in which: 
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OUTER ITERATIONS 

WITH THE POWER METHOD 
 

• The solution of a criticality problem involves solving the iterative 

scheme 
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( )

( )1 1n n

n
k

+
− =L Mφ φφ φφ φφ φ  

with “inner iterations”, for the solution of the discretised group 

equations, and updating the eigenvalue and the fission source (at 

the RHS of the equation) with “outer iterations” 

• As already suggested, this process is equivalent to the iteration 

process 
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where the inner product [ ],a b  is specified as follows 
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• The adopted process is therefore the following: 

♦ An estimate 
( )0

k  and an admissible 
( )

ψ 0
 will provide a spatial 

distribution of the group neutron fluxes 
( )1

φφφφ  such that 

( )

2

h h

h

c c
≥

= +∑1111φ ϕ ϕφ ϕ ϕφ ϕ ϕφ ϕ ϕ  

where ϕϕϕϕ  is the fundamental eigenvector and h
ϕϕϕϕ  are the higher 

harmonics 
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♦ Iterations are the carried on, obtaining: 
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♦ We also note that 
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therefore, an appropriate normalization provides the 

eigenvector in the required form. 
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ACCELERATION 

OF OUTER ITERATIONS 
 

In many cases of practical interest, the dominance ratio σ =
k

k

2

 is too 

close to unity to result in an efficient convergence of the power 

method. Acceleration schemes are then adopted. 

 

a) Wielandt Method 

The idea at the basis of the method is to introduce a “spectral shift” 

in the eigenvalues in order to increase the separation between the 

first and the second one.  

In principle, a good estimate “in excess” of k , identified as k
* , is 

needed, calculating the eigenvalues of the matrix 

( )
1

*
k

−

−I K  

having the same eigenvectors of K , with eigenvalues given by 

λ h

hk k
=

−

1
*  

In such a way, it is 

λ λ
σ1 2

2

1 1 1
=

−
=

−
=

−k k k k k k
* * *  

and, being k k
* ≈  (and kk >* ), the difference between the first and 

the second eigenvalues is amplified, granting a faster convergence. 

 

A practical way of implementing something similar to the above is 

the following. From the relation: 

( )
1

0
k

+ + =A R Mφ φφ φφ φφ φ  

we can write 

( )
* *

1 1 1

k k k

 
− + = − 

 
A R M Mφ − φ φφ − φ φφ − φ φφ − φ φ  

and then 

* *

1 1 1

k k k

   
− + = −   
   

A R M M+ φ φ+ φ φ+ φ φ+ φ φ  
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or 
1

* *

1 1 1

k k k

−
  

= − − +  
  

A R M Mφ + φφ + φφ + φφ + φ  

and then we have the new eigenvalue problem 

( ) ( )1 ˆ  
n+1 n

λ
= Kφ φφ φφ φφ φ  

where 
1

*

1ˆ
k

−
 

= − + 
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K A R M M++++  and  

1
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1 1

k k
λ

−
 
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The new dominance ratio in this case is: 
* ** *

2 1 2 11 2

* * * * * *

1 2 1 21 2 1 2

1

1 1 1 1 k k k k kk k k k

k k k k k k k k k k k k k

λ
σ σ

λ

<<
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�����

 

and convergence is faster. 

 

It must be noted that: 

• this method can be applied to any eigenvalue problem, to be used 

also for transport or Monte Carlo calculations; 

• in the case of deterministic methods (diffusion and transport) the 

lower triangular structure of the matrix A+R is not preserved in 

the matrix 
1

e
k

+A R M−−−− , limiting the use of this technique to few-

energy cases. 

 

 

b) Method of Chebyshev polynomials 

After performing a sufficient number n
*
 of iterations by the power 

method, as to obtain a good estimate of k , identified as k
* , for the 

subsequent iterations the process could be adopted 

( ) ( )* *

*

1
n

n n n

k

+  
=  
 

Kφ φφ φφ φφ φ  

in other words, the source is normalised by k
* , instead for a new value 

of k . 
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This iteration scheme can be considered a special case of a more 

general method in which a full matrix polynomial is adopted for 

iteration advancement 

( ) ( ) ( )* * *

0 1* * *

1 1 1
...

n
n n n n

n np a a a
k k k

+       
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       
K I K Kφ φ φφ φ φφ φ φφ φ φ  

 The basic idea is therefore to choose the coefficients of the 

polynomial ( )xpn  in order to obtain the fastest convergence of the 

process. Assuming as usual that  

( )*

2

n

h h

h

c c
≥

= +∑φ ϕ ϕφ ϕ ϕφ ϕ ϕφ ϕ ϕ  

it is 

( ) ( )* *
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1 1n n n

n n h h

h

p p c c
k k

+
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     
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= +   

   
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Therefore, the most efficient choices would be the one of a polynomial 

such that 

( ) 11
*

=≈







nn p

k

k
p    ( )p

k

k
h nn

h

* ,...,






 = =0 2  

In fact, after such process, it would be 

( )*n n

c
+

≈φ ϕφ ϕφ ϕφ ϕ  

 Such an ideal objective would anyway require the knowledge of 

all the ( )k h nh = 2,..., , which is hardly achievable in practical terms. 

However, assuming the knowledge of the dominance ratio, it is 

possible to define an interval separating the kh  

0 1
2≤ ≤ = <

k

k

k

k

h

* * σ  

searching for a polynomial pn  having its coefficients satisfying the 

condition 

( )pn 1 1=   ( )min max
, ,...,a a a x

n
n

p x
0 1 0≤ ≤σ
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 The solution of this problem is known to be 

( ) 







−

σ








−

σ
= 1

2
1

2
nnn C

x
Cxp  

where ( )C tn  is the n -th Chebyshev polynomial to be obtained by the 

recurrence relationship 

( ) ( ) ( ) ( ) ( ) ( )121 1110 ≥−=== −+ ntCttCtCttCtC nnn  

 It must be noted that to advance the calculation, it is not 

necessary to construct the matrix polynomial, because the recurrence 

relation reduces the problem to an iterative advancement, starting 

with n=0  

( ) ( )* *
1

*

1ˆ n n n n

k

+ + +
= Kφ φφ φφ φφ φ  

( ) ( ) ( ) ( ) ( ) ( )* * * * * *1 1 1ˆn n n n n n n n n n n n

n nα β
+ + + + + + + + −   = + − + −   

   
φ φ φ φ φ φφ φ φ φ φ φφ φ φ φ φ φφ φ φ φ φ φ  

where   α
σ

0

2

2
=

−
 

α

σ σ
α1

2 0

2

2
4

=

− −
 

( )α

σ σ
αn

n

n=

− −

≥
−

2

2
8

2
2 1

 

β
σ

αn n= −






 −1

2
1 

It is necessary to clarify that: 

• it is advisable to apply the acceleration 

method after a convenient number of 

iterations by the power method in order to 

obtain an estimate of k
*  and because the 

acceleration method is very effective to 

suppress the harmonics with kh ≈ 1, but it 

is not so for higher order ones (see the 

figure); 

• in order to apply the Chebyshev acceleration scheme, it is needed to 

know the dominance ratio; this can be achieved by iterating with 

the power method as explained in the following. 

( )p x5

x 5

x
 

 

1 

1 

f(x) 
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In fact, assuming that a sufficient number of iterations was made to 

suppress all the higher harmonics but the second one, it is 

( )*

2

n

c c= 2222φ ϕ + ϕφ ϕ + ϕφ ϕ + ϕφ ϕ + ϕ  

By defining the increment vector as 

( ) ( ) ( )1n n n−
−δ = φ φδ = φ φδ = φ φδ = φ φ  

it is 

( ) ( ) ( ) ( ) ( ) [ ]
* * * * *1 1

2 2* *

1 1n n n n n

c c c c
k k

+ +
− = − = + − −K K 2 22 22 22 2δ = φ φ φ φ ϕ ϕ ϕ ϕδ = φ φ φ φ ϕ ϕ ϕ ϕδ = φ φ φ φ ϕ ϕ ϕ ϕδ = φ φ φ φ ϕ ϕ ϕ ϕ  

( )2
2 2 2*

k
c c c c c

k
σ≈ + − − = −2 2 22 2 22 2 22 2 2ϕ ϕ ϕ ϕ 1 ϕϕ ϕ ϕ ϕ 1 ϕϕ ϕ ϕ ϕ 1 ϕϕ ϕ ϕ ϕ 1 ϕ  

Similarly, it is: 

( ) ( ) ( ) ( ) ( )* * * * *2 2 1

* *

1 1n n n n n

k k

+ + +  
− = − 

 
K K

2222

δ = φ φ φ φδ = φ φ φ φδ = φ φ φ φδ = φ φ φ φ  

[ ] ( ) ( )2

2 2 2* *

1 1
1c c c c

k k
σ σ σ σ

  
= − + = − = −  

   
K K

2222

2 2 22 2 22 2 22 2 2ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ  

 It is therefore: 

( )

( )

*

*

2

1

n

n
σ

+

+
≈

δδδδ

δδδδ
 

• More refined formulations are available when the range separating 

the eigenvalues is better estimated (e.g., knowing a lower bound of 

it greater than zero). 
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