
IngIng. Nicola . Nicola ForgioneForgione

Dipartimento di Ingegneria Meccanica, Nucleare e della ProduzionDipartimento di Ingegneria Meccanica, Nucleare e della Produzionee

EE--mail: mail: nicola.forgione@ing.unipi.itnicola.forgione@ing.unipi.it; tel. 0502218057; tel. 0502218057

UniversitUniversitàà di Pisa di Pisa -- FacoltFacoltàà di Ingegneriadi Ingegneria

Notes for the lectures on Notes for the lectures on

FORTRAN ProgrammingFORTRAN Programming

a.a.a.a. 09/1009/10

Parte IParte I

DevelopmentDevelopment ofof Fortran StandardFortran Standard

Year Version Note

1956 FORTRAN

1958 FORTRAN II/III

1962 FORTRAN IV

1966 FORTRAN 66 Standard ANSI (American

Standard Association)

1978 FORTRAN 77

1992 FORTRAN 90

1997 FORTRAN 95

2004 FORTRAN 2003 Standard ISO

2010? FORTRAN 2008 Standard ISO

•• FORTRAN is the acronym of mathematical FORTRAN is the acronym of mathematical FORFORmulamula TRANTRANslationslation SystemSystem

•• SalfordSalford compiler is a free FORTRAN 95 compiler for noncompiler is a free FORTRAN 95 compiler for non--commercial usecommercial use::

http://www.silverfrost.com/52/ftn95/ftn95_express.aspxhttp://www.silverfrost.com/52/ftn95/ftn95_express.aspx

FTN95 CompilerFTN95 Compiler

The DO construct controls the repeated execution of a block of sThe DO construct controls the repeated execution of a block of statements tatements

Syntax in FORTRAN 77:Syntax in FORTRAN 77:

•• Form 1 Form 1

DO lab DO lab varvar = in= in--valval, , finfin--valval, step , step

statements statements

lablab CONTINUE CONTINUE

•• Form 2 (if the step is = to 1) Form 2 (if the step is = to 1)

DO lab DO lab varvar = in= in--valval, , finfin--valval

statements statements

lablab CONTINUE CONTINUE

where:where: varvar is a variable of type INTEGER, called is a variable of type INTEGER, called

loop variable loop variable or loop index;or loop index;

inin--valval specify the initial value of specify the initial value of varvar;;

finfin--valval specify the final value of specify the final value of varvar;;

step step specify the stepspecify the step--size value of size value of varvar..

•• The doThe do--loop variable must never be changed by other statements within tloop variable must never be changed by other statements within the loophe loop

CountingCounting DO DO LoopLoop: DO : DO -- CONTINUE CONTINUE

i=m

i=i+s

statements

statements

after the end

of the DO

i<=n?

true

false

Syntax in FORTRAN 95Syntax in FORTRAN 95

•• Form 1 Form 1

DO DO varvar = in= in--valval, , finfin--valval, step , step

statements statements

END DO END DO

•• Form 2 (if the step is = to 1) Form 2 (if the step is = to 1)

name: DO name: DO varvar = in= in--valval, , finfin--valval

statements statements

END DO nameEND DO name

where:where: varvar is a variable of type INTEGER, called is a variable of type INTEGER, called

loop variable loop variable or loop index;or loop index;

inin--valval specify the initial value of specify the initial value of varvar;;

finfin--valval specify the final value of specify the final value of varvar;;

step step specify the stepspecify the step--size value of size value of varvar..

•• The doThe do--loop variable must never be changed by other statements within tloop variable must never be changed by other statements within the loophe loop

CountingCounting DO DO LoopLoop: DO : DO -- END DO END DO

•• The DOThe DO--WHILE statement executes the block of statements while a specifiWHILE statement executes the block of statements while a specified ed

condition remains truecondition remains true

SyntaxSyntax

DO lab WHILE (DO lab WHILE (exprexpr))

statements statements

lablab statement (or END DO) statement (or END DO)

where:where: lablab (optional) is a label specifying an(optional) is a label specifying an

executable statement in the same program unit;executable statement in the same program unit;

exprexpr is a scalar logical expression enclosed in parentheses.is a scalar logical expression enclosed in parentheses.

DO DO –– WHILE StatementWHILE Statement

•• The CYCLE statement interrupts the current execution cycle of thThe CYCLE statement interrupts the current execution cycle of the innermost (or e innermost (or

named) DO construct and a new iteration cycle of the DO construcnamed) DO construct and a new iteration cycle of the DO construct can beginst can begins

SyntaxSyntax

CYCLE[nameCYCLE[name]]

where:where: namename (optional) is the name of the DO construct(optional) is the name of the DO construct

•• The EXIT statement terminates execution of the innermost (or namThe EXIT statement terminates execution of the innermost (or named) DO ed) DO

constructconstruct

SyntaxSyntax

EXIT[nameEXIT[name]]

where:where: namename (optional) is the name (optional) is the name

of the DO constructof the DO construct

CYCLE and EXIT CYCLE and EXIT StatementsStatements

•• DO loops can have a name (only from FORTRAN 90) and EXIT and/or DO loops can have a name (only from FORTRAN 90) and EXIT and/or CYCLE CYCLE

statements can be made to refer to a particular loop through itsstatements can be made to refer to a particular loop through its looploop--namename

NamedNamed and and NestedNested LoopsLoops

•• Conditionally transfers control to one of three statements throuConditionally transfers control to one of three statements through their gh their

corresponding labels, based on the value of an arithmetic exprescorresponding labels, based on the value of an arithmetic expression (it is an sion (it is an

obsolescent feature in Fortran 90).obsolescent feature in Fortran 90).

SyntaxSyntax

IF (IF (exprexpr) lab1, lab2, lab3) lab1, lab2, lab3

where:where: exprexpr is a scalar numeric expression of type integer or real (encloseis a scalar numeric expression of type integer or real (enclosed in d in

parentheses);parentheses);

lab1lab1, , lab2lab2, , lab3lab3 are the labels of valid branch target statements; all the threeare the labels of valid branch target statements; all the three

labels are required, but they do not need to refer to three difflabels are required, but they do not need to refer to three different statements; the erent statements; the

same label can appear more than once in the same arithmetic IF ssame label can appear more than once in the same arithmetic IF statement.tatement.

IFIF--ArithmeticArithmetic statementstatement

IFIF--ArithmeticArithmetic statementstatement

•• The following example transfers control to statement 50 if the rThe following example transfers control to statement 50 if the real variable THETA eal variable THETA

is less than or equal to the real variable MU. Control passes tois less than or equal to the real variable MU. Control passes to statement 100 only if statement 100 only if

THETA is greater than MU.THETA is greater than MU.

IF (THETAIF (THETA--MU) 50,50,100MU) 50,50,100

•• The following example transfers control to statement 400 if the The following example transfers control to statement 400 if the value of the integer value of the integer

variable N is even. It transfers control to statement 200 if thevariable N is even. It transfers control to statement 200 if the value is odd.value is odd.

IF (N/2*2IF (N/2*2--N) 200,400,200N) 200,400,200

•• The following statement transfers control to statement 100 for NThe following statement transfers control to statement 100 for N<5, to statement <5, to statement

200 for N=5, and 200 for N=5, and toto statement 300 statement 300 forfor N>5:N>5:

IF (NIF (N--5) 100, 200, 3005) 100, 200, 300

IFIF--LogicalLogical statementstatement

•• Executes one statement based on the value of a logical expressioExecutes one statement based on the value of a logical expression. (This statement n. (This statement

was called a logical IF statement in FORTRAN 77)was called a logical IF statement in FORTRAN 77)

SyntaxSyntax

IF (IF (exprexpr) stmt) stmt

where:where: exprexpr is a scalar logical expression is a scalar logical expression

(enclosed in parentheses);(enclosed in parentheses);

stmt stmt is an executable Fortran statement.is an executable Fortran statement.
statement

Logical

expression
false

true

IFIF--ConstructConstruct

•• IFIF--THENTHEN--ENDIFENDIF: executes one block of statements depending on the value of a : executes one block of statements depending on the value of a

logical expression.logical expression.

SyntaxSyntax

IF (IF (exprexpr) THEN) THEN

blockblock

ENDIFENDIF

where:where: exprexpr is a scalar logical expression is a scalar logical expression

(enclosed in parentheses);(enclosed in parentheses);

block block is a sequence of more statements.is a sequence of more statements.

Block of

statements

Logical

expression
false

true

Examples:

IF (x.GT.0) THEN

y=sqrt(x)

ENDIF

IF((x>=0).AND.(y>=0)) THEN

z=sqrt(x)+sqrt(y)

w=z+5

ENDIF

•• IFIF--THENTHEN--ELSEELSE--ENDIFENDIF: executes one block of statements if the logical expression : executes one block of statements if the logical expression

is true otherwise executes another block of statements .is true otherwise executes another block of statements .

SyntaxSyntax

IF (IF (exprexpr) THEN) THEN

block1block1

ELSEELSE

block2block2

ENDIFENDIF

where:where: exprexpr is a scalar logical expression is a scalar logical expression

(enclosed in parentheses);(enclosed in parentheses);

block1 block1 is the first sequence of statements.is the first sequence of statements.

block2 block2 is the second sequence of statements.is the second sequence of statements.

Block 1

Logical

expression
false

true

Block 2

IFIF--ConstructConstruct

IF (x>=0) THEN

y=sqrt(x)

ELSE

y=exp(x)-1

ENDIF

•• IFIF--THENTHEN--ELSEIFELSEIF--ELSEELSE--ENDIFENDIF: executes one block of statements (block1) if the : executes one block of statements (block1) if the

logical expression (expr1) is true otherwise executes another bllogical expression (expr1) is true otherwise executes another block of statements ock of statements

(block 2) if the corresponding logical expression (expr2) is tr(block 2) if the corresponding logical expression (expr2) is true otherwise executes ue otherwise executes

another block of statements (block3).another block of statements (block3).

SyntaxSyntax

IF (expr1) THENIF (expr1) THEN

block1block1

ELSE IF (expr2) THENELSE IF (expr2) THEN

block2block2

ELSEELSE

block3block3

ENDIFENDIF

Both ELSE and ELSEIF are optional Both ELSE and ELSEIF are optional

IF (x>=0) THEN

y=sqrt(x)

ELSE IF (x>-10)

y=exp(x)-1

ELSE

y=-1

ENDIF

Block 1

Logical

expression

1

false

true

Block 2

false

true

Logical

expression

2

Block 3

IFIF--ConstructConstruct

IFIF--ConstructConstruct

•• IFIF--THENTHEN--ELSEIFELSEIF--ELSEELSE--ENDIFENDIF: examples: examples

•• We can also have more ELSEIF branches inside an IFWe can also have more ELSEIF branches inside an IF--constructconstruct

NamedNamed and and NestedNested IFIF--ConstructConstruct

•• In FORTRAN 90/95 all the IFIn FORTRAN 90/95 all the IF--constructs can be named and nested. constructs can be named and nested. The names The names

may be used once per program unit and are intended to make much may be used once per program unit and are intended to make much more clear the more clear the

program. program.

•• SELECT CASESELECT CASE--CASECASE--END SELECTEND SELECT: transfers program control to a selected : transfers program control to a selected

block of statements according to the value of a controlling exprblock of statements according to the value of a controlling expression.ession.

SyntaxSyntax

SELECT CASE (SELECT CASE (exprexpr))

CASE (value1)CASE (value1)

block1block1

CASE (value2)CASE (value2)

block2block2

......

CASE DEFAULTCASE DEFAULT

block3block3

END SELECTEND SELECT

where:where: exprexpr is a scalar expression of type integer, logical or character (enis a scalar expression of type integer, logical or character (enclosed closed

in parentheses); evaluation of this expression results in a valuin parentheses); evaluation of this expression results in a value called the e called the case case

indexindex;;

value value is one or more scalar integer, logical, or character initializatis one or more scalar integer, logical, or character initialization expressions ion expressions

(enclosed in parentheses). Each case(enclosed in parentheses). Each case--value must be of the same type and kind value must be of the same type and kind

parameter as parameter as exprexpr. .

SELECTSELECT--CASECASE--ConstructConstruct

SELECTSELECT--CASECASE--ConstructConstruct

