Notes for the lectures on
FORTRAN Programming

Ing. Nicola Forgione

Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione
E-mail: nicola.forgione@ing.unipi.it; tel. 0502218057

e FORTRAN is the acronym of mathematical FORmula TRANslation System

 Salford compiler is a free FORTRAN 95 compiler for non-commercial use:

http://www.silverfrost.com/52/ftn95/ftn95_express.aspx

1956 FORTRAN
1958 FORTRAN II/III
1962 FORTRAN 1V

1966 FORTRAN 66 Standard ANSI (American
Standard Association)

1978 FORTRAN 77
1992 FORTRAN 90
1997 FORTRAN 95
2004 FORTRAN 2003 Standard ISO
2010? FORTRAN 2008 Standard ISO

Iﬁ Silverfrost FTN95 Express
Fle Edit View Project Buid Debug Tools Window Help
WrEH-E P ¥ @B] = b Debug
< EFEL= 20

"FreeFormatl.fgS Start Page | Solution Explorer - Solution 'FortranApplication1' (1 project) + I X

[54 Solution 'FortranApplication1' (1 project)
= R FortranApplication1
Silverfrost FTN or Microsoft Visual Studio ? ._'JIncIudeF.ﬂes
Free Format FTN ource File o ufjt::rce:(ies B
- reerormatl.
} - [@ References

7
w
'.;E
<
Q
o
o =
S
o
x
o
(=]
3
=
o
L.

£

Output
Show output from:

[Error List|J Command \-".ﬂndo\,v} (5] Output |

Ready

The DO construct controls the repeated execution of a block of statements

Syntax in FORTRAN 77:

* Form 1

e Form 2 (if the step is = to 1)

true

statements

where: is a variable of type INTEGER, called

A

statements

after the end
specify the initial value of ; of the DO

loop variable or loop index;

specify the final value of
specify the step-size value of

* The do-loop variable must never be changed by other statements within the loop

Syntax in FORTRAN 95

 Form 1 loopy: DO i = 1, 30, 2

. ' 1iis 1,3,5,7,...,29
. ! 15 jiterations
END DO loopy

DO 1 =1,30
. 'i=1,2,3,...,30

* Form 2 (if the step is = to 1) ... 130 iterations

END DO

30, 1, -2
! j is 30,28,26
! 15 jterations

where: is a variable of type INTEGER, called
DO k = 30, 1, 2
. ! 0 iterations
. ! loop skipped
END DO

loop variable or loop index;
specify the initial value of
specify the final value of

specify the step-size value of

* The do-loop variable must never be changed by other statements within the loop

« The DO-WHILE statement executes the block of statements while a specified
condition remains true

Syntax
CHARACTER (1) input
input = © ”
DO WHILE ((input .NE. 'n’) .AND. (input .NE.
WRITE (*, "(A)’') ’'Enter y or n: '
READ (*, ' (A})') input
END DO

where: (optional) is a label specifying an

executable statement in the same program unit;

is a scalar logical expression enclosed in parentheses.

The following examples show required and optional END DO statements:

Required Optional

DO WHILE (I .GT. J) DO 10 WHILE
ARRAY (I, J) 1.0 ARRAY (I, J)
I =1 -1 I =1-1

END DO 10 END DO

 The CYCLE statement interrupts the current execution cycle of the innermost (or
named) DO construct and a new iteration cycle of the DO construct can begins
DO I =1, 10
A(I) =C + D(I)
IF (D(I) <= 0) CYCLE ! If true, the next statement is omitted

A(I) =0 ! from the lcop and the lcop is tested again.
END DO

where: (optional) is the name of the DO construct

e The EXIT statement terminates execution of the innermost (or named) DO
construct

Syntax

=i+ 1
IF (i .GT. 100) EXIT

where: (optional) is the name PRINT#, "I is", i
END DO

of the DO construct ! if i>100 control jumps here
PRINT*, "Loop finished. I now equals", i

DO loops can have a name (only from FORTRAN 90) and EXIT and/or CYCLE
statements can be made to refer to a particular loop through its loop-name

LOOP A : DO I
- N + 1
IF (N > I) EXIT LOOP A
END DO LOOP A

outa: DO
inna: DO

IF (a.GT.b) EXIT outa
IF (a.EQ.b) CYCLE outa !
IF (¢.GT.d) EXIT inna
IF (c.EQR.a) CYCLE

END DO inna

END DD outa

e Conditionally transfers control to one of three statements through their
corresponding labels, based on the value of an arithmetic expression (it is an
obsolescent feature in Fortran 90).

Syntax

where: is a scalar numeric expression of type integer or real (enclosed in
parentheses);

, . are the labels of valid branch target statements; all the three

labels are required, but they do not need to refer to three different statements; the
same label can appear more than once in the same arithmetic IF statement.

If the Value of expris: = Control Transfers To:
Less than 0 Statement label]
.

Equal to 0 Statement label?

Greater than 0 Statement label3

* The following example transfers control to statement 50 if the real variable THETA
is less than or equal to the real variable MU. Control passes to statement 100 only if
THETA is greater than MU.

* The following example transfers control to statement 400 if the value of the integer
variable N is even. It transfers control to statement 200 if the value is odd.

* The following statement transfers control to statement 100 for N<5, to statement
200 for N=5, and to statement 300 for N>5:

* Executes one statement based on the value of a logical expression. (This statement
was called a logical IF statement in FORTRAN 77)

Syntax

Logical
expression

where: is a scalar logical expression

(enclosed in parentheses);

is an executable Fortran statement.
statement

For example,

IF (x .GT. y) Maxi = x

means ‘if x is greater than y then set Maxi to be equal
to the value of x'.

More examples,

IF (a*b+c <= 47) Boolie = .TRUE.
IF (i .NE. O .AND. j .NE. 0) k = 1/(ixj)
IF (i /=0 .AND. j /= 0) k = 1/(i*j) ! same

 [F-THEN-ENDIF: executes one block of statements depending on the value of a
logical expression.

Syntax

Logical
expression

where: is a scalar logical expression Block of
statements

(enclosed in parentheses);

is a sequence of more statements.

Examples:
IF ((x>=0) .AND. (y>=0)) THEN
IF (x.GT.0) THEN z=sqrt (x) +sqrt (y)
y=sqgrt (x) w=z+5
ENDIF ENDIF

e [F-THEN-ELSE-ENDIF: executes one block of statements if the logical expression
is true otherwise executes another block of statements .

Syntax l

Logical
expression

Block 1 Block 2

where: is a scalar logical expression

(enclosed in parentheses);

is the first sequence of statements.

is the second sequence of statements.

IF (x>=0) THEN
y=sqrt (x)
ELSE
y=exp (x)-1
ENDIF

e [IF-THEN-ELSEIF-ELSE-ENDIF: executes one block of statements (blockl) if the
logical expression (exprl) is true otherwise executes another block of statements
(block 2) if the corresponding logical expression (expr2) is true otherwise executes
another block of statements (block3).

Syntax

Logical

expression
|

Logical
expression
2

Both ELSE and ELSEIF are optional

IF (x>=0) THEN T
y=sqrt (x)
ELSE IF (x>-10)
y=exp (x) -1

ELSE

y=-1
ENDIF

e IF-THEN-ELSEIF-ELSE-ENDIF: examples

IF (i .EQ. 0) THEN

PRINT*, "I is Zero"

ELSE IF (i .GT. 0) THEN

PRINT*, "I is greater than Zero"

ELSE
PRINT*, "I must be less than Zero"
ENDIF

e We can also have more ELSEIF branches inside an IF-construct

IF (x .GT. 3) THEN
CALL SUB1
ELSEIF (x .EQ. 3) THEN
A = BxC-D
ELSEIF (x .EQ. 2) THEN
A = BB
ELSE

IF (y .NE. 0) A=B
ENDIF

e In FORTRAN 90/95 all the IF-constructs can be named and nested. The names

may be used once per program unit and are intended to make much more clear the
program.

outa: IF (a .NE. 0) THEN outa: DO i
PRINT*, "a /= Q" inna: DO j
IF (¢ .NE. 0) THEN e
PRINT*, "a /= O AND ¢ /= IF (X == 0) EXIT
ELSE
PRINT*, "a /= O BUT ¢ ==
ENDIF
ELSEIF (a .GT. 0) THEN outa o
PRINT*, "a > 0" IF (X > 100) CYCLE outa
ELSE outa -
PRINT*, "a must END DO inna
ENDIF outa END DO outa

IF (X < 0) EXIT outa

IF (X > 10) CYCLE inna

« SELECT CASE-CASE-END SELECT: transfers program control to a selected
block of statements according to the value of a controlling expression.

Syntax

SELECT CASE (I)

CASE(1); Print*, "I==1"
CASE(2:9); Print*, "I>=2 and I<=9"
CASE(10); Printx, "I>=10"

CASE DEFAULT; Print=*, "I<=0Q"

END SELECT

is a scalar expression of type integer, logical or character (enclosed
in parentheses); evaluation of this expression results in a value called the case

where:

index;
is one or more scalar integer, logical, or character initialization expressions
(enclosed in parentheses). Each case-value must be of the same type and kind

parameter as expr.

GET ANSWER: SELECT CASE (cmdchar)
CASE ('0")
WRITE (*, *) "Must retrieve one to nine files"
CASE ('1':'9")
CALL RetrleveNumFilles (cmdchar)
CASE ('A', 'a")
CALL AddEntry
CASE ('D", 'd’")
CALL DeleteEntry
CASE ('H’, 'h")
CALL Help
CASE DEFAULT
WRITE (*, *) "Command not recognized; please use H for help"
END SELECT GET ANSWER

Example 1

The roots of a quadratic equation az* + bx + ¢ = 0 can be expressed
as follows:

..].'l- —
s —

2a
0]] . .
In order to use the square root, b= — 4ac must be positive,

