Tutorial for the supercritical pressure pipe with STAR-CCM+

For performing this tutorial, it is necessary to have already studied the
tutorial on the upward bend. In fact, affer getting abilities with that
case, many concepts will furn out relatively straightforward.

Problem definition
A circular pipe having an heated length of 0.6 m with imposed heat flux,
preceded by an unheated section of 0.4 m. The inner pipe diameter is
6.26 mm.

The contained fluid is water at the supercritical pressure of 23.5
MPa (the critical pressure for water is 22.06 MPa). The inlet
temperature and the heating power are such that the “pseudo-critical
temperature” is reached at the wall. The pseudo-critical femperature is
defined as the temperature at which a supercritical fluid at a constant
pressure has a maximum in the specific heat. Around this temperature,
the properties of the fluid change drastically, showing a transition from
liguid-like to gas-like conditions.
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In this problem, it was chosen to use "a low-Reynolds number model”,
requiring a very fine discretisation close to the wall. The resulting radial
discretisation is much larger than the axial one.

Expand the related "Scene” to understand how the mesh looks like.
Make use of the mouse for displacing the geometry in the view.
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Though the present is only a didactic exercise, it is necessary to
recognise that the comparison of wall tfemperature with experimental
data by Pis'menny (Ucraine) is only qualitatively accurate for upward flow.
This is the present state-of-the-art for k-¢ models when they describe
"deterioration” of heat transfer (to be explained by the teacher)
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We will anyway consider two variants of the exercise:
1. no gravity flow, showing a typical forced flow behaviour;
2. upward flow with gravity, showing the effects of mixed convection
(the one whose results are reported in the above figures).
The difference between the two cases is just in the value of the

gravity parameter that has the first component (the x one) equal to 0.0
or -9.81.
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In the following, suggestions are given to revise the different
sections of the tree structure.

Continua

Try understanding which models have been selected for this case. Open
the related node in the free structure by right-clicking to obtain the
result shown in the figure of the following page.

Take notes hereafter. Some hints are given:

the standard low-Re k-¢ model with a low-y+ treatment is used
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The properties are assigned by cubic splines implemented in piecewise
form as polynomials in T also assighed as “field functions” defined by the
user.

In particular, consider the value of the turbulent Prandtl number
assigned to 0.9 by default by the code (it can be changed at easel.. tryl)
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Regions
Try understanding the nature of the boundary conditions applied to the

four different boundaries.
In particular, look at the Physics Conditions and the Physics Values.
E.g., the mass flux at the “Inlet” is 509.0 kg/(m?s).
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Derived parts

They have been infroduced as "sections” to be used in setting up plots of

radial distributions at different distances along the pipe.

Solvers

In this case a "Coupled” flow and energy numerical scheme (as opposed to
the "segregated” one) was used. This option is preferable in cases in
which the flow is affected by strong buoyancy forces. A ramp of Courant
number is assigned in a pseudo-transient iteration scheme (to be

explained by the teacher).

@ Pismenny-

Base-Esercitazione-Upward - STAR-

File Edit Mesh Solution Tools Window Help

Eaf@

i Servers

L HEN | wovges:’
:Pismenny-Ba.. 41 x :pismenny-Base-Ese...

b &

simulation ]

.

-3 Plots

- Tools

ﬁ Pismenny-Base-Esercitazione-Upward
-1 Geometry
@ Continua
o
=13 Derived Parts
i o0
Q.
Q.
0.
0.
0.
Q.
= o
-3 Solvers
-3 Stopping Criteria
[ Reports
3 Monitors

0im
4m
5m
&m
Tm
&m
am
95m

- Scenes
-3 Representations

: Regions - Properties ¥Fx

[=| Properties
Regions

&£ Pismenny-Base-Esercitazione-Upward - ﬂmﬁ_

File Edit Mesh Solution Tools Window Help

GaEES mE

i Servers

[

GoOvedE’

: Pi Ba.. 4 x|:pj BaseEse...

smulation |

O Regions
3 Derived Parts
[ solvers
o f wall Distance
&

-+ EEETER

: @ Linear Ramp

i E-1f AMGLinear Solver

: @ Foyde

@ Group Size
[ ExpertInitialization

/% KEpslon Turbuence

Stopping Criteria
Reports
Monitors

Plots

Scenes

¢ 561 CourantNumber Ramp

L. f& KEpsion Turbulent Viscosity

(B Pismenny-Base-Eserdtazione-Upward -

.

Coupled impiict solver

: Coupled Implicit - Properties s x
lProperties -
Courant Number 20000 I
lExpert =
Frozen 0
Reconstruction Zeroed [} I
Temporary Storage Retained O i
Coupled Implicit o




¢4 Pismenny-Base-Esercitazione-Upward - STAR—CCM+_

File Edit Mesh Solution Tools Window Help
DaEE® BE

 Servers B Ba...
smulation | scene/plot

W [ A-MomeEnmn

[t V-momentum

[ Plots

K2 wall & Centreline Pr

¥ Density

K% Density-along-the-Wall

K Dynamic viscosity

k% Dynamic-Viscosity-zlong-the-wal
¥ pressure

k¥ Residuals

K specific Heat

¥ SpecificHeat-along-the-wall

E% Temperature

¥ Thermal Conductivity

¥4 Thermal-Canductivity-along-the-Wall

¥ Turbulent Dissipation Rate

g Turbulent Kinetic Energy

&

E2 Wall Heat Flux

K wallv+

k2 x-veloaty

¥4 v-velodty

O Scenes

[ Representations k=

Plots

[

%OV @

@ x| pismenny-B

Ese...

.

Computing metrics: Finished

No gravity case

In this case several 2D plots have been defined in
order to monitor axial and radial distributions of
different quantities

Some of them are presented hereafter for the
two cases, starting with the no-gravity flow.
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The residuals decrease and stabilise The wall temperature increases smoothly also beyond the
pseudo-critical femperature
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The radial velocity profiles at different locations are typical
of a flow that is not affected by buoyancy forces
(i.e., it is of the power law type)
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The turbulent kinetic energy has the classical sharp peak
close to the wall. Note the large number of nodes needed to
describe the near wall region with a reasonable detail in the

boundary layer



Upward flow case
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The residuals decrease and stabilise Tt is remarkable noting that with "aided" mixed convection,
the heat transfer efficiency is decreased. This is the effect,
named “heat transfer deterioration”, that can be explained
with a decrease of turbulence intensity close to the wall.
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The radial velocity profiles at different locations are typical In the region where the velocity gradient at the wall
of a flow that is affected by buoyancy forces; an M-shaped decreases (from 0.7 m), the turbulent kinetic energy at the
profile is clearly noted due to acceleration close to the wall wall progressively decreases, because the shear stress

(proportional to the velocity gradient) decreases and so the
production of turbulence decreases: this explains the
occurrence of “heat transfer deterioration”

Suggestions to make exercises.

Run the code affer making a change (e.g., inlet flow rate, different
turbulent Prandtl number). You will see the residuals jumping (the
equations are no more satisfied with the new parameter value) and then,
hopefully, decrease while a new steady-state is approached.

AGAIN, GOOD LUCK!



