
fABElous: An Attribute-Based Scheme for
Industrial Internet of Things

Michele La Manna
Information Engineering dept.

University of Florence
Florence, Italy

michele.lamanna@unifi.it

Pericle Perazzo
Information Engineering dept.

University of Pisa
Pisa, Italy

pericle.perazzo@iet.unipi.it

Marco Rasori
Information Engineering dept.

University of Florence
Florence, Italy

marco.rasori@unifi.it

Gianluca Dini
Information Engineering dept.

University of Pisa
Pisa, Italy

gianluca.dini@unipi.it

Abstract—The Internet of Things (IoT) is a technological vision
in which constrained or embedded devices connect together
through the Internet. This enables common objects to be empow-
ered with communication and cooperation capabilities. Industry
can take an enormous advantage of IoT, leading to the so-called
Industrial IoT. In these systems, integrity, confidentiality, and
access control over data are key requirements. An emerging
approach to reach confidentiality and access control is Attribute-
Based Encryption (ABE), which is a technique able to enforce
cryptographically an access control over data. In this paper,
we propose fABElous, an ABE scheme suitable for Industrial
IoT applications, which aims at minimizing the overhead of
encryption on communication. fABElous ensures data integrity,
confidentiality, and access control, while reducing the communi-
cation overhead of 35% with respect to using ABE techniques
naively.

Index Terms—Attribute-Based Encryption, ABE, Ciphertext-
Policy Attribute-Based Encryption, CP-ABE, Broadcast.

I. INTRODUCTION

Internet of Things (IoT) technologies [1]–[3] allow us to
connect constrained or embedded devices through the Internet.
This has a deep impact in our everyday life, as common objects
can be empowered with communication and cooperation capa-
bilities. In particular, industry can take an enormous advantage
of IoT. For example a smart factory can be monitored and
controlled through the Internet, thus optimizing the industrial
processes [4]. Another example is a smart warehouse, in which
sensors can tell to automated guided vehicles where to find
particular goods in order to load them on a given truck. In
all these systems, security is a key requirement, especially
for integrity, confidentiality, and access control over data. An
emerging approach to reach confidentiality and access control
is Attribute-Based Encryption (ABE) [5]–[10], a cryptographic
technique that enforces an access control mechanism over
encrypted data. ABE describes data and decrypting parties
by means of attributes, and it regulates the “decryptability”
of data with access policies, which are Boolean formulas
defined over these attributes. Though ABE techniques offer
a high level of security and an intrinsic fine-grained access
control, they do not fit easily in the IoT world. Despite one
may think, the computation power required to execute ABE
operations is not the major concern, as ABE was shown to
be well-suitable for IoT devices [11], [12]. Instead, the most

challenging aspect is the communication overhead generated
by the ABE encryption (over 1KB overhead per message),
which may be quite burdensome for wireless networks with
limited bitrate like those employed in IoT [13], [14]. Indeed,
modern IoT networks use low-power communication protocols
like Bluetooth LE, IEEE 802.15.4, and LoRa, which pro-
vide for low bitrates (230Kbps for BLE [15], 163Kbps for
802.15.4 [16], 50Kbps for LoRa [17]).

In this paper, we propose fABElous, an ABE scheme suit-
able for Industrial IoT applications which aims at minimizing
the communication overhead introduced by ABE encryption.
The fABElous scheme ensures data integrity, confidentiality,
and access control, while reducing the communication over-
head of 35% with respect to using ABE techniques naively.

The rest of the paper is structured as follows. Section
II introduces some related work and some background on
Attribute-Based Encryption. Section III describes fABElous
in detail: its architecture, its reference use case, its system
procedures, its reference threat model. Section IV analyzes
the performances of fABElous in terms of communication
overhead.

II. BACKGROUND AND RELATED WORK

A. Background: CP-ABE

There are two ABE paradigms in the literature: Ciphertext-
Policy Attribute Based Encryption (CP-ABE), and Key-Policy
Attribute Based Encryption (KP-ABE). Although the names
are quite self-explanatory, we give intuition into the workings
of such paradigms. The access control mechanism imple-
mented by KP-ABE answers the question: “What type of
data can I (the decryptor) access?”, in this case the policy
is embedded inside the key belonging to the decryptor (Key-
Policy). Differently, the access control mechanism imple-
mented by CP-ABE answers the question: “Who can access
the data that I (the encryptor) am encrypting?”; or better
yet: “What characteristics must a decryptor have in order to
access the data that I am encrypting?”, in this case the policy
is embedded inside the ciphertext itself (Ciphertext-Policy).
Typically, CP-ABE is considered a more flexible solution [7]
because it guarantees more control to the encryptor over the
data. For this reason, we will now focus on CP-ABE, and give

AND

OR

A B

C

Fig. 1. Example of access policy. Logical operators are nodes represented
as ellipses, while attributes are leaves depicted in rounded boxes. This policy
reads as “At least one between B OR A must be present, AND C must be
present as well”.

some background notions that will help the reader to better
understand the rest of the paper.

In the following, we will call data producers whoever
produces and encrypts data. Similarly, we will call data
consumers whoever decrypts and consumes data. Each data
producer encrypts data by means of an encryption key (EK).
Each data consumer decrypts data by means of a decryption
key (DK). The encryption key is public and unique for all
the data producers, whereas the decryption key is private and
specific to a single data consumer. A single piece of encrypted
data is called ciphertext (CP). Each data consumer is described
by an attribute set (γ), which is embedded into its decryption
key. Two examples of attribute sets can be γ1 = {A,B,D},
and γ2 = {A,C}. The access rights on a ciphertext are
described by an access policy (P). An access policy can be
seen as a tree, where the inner nodes are the logical operators
“AND” and/or “OR” and the leaves are attributes. As an
example, consider the policy P = (AORB)ANDC in Fig.
1. It appears clear from the figure that the attribute set γ2
satisfies the access policy P , while γ1 does not.

The following set of cryptographic primitives (from now
on, simply primitives) are commonly found in Attribute-Based
Encryption schemes, and we will make use of them as black
boxes.

1) (MK,EK) = Setup(): This primitive initializes the
cryptographic scheme. It outputs a master key MK and an
associated encryption key EK.

2) CP = Encrypt(M,P, EK): This primitive encrypts a
plaintext M under the policy P . It takes as input the message
M , the policy P , and the encryption key EK. It outputs the
ciphertext CP .

3) DK = KeyGen(γ,MK): This primitive generates a
decryption key. It takes as input a set of attributes γ which
describes the data consumer, and the master key MK. It
outputs a decryption key DK.

4) M = Decrypt(CP,DK): This primitive decrypts a
ciphertext CP . It takes the ciphertext CP and the data con-
sumer’s decryption key DK as input, and outputs the message
M if decryption is successful, ⊥ otherwise.

B. Related Work

Attribute-Based Encryption has been applied to protect
confidentiality and ensure fine-grained access control in many
different application scenarios like cloud computing [8], [18]–
[20], e-health [21], wireless sensor networks [10], Internet of
Things [22], [23], smart cities [9], online social networks [24].
In this section we will call users humans that take part in
the services/systems described. We will also call nodes the
independent devices (mainly sensors and actuators) that take
part in the services/systems described.

Yu et al. [10] realized the first distributed fine-grained data
access control for Wireless Sensor Networks (WSNs) using
ABE. In their work, the system is composed by one controller,
many users and many nodes. The network controller assigns a
secret key to each user, according to a policy that describes the
type of data such user should decrypt. Every node possesses a
set of attributes, which are generated from the controller and
loaded on the node before its installation. Their system is able
to revoke a key with a single broadcast message. However,
their system does not take into account the possibility of
actuators which receive and use ABE-encrypted data. This
precludes the possibility of having actuators which receive
and use ABE-encrypted data in complex IoT scenarios like
a smart factory. In addition, FDAC uses Key-Policy Attribute-
Based Encryption (KP-ABE) [6], which is less flexible than
CP-ABE, as already underlined in the previous section [7],
[25], [26].

Picazo-Sanchez et al. [21] proposed a secure publish-
subscribe protocol for medical Wireless Body Area Networks
(WBANs) using ABE. In their work, the system is composed
by a star-topology network where a smartphone (or a similar
device) communicates with various nodes placed over the
user’s body area, monitoring the user’s health conditions. The
system allows any node to publish data and to subscribe to
data generated from other nodes.

Singh et al. [23] proposed a secure MQTT for IoT, allowing
the usage of ABE. In their work, the architecture is composed
by one Key Authority (KA), one broker, and several nodes.
Every node can be a subscriber, a publisher or both. Every
node knows the public key, and a secret key associated with
some attributes which describes its characteristics. Every node
subscribes to the data it needs for its proper functioning.
Both Picazo-Sanchez et al.’s and Singh et al.’s schemes follow
the CP-ABE paradigm like ours, but they use a publish-
subscribe method, which is unsuitable for our objectives since
it introduces too much latency.

Rasori et al. [9] proposed a system for smart cities using
ABE. The application streams in real-time data from roads
within a smart city. In this work, the architecture is composed
by many sensors, a cloud server and users. The sensors capture
the data and store it on a cloud server. Paying users can retrieve
data from the cloud server for the roads they are interested in
with his/her ABE key they have paid for.

Actuators Sensors

WSAN
Controller

DK
KDK

EK
SK

Sensor Table
SID | SK
... | ...

Actuator Table
AID | KDK

... | ...

Sensor Table
SID | SK
... | ...

...|...

IPK List
KID | Policy | Key

|...

...|...

IPK List
KID | Policy | Key

|...

Fig. 2. An overview of fABElous architecture.

III. ARCHITECTURE

We assume a low-bitrate Wireless Sensor and Actuator Net-
work (WSAN), composed by a set of sensors and actuators,
which exchange encrypted data with each other (Fig. 2). As an
use-case example, consider a smart factory with many sensors
and actuators which must communicate in a delay-bounded
way to implement a real-time application [27]. Given the
strict requirements, sensors and actuators must communicate
directly through the WSAN. The WSAN inside the smart
factory uses IEEE 802.15.4 as a link-layer protocol, which
is low-energy and low-bitrate. As a consequence, communi-
cations and encrypt/decrypt operations must be as lightweight
as possible.

A sensor is a data producer that measures and encrypts
some quantity, and then it sends the encrypted data to a set
of actuators over the WSAN. An actuator is a data consumer
that receives encrypted data from a set of sensors over the
WSAN, and then uses it to control some mechanism. The
encrypted data received by an actuator could be a command
which the actuator executes, as well as a measured data from a
sensor which the actuator uses to take a decision. Sensors and
actuators are regulated by a WSAN controller node belonging
to the WSAN. For the sake of simplicity, we keep the “sensor”
role and the “actuator” role separated, however a single device
may act as both. We assume that the WSAN controller has
its own pair of asymmetric keys (e.g., RSA, ECC, etc.) used
for digital signature and encryption. In addition, each sensor
and each actuator has a unique identifier called, respectively,
Sensor ID (SID) and Actuator ID (AID), which are assigned
by the controller.

A. Key Distribution Mechanism

In order to satisfy the strict requirements of our model re-
garding security and messages size, we diminish the use of CP-
ABE heavier ciphertext and primitives. Indeed, in fABElous
each sensor executes the Encrypt primitive only once for
securing multiple data described the same policy. Similarly,
each actuator executes the Decrypt primitive only once for
extracting data generated by the same sensor and described
by the same policy. The basic idea is to distribute symmetric
keys using the CP-ABE scheme as a reliable tool to achieve

fine-grained multicast. Each sensor encrypts a symmetric key
with the CP-ABE Encrypt primitive under a certain policy
and broadcasts it to all the actuators. All the actuators will
receive the ciphertext, but only few will be able to successfully
executes the Decrypt primitive and retrieve the symmetric key.
In this way, when the sensor wants to transmit data and apply
the aforementioned policy on it, the sensor encrypts such data
with the symmetric key instead. In the following, we explain
more in detail the procedures that the WSAN controller, the
sensors and actuators may execute inside our system.

B. System Procedures

1) System Initialization: The system initialization proce-
dure is executed only once, to start the system. The controller
runs the Setup primitive, thus obtaining the master key and
the encryption key.

2) Sensor Join: The sensor join procedure (Fig. 3) is
executed whenever a new sensor joins the WSAN.

2) Send(SID, EK)
4) Broadcast(SID,SK)

Sensor Table
SID | SK

 SID_1 | SK_1
3) Insert tuple

Private Key

SK

1) Generate and
Load SK pair

Fig. 3. Sensor join procedure. Dashed lines represent human-device commu-
nication.

First, the human operator who is physically deploying the
sensor generates a pair of asymmetric keys which the sensor
will use for digital signatures. The operator loads the private
key on the sensor, and the public key on the controller (step
1). We call signature key (SK) such a public key. After that,
the controller assigns an identifier SID to the sensor, and it
sends the identifier and the encryption key to the sensor with a
signed message (step 2). The controller adds a tuple 〈SID, SK〉
to a locally maintained Sensor Table (step 3). Each tuple in
the Sensor Table represents a sensor in the system. Finally,
the controller signs and broadcasts the tuple to all the WSAN
actuators (step 4). The WSAN actuators add such a tuple to
their locally maintained copy of the WSAN Sensor Table.

3) Actuator Join: The actuator join procedure is executed
whenever a new actuator joins the WSAN.

First, the human operator who is physically deploying
the actuator generates a pair of asymmetric keys which the
actuator will use for receiving encrypted keys. The operator
loads the private key on the actuator, and the public key on the

controller (step 1). We call key-distribution key (KDK) such
a public key. After that, the controller assigns an identifier
AID to the actuator, and it generates a decryption key with
the KeyGen primitive, according to the actuator’s attribute
set. The controller signs the identifier and the decryption
key, it encrypts such signed message with the actuator’s key-
distribution key, then sends the obtained ciphertext to the
actuator. The controller adds a tuple 〈AID,KDK〉 to a locally
maintained Actuator Table (step 3). Each tuple in the Actuator
Table represents an actuator in the system. Finally, the WSAN
controller sends the WSAN Sensor Table to the actuator with
a signed message (step 4).

4) New Policy installation: The new policy installation
procedure (Fig. 4) is executed by a sensor to share a symmetric
key with some actuators belonging to the WSAN. When a

s2) Insert Tuple in IPK list

...|...

IPK List
KID | Policy | Key

|...
 SymKey|P|KID

a1) Verify(SKSID, new policy message)
a2) Decrypt(CP,DK), obtain Tuple

s1) Chose Tuple = <KID,P,SymKey>
s3) Encrypt(P,SymKey)
s4) Sign(CP,KID)
s5) Broadcast(new policy message, SID)

a3) Insert Tuple in IPK list

...|...

IPK List
KID | Policy | Key

|...
 SymKey|P|KID

Fig. 4. New policy installation procedure.

sensor performs this procedure for the first time, it creates an
Identifier Policy Key (IPK) list. This list links a policy P to a
symmetric key SymKey through a symmetric key identifier
(KID), and this allows a sensor to encrypt data with the
advantages of symmetric encryption (faster and with smaller
ciphertexts than asymmetric encryption), plus the capability
of enforcing an access policy on said data. In other words,
the IPK list is composed by one or more tuples in the form
〈KID,P,SymKey〉. The IPK list is a structure owned by each
sensor that belongs to the WSAN, and thus, two different
sensors will have two different IPK lists. Actuators store a
similar IPK list, containing the tuples that the sensors shared
with them, by means of this procedure.

The following steps allow a sensor to create a tuple for
its IPK list, and to share said tuple with some actuators
over the WSAN. The sensor generates an IPK tuple by
choosing a policy P , a random symmetric key SymKey and
a random KID (step s1). The sensor adds to its IPK list the
tuple generated in step s1 (step s2). The sensor encrypts the
symmetric key under P using the Encrypt primitive (step
s3). Then the sensor signs the concatenation of its SID,
the ciphertext and the KID (step s4). Throughout the paper
we will refer to a signed concatenation of a SID, an ABE
ciphertext and a KID as a new policy message. The sensor

transmits the new policy message over the WSAN (step s5).
Each actuator inside the WSAN verifies the sensor signature
on the new policy message, using the signature key associated
to the received SID inside the sensor table (step a1). If the
signature is not correct, the message is discarded. Otherwise,
the actuator checks if its attribute set γ satisfies P . If the
attribute set γ does not satisfy the policy P , the message is
discarded. Otherwise, if the attribute set γ satisfies the policy
P , the actuator decrypts the ciphertext executing the primitive
Decrypt, obtaining the symmetric key (step a2). Finally, the
actuator inserts the tuple in its IPK list with the quantities
retrieved in step a2 (step a3).

5) Data Exchange: The data exchange procedure (Fig. 5) is
executed by a sensor to transmit data to one or more actuators
in a low-latency fashion inside the WSAN.

a1) Verify(SKSID, data message)
a3) data = SymDecrypt(SymCP)

s2) Sign(SymEncrypt(Data, SymKey), KID)

s4) Delete(data message, data)
s3) Broadcast(data message, SID)

...|...

IPK List
KID | Policy | Key

|...
 SymKey|P|KID

s1) Choose P and
retrieve Tuple from IPK

...|...

IPK List
KID | Policy | Key

|...
 SymKey|P|KID

a2) Retrieve Tuple from IPK
based on received KID

Fig. 5. Data exchange procedure.

The sensor chooses a policy P and retrieves the associated
symmetric key and KID from its IPK list (step s1). If there
is no matching tuple in its IPK list, the sensor performs a
new policy installation procedure. The sensor encrypts the data
using the symmetric key (obtaining SymCP), and it signs the
concatenation of its SID, the ciphertext and the KID (step s2).
Throughout the paper we will refer to a signed concatenation
of a SID, a symmetric ciphertext and a KID as a data message.
Then, the sensor broadcasts the data message over the WSAN
(step s3). Each actuator inside the WSAN, which is interested
in the transmitted data, verifies the sensor signature on the data
message, by retrieving from the sensor table the signature key
associated to the received SID (step a1). If the signature is not
correct, the data message is discarded. Otherwise, the actuator
retrieves from its IPK list the tuple associated with the received
KID (step a2). The actuator uses the latest symmetric key
retrieved to decrypt the data message and consumes its content
(step a3). Finally, the sensor securely deletes the sensed data
(step s4).

C. Threat Model

The fABElous scheme provides data integrity, confidential-
ity, and access control. In the following we analyze possible
threats and explain how fABElous addresses them.

1) Eavesdropper: Eavesdroppers are surely a threat to
confidentiality. An eavesdropper can try to gain information by
examining the traffic between sensors, actuators and the con-
troller. However, every exchange of information is protected.
If an eavesdropper is able to obtain a data message, he cannot
access the data since he does not have the symmetric key.
Even if he have access to the ABE ciphertext containing that
symmetric key, he cannot decrypt it either, because he lacks
an ABE decryption key. Even more so, if the eavesdropper
intercepts the message exchange between an actuator and the
WSAN controller during the actuator join procedure, he cannot
retrieve the decryption key since it is safely encrypted with the
key-distribution key of said actuator.

2) Compromised Sensor: Suppose that an attacker gains
complete access over a sensor. Said attacker obtains: (i)
the data generated by the sensor from the moment of the
compromise on; (ii) the private signature key of said sensor;
(iii) the IPK list used by the sensor including the symmetric
keys used for data encryption. Note that this attacker cannot,
in any way, obtain data generated by other sensors. Each
sensor deletes past data securely, so the attacker cannot retrieve
it from the sensor. However if an attacker intercepted and
stored past transmissions, he would be able to retrieve past
data by using the stolen symmetric keys. In order to mitigate
this, sensors could periodically refresh the symmetric keys by
deleting some tuples from their IPK list and executing again
the new policy installation procedure on the same policies. In
this way, the attacker cannot retrieve data produced before the
last refresh of the symmetric key.

Note that the attacker could also disseminate malicious
data authenticated with the signature key of the compromised
sensor. In this way, malicious data is accepted by the actuators
that receive it. This attack can be thwarted by revoking the
signature key of the compromised sensor. We plan to add this
functionality to a future version of fABElous.

3) Compromised Actuator: Suppose that an attacker gains
complete access over an actuator. Said attacker obtains: (i)
the private ABE decryption key of said actuator; (ii) the
private key-distribution key of said actuator; (iii) the IPK list
used by the actuator, including the symmetric keys used for
data decryption. Each actuator may delete past data securely
after consumption, so the attacker cannot retrieve it from the
actuator. However, if an attacker intercepted and stored past
transmissions, he would be able to retrieve past data by using
the stolen symmetric keys. With this set of information, the
attacker can decrypt every past and future data message that
the compromised actuator has access to. Note that this does
not imply that the attacker has access to all the data generated
by the sensors. Indeed, his decryption capabilities are limited
by the access privileges of the compromised actuator. If the
compromised actuator cannot decrypt some data because its
attribute set does not satisfy the policy of such data, then
the attacker will not be able to decrypt it as well. This is
achieved thanks to ABE technology, which enforces a fine-
grained access control even in case of device compromise.
The actuator compromise can be completely worked out by

revoking its decryption key. We plan to add this functionality
to a future version of fABElous.

IV. PERFORMANCE EVALUATION

In this section we show more in detail the parameters we
considered for evaluating fABElous. Data is composed by the
combination of 120 bytes of raw data, plus 4 byte of KID,
plus 4 bytes of timestamp (to avoid replay attacks). The used
digital signature algorithm is ECDSA, which has the benefit
of adding a constant size signature of 40 byte (considering 80-
bit security). For the symmetric key encryption we used AES
with 128-bit keys in CBC mode. The policy used to evaluate
CP-ABE communication overhead is a simple, yet effective
P1 = (AANDBANDC). We used only AND operators
without losing in generality since the specific Boolean operator
does not influence the communication overhead. To measure
the communication overhead we used the CP-ABE toolkit
of Bethencourt et al. [7]. Table I shows the communication
overhead of fABElous compared to other schemes.

TABLE I
TRANSMISSION SIZE

Scheme Size (bytes) Overhead (%)
No security 120 0%

Authentication only 160 25%
“Naive” CP-ABE 1.250 90%

fABElous 192(+1.122∗) 100%−37.5%

∗Once per policy installation

No security scheme refers to sensors transmitting raw data
without any kind of protection. Authentication only scheme
refers to sensors transmitting signed data using ECDSA.
“Naive” CP-ABE scheme refers to sensors constantly trans-
mitting data encrypted with CP-ABE. The reduction of the
fABElous communication overhead over number of transmis-
sions is calculated as:

Overhead(%) =
1122 +N · 72
1.122 +N · 192

· 100,

where N is the number of data messages sent, 72 is the amount
of overhead bytes in each data message, 1.122 byte is the size
of the CP-ABE ciphertext containing an AES key, and 192
byte is the total size of each data message. As it can be seen
from the table, the overhead of fABElous encryption is as
big as 100% in the worst case (no data exchange procedure
executed after a new policy installation procedure).

Compared to no security, fABElous has an incredible
amount of communication overhead, even in its best-case sce-
nario. However, fABElous grants data integrity, data confiden-
tiality, and fine-grained access control, which are three features
required by our use case. Compared to authentication only,
fABElous has more than twice the amount of communication
overhead, even in its best-case scenario. However, in addition
to data integrity, fABElous also grants data confidentiality and
fine-grained access control, which are two features required
by our use case. Compared to “Naive” CP-ABE, fABElous

has less communication overhead since the second data ex-
change execution (N ≥ 2). Indeed, in its best-case scenario,
fABElous communication overhead is 49% less than “Naive”
CP-ABE communication overhead (N ≥ 99). Furthermore, in
addition to data confidentiality and fine-grained access control,
fABElous also grants data integrity, which is a feature required
by our use case. Fig. 6 shows how fABElous communication

0 50 100 150 200 250
Data Messages Sent

30

40

50

60

70

80

90

100

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(%

)

fABElous Overhead
90% Communication Overhead
41% Communication Overhead

2

99

Fig. 6. fABElous communication overhead.

overhead drops with each execution of the data exchange
procedure. The communication overhead is lower than 90%
after two executions of the data exchange procedure. Further-
more, the communication overhead drops below 55% after 106
executions of the data exchange procedure.

V. CONCLUSION

In this paper, we proposed fABElous, an ABE scheme suit-
able for Industrial IoT applications which aims at minimizing
the communication overhead introduced by ABE encryption.
We described its architecture, system procedures, and provided
an use case example. We analyzed its vulnerability and showed
our next research objectives. Finally, we proved how fABElous
ensures data integrity, confidentiality, and access control, while
reducing the communication overhead of 35% with respect to
using ABE techniques naively.

ACKNOWLEDGMENTS

This work was supported by the Italian Ministry of Edu-
cation and Research (MIUR) in the framework of the Cross-
Lab project (Departments of Excellence), and by the project
PRA 2018 81 “Wearable sensor systems: personalized anal-
ysis and data security in healthcare” funded by the University
of Pisa.

REFERENCES

[1] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sen-
sor networks towards the internet of things: A survey,” in Software,
Telecommunications and Computer Networks (SoftCOM), 2011 19th
International Conference on. IEEE, 2011, pp. 1–6.

[2] K. Ashton et al., “That ‘internet of things’ thing,” RFID journal, vol. 22,
no. 7, pp. 97–114, 2009.

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] A. Gilchrist, Industry 4.0: the industrial internet of things. Apress,
2016.

[5] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2005, pp. 457–473.

[6] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
Acm, 2006, pp. 89–98.

[7] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Security and Privacy, 2007. SP’07. IEEE Sympo-
sium on. IEEE, 2007, pp. 321–334.

[8] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Infocom, 2010
proceedings IEEE. Ieee, 2010, pp. 1–9.

[9] M. Rasori, P. Perazzo, and G. Dini, “ABE-cities: An attribute-based en-
cryption system for smart cities,” in 2018 IEEE International Conference
on Smart Computing (SMARTCOMP), June 2018, pp. 65–72.

[10] S. Yu, K. Ren, and W. Lou, “FDAC: Toward fine-grained distributed
data access control in wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 4, pp. 673–686, 2011.

[11] M. Ambrosin, A. Anzanpour, M. Conti, T. Dargahi, S. R. Moosavi,
A. M. Rahmani, and P. Liljeberg, “On the feasibility of attribute-based
encryption on internet of things devices,” IEEE Micro, vol. 36, no. 6,
pp. 25–35, 2016.

[12] B. Girgenti, P. Perazzo, C. Vallati, F. Righetti, G. Dini, and G. Anas-
tasi, “On the feasibility of attribute-based encryption on constrained
IoT devices,” in Smart Computing (SMARTCOMP), 2019 International
Conference on (to appear). IEEE, 2019.

[13] S. Farrell, “Low-power wide area network (lpwan) overview,” Tech.
Rep., 2018.

[14] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Rfc 4944,”
Transmission of IPv6 packets over IEEE, vol. 802, no. 4, 2007.

[15] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica,
“Performance evaluation of bluetooth low energy: a systematic review,”
Sensors, vol. 17, no. 12, p. 2898, 2017.

[16] B. Latré, P. De Mil, I. Moerman, N. Van Dierdonck, B. Dhoedt, and
P. Demeester, “Maximum throughput and minimum delay in IEEE
802.15.4,” in International Conference on Mobile Ad-Hoc and Sensor
Networks. Springer, 2005, pp. 866–876.

[17] O. Georgiou and U. Raza, “Low power wide area network analysis: Can
LoRa scale?” IEEE Wireless Communications Letters, vol. 6, no. 2, pp.
162–165, 2017.

[18] Y. Ming, L. Fan, H. Jing-Li, and W. Zhao-Li, “An efficient attribute
based encryption scheme with revocation for outsourced data sharing
control,” in Instrumentation, Measurement, Computer, Communication
and Control, 2011 First International Conference on. IEEE, 2011, pp.
516–520.

[19] Z. Xu and K. M. Martin, “Dynamic user revocation and key refreshing
for attribute-based encryption in cloud storage,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012 IEEE
11th International Conference on. IEEE, 2012, pp. 844–849.

[20] J. Hur, “Improving security and efficiency in attribute-based data shar-
ing,” IEEE transactions on knowledge and data engineering, vol. 25,
no. 10, pp. 2271–2282, 2013.

[21] P. Picazo-Sanchez, J. E. Tapiador, P. Peris-Lopez, and G. Suarez-Tangil,
“Secure publish-subscribe protocols for heterogeneous medical wireless
body area networks,” Sensors, vol. 14, no. 12, pp. 22 619–22 642, 2014.

[22] L. Touati and Y. Challal, “Batch-based CP-ABE with attribute revocation
mechanism for the internet of things,” in Computing, Networking and
Communications (ICNC), 2015 International Conference on. IEEE,
2015, pp. 1044–1049.

[23] M. Singh, M. Rajan, V. Shivraj, and P. Balamuralidhar, “Secure MQTT
for Internet of Things (IoT),” in Communication Systems and Network
Technologies (CSNT), 2015 Fifth International Conference on. IEEE,
2015, pp. 746–751.

[24] S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access
control in social networks with efficient revocation,” in Proceedings of
the 6th ACM Symposium on Information, Computer and Communica-
tions Security. ACM, 2011, pp. 411–415.

[25] M. Ambrosin, M. Conti, and T. Dargahi, “On the feasibility of attribute-
based encryption on smartphone devices,” in Proceedings of the 2015

Workshop on IoT challenges in Mobile and Industrial Systems. ACM,
2015, pp. 49–54.

[26] Z. Liu, Z. Cao, and D. S. Wong, “White-box traceable ciphertext-policy
attribute-based encryption supporting any monotone access structures,”
IEEE Transactions on Information Forensics and Security, vol. 8, no. 1,
pp. 76–88, 2013.

[27] F. Chen, T. Talanis, R. German, and F. Dressler, “Real-time enabled
ieee 802.15. 4 sensor networks in industrial automation,” in Industrial
Embedded Systems, 2009. SIES’09. IEEE International Symposium on.
IEEE, 2009, pp. 136–139.

