

Ingegneria delle Telecomunicazioni

Satellite Communications

2. Does it work? Even with smartphones?

Marco Luise marco.luise@unipi.it

Geosynchronous & Geostationary Orbits

Geostationary Satellite – the MOA Communication Satellites

The state of the s

Computation of GEO Height

Gravity Force=Centrifugal Force

$$G\frac{mM}{r^2} = m\omega^2 r$$

- (Unknown) Satellite Height above ground h
- (Equatorial) Earth Radius: R=6,378 km
- Distance from the center of the Earth r=R+h
- Universal Gravitational Constant G=6.674 x 10⁻¹¹ Nm²/kg²
- Geosynchronous angular speed $\omega = 2\pi/(24 \times 3600)$ rad/s
- Earth Mass M=5.97 x 10²⁴ kg
- Standard gravitational parameter μ =GM= 3.99 x 10¹⁴ m³s⁻²

$$h = \sqrt[3]{\frac{GM}{\omega^2}} - R =$$
42,235-6,378=35,864 km

It's very far!

Does the satellite signal get to Earth loud enough (and vice-versa?)

Antenna Radiation Pattern 1/3

 $G(\theta, \phi)$ describes the intensity of the far field radiated by the antenna as the angle of view changes: ϕ on the horizontal plane (azimuth), θ on the vertical plane (elevation)

Antenna Radiation Pattern 2/3

Usually we just use (represent) a cut of the pattern on either the H o the V plan, represented on a polar chart:

Antenna Radiation Pattern 3/3

• We can also plot the same cut $G(0,\phi)$ as a function of ϕ on a Cartesian rather than polar chart

and the same of th

Examples

Ideal Isotropica

λ /2-Dipole

DIRECTIVE Antenna

V Plane

Half-power beam width

Antenna Gain

During *transmission*, the radiation pattern determines the *gain* of the antenna in a certain direction of radiation, i.e., the measure of how much in that direction the radiated power at distance r (or, the power flux S per unit area) is greater than that of an ideal isotropic antenna:

$$S(\theta, \phi; r) = G_T(\theta, \phi) \frac{P_T}{4\pi r^2}$$

Effective Area

Reciprocally, the radiation pattern establishes the directivity of the antenna in *reception* through the concept of *equivalent area*, i.e., the measurement of how much power the antenna is able to collect in the main direction with respect to that collected by an ideal isotropic antenna:

$$P_{R}(\theta, \phi; r) = S(\theta, \phi; r) A_{e}(\theta, \phi) = \frac{P_{T}G_{T}(\theta, \phi)}{4\pi r^{2}} \frac{G_{R}(\theta, \phi)}{4\pi / \lambda^{2}}$$

$$A_e(\theta, \phi; r) = \frac{\lambda^2}{4\pi} G_R(\theta, \phi)$$

Example: Parabolic Antenna

The state of the s

Example: Parabolic Antenna

Direzione del lobo principale

$$A_e = 0.5 \div 0.7A \quad \leftrightarrow \quad G = 6 \div 9 \frac{A}{\lambda^2}$$

Example: Parabolic Antenna

Horn Antenna

Multibeam Antenna...

...and its footprint

Link Budget 1 – Received power

$$P_R = P_T \frac{G_T G_R}{\left(4\pi h / \lambda\right)^2}$$

$$P_{R}|_{dBW} = P_{T}|_{dBW} + G_{T}|_{dB} - L|_{dB} + G_{R}|_{dB} = P_{T}|_{dBW} + G_{T}|_{dB} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_{R}|_{dB}$$

- TX Antenna gain (max): G_{τ} = 12 dB (dBi)
- EIRP = $P_{T (dB)}$ + $G_{T (dB)}$ = 26 dBW (about 500 W equivalent)
- Satellite altitude: r=20,200 km
- Free-Space Loss @ f_0 =1575 MHz: L=(4 πh)²/ λ ² = (4 $\pi h f_c$)² / c²= 182 dB
- RX antenna gain (smartphone): G_R =-1 dBi
- Received Power at RX antenna output: $C=EIRP-L + G_R = -157$ dBW=0.2 fW (2. 10^{-4} pW)=0.1 μV in 50 Ω

GPS satellite

Link Budget 2 - Noise Computation

- P_R is also called C (carrier power)
- k_B = Boltzmann's constant
- *T_n*=RX Noise Temperature
- T_b , R_b = bit time, bit rate

$$\frac{E_b}{N_0} = \frac{C T_b}{k_B T_n} = \frac{C}{R_b k_B T_n}$$

$$C \Big|_{dBW} = EIRP_{dBW} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_R\Big|_{dB}$$

$$\frac{C}{N_0} \Big|_{dBW} = EIRP_{dBW} - 20\log\left(\frac{4\pi h}{\lambda}\right) + G_R\Big|_{dB} - 10\log(k_B T_n)$$

$$\frac{E_b}{N_0} \bigg|_{dB} = \frac{EIRP_{dBW}}{2000} - 20\log\left(\frac{4\pi h}{\lambda}\right) + \frac{G_R}{T_n} \bigg|_{dB/K} - 10\log(k_B R_b)$$

TX

Propagation

RX

Bit-rate

Link Budget 3 - E_b/N_0 Computation

- T_n =RX Noise Temperature
- T_b , R_b = bit time, bit rate

$$\frac{E_b}{N_0} = \frac{C T_b}{k_B T_n} = \frac{C}{R_b k_B T_n}$$

$$\frac{E_b}{N_0} \bigg|_{dB} = \frac{EIRP_{dBW}}{20 \log \left(\frac{4\pi h}{\lambda}\right)} + \frac{G_R}{T_n} \bigg|_{dB/K} - 10 \log(k_B R_b)$$

- Receiver Noise Temperature: T_n = 290 K (no antenna noise/RX noise figure)
- Resulting Thermal Noise level: $N_0 = k_B T_n = -204 \text{ dBW/Hz}$
- RX Antenna Gain (handheld): $G_R = -1$ dB (dBi), $G_R / T_n = -25.6$ dB/K
- Receiver C/N_0 ratio: $C/N_0 = C + G_R N_0 = 47$ dB-Hz.
- $-R_b = 50 \text{ bit/s}, 10 \log(k_B R_b) = -212 \text{ dB/K}$
- E_b/N_0 ratio: 26-182-26+212 =30 dB (VEEEERY Good)

The same of the sa

E_b/N_0 Computation

• k_B = Boltzmann's constant=1.38 10⁻²³ J/K

 $E_b C T_b C$

•

Receiver C/N_0 ratio: $C/N_0 = C + G_R - N_0 = 47$ dB-Hz.

Satellite Handheld User Terminals

 Mobile Satellite Communications traditionally require dedicated, expensive terminals and subscriptions

Generations of Cellular Networks

Non-Terrestrial-Networks

, in

Basic Integrated Architecture

5G Profiles

Enhanced Mobile Broadband (eMBB)

10-20 Gbps peak

- 100 Mbps whenever needed
- 10000x more traffic
- Macro and small cells
- Support for high mobility (500 km/h)
- Network energy saving by 100 times

Massive Machine

Communication (mMTC)

- High density of devices (2x10⁵ -10⁶/km²)
- Long range
- Low data rate (1 -100 kbps)
- M2M ultra low cost
- 10 years battery
- Asynchronous access

Reliability and Low Latency (URLLC)

- Ultra responsive
 - <1 ms air interface latency
 - 5 ms E2E latency
- Ultra reliable and available (99.9999%)
- Low to medium data rates (50 kbps - 10 Mbps)
- High speed mobility

The role of NTNs in 5G

Kepler's Laws

- 1. The planets move in a plane; the orbits described are ellipses with the sun at one focus (1602).
- 2. The vector from the sun to the planet sweeps equal areas in equal times (the law of areas, 1605).
- Tof revolution of a planet around the sun to the cube of the semimajor axis a of the ellipse is the same for all planets (1618).

