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Abstract: 
 
Low density parity check (LDPC) codes are chosen for the second generation digital 
video broadcasting (DVB) standard. In this paper, we review LDPC codes in general, 
present belief propagation decoding algorithm in simple terms, describe the 
standardized LDPC codes and show their performance. 
 
Index Terms:  Low density parity check codes, iterative decoding, digital video 
broadcasting. 
 
 
1 Introduction: 
 
In 2002, Digital  Video Broadcasting (DVB) standards body started a search for a more 
efficient transmission technology for second generation satellite applications (DVB-S2). 
The first generation, DVB-S, was introduced as a standard in 1994 and is now used 
widely for television and data broadcasting services throughout the world. It uses QPSK 
modulation and concatenated convolutional and Reed-Solomon codes. But since then 
more powerful coding techniques have been feasible due to advances in VLSI 
technology. As a result, DVB-S2 Project called for new coding proposals that use higher 
order modulation with a goal of 30% throughput increase for the same bandwidth and 
power. After closely examining several candidates in terms of performance and 
estimated ASIC size, the committee chose a solution based on low density parity check 
(LDPC) codes which actually delivered more than 35% throughput increase with respect 
to DVB-S. In this paper, we describe the specifics of the standardized LDPC codes in 
detail. 
 
In the following section, we first review LDPC codes in general and a belief propagation 
decoding algorithm that works in the logarithm domain. In Section 3, we describe the 
restrictions that we impose on random codes to simplify implementation.  Section 4 
presents standardized LDPC codes for DVB-S2.  Their performance compared to the  
DVB-S standard and theoretical Shannon limit is given in Section 5. 
 
 
2 Review of LDPC Codes: 
 
LDPC codes were discovered by Gallager in 1962 [1], but they were not given much 
attention for decades as the technology at the time was not mature for efficient 
implementation. Motivated by the success of iterative decoding of turbo codes, MacKay 
and Neal reintroduced LDPC codes in 1995 [2],[3], and generated great interest and 
activity on the subject. Unlike turbo codes, LDPC codes have an easily parallelizable 
decoding algorithm which consists of simple operations such as addition, comparison 



 

 

and table look-up.  Moreover the degree of parallelism is “adjustable” which makes it 
easy to trade-off throughput and complexity. 
 
LDPC codes are linear block codes with sparse parity check matrices  xNKNH )( − , where 
each block of K information bits are encoded to a codeword of size N. 
As an example, an LDPC code of codeword size N=8 and rate 1/2 can be specified by the 
following parity check matrix. 

 
 
The same code can be equivalently represented by the bipartite (Tanner) graph in Figure 
1 which connects each check equation (check node) to its participating bits (bit nodes). 
Parity check equations imply that for a valid codeword, modulo-2 sum of adjacent bits 
of every check node has to be zero. 
 

 
Figure 1. Bipartite (Tanner) graph of an LDPC code 

 
The purpose of the decoder is to determine the transmitted values of the bits. Bit nodes 
and check nodes communicate with each other to accomplish that.  The decoding starts 
by assigning the received channel value of every bit to all the outgoing edges from the 
corresponding bit node to its adjacent check nodes. Upon receiving that, the check 
nodes make use of the parity check equations to update the bit node information and 
sends it back. Each bit node then performs a soft majority vote among the information 
reaching from its adjacent check nodes. At this point, if the hard decisions on the bits 
satisfy all of the parity check equations, it means a valid codeword has been found and 
the process stops. Otherwise bit nodes go on sending the result of their soft majority 
votes to the check nodes.  
 
In the following sections, we briefly describe the above decoding algorithm more 
quantitatively.  The number of edges adjacent to a node is called the degree of that 
node.  
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2.1 Initialization:  
 
Let x denote the transmitted binary phase shift keying (BPSK) symbol corresponding to 
a codeword bit, and let y denote the noisy received symbol, 
 
                             zxy +=  where z is a Gaussian random variable with zero mean. 
 
Let us assume that 1+=x when the transmitted bit 0 and 1−=x when the transmitted 
bit is 1. 

Let  
)|1(
)|1(log

yxp
yxpu

−=
+==  denote the a-priori log-likelihood ratio for the transmitted bit. 

The sign of u signals the hard decision on the transmitted bit, whereas the magnitude 
of u gives an indication on the reliability of the decision, the bigger is the magnitude, 
the higher is the reliability. 
 
Decoding starts by assigning the a-priori log-likelihood to all of the outgoing edges of 
every bit node: 
 
                )deg(,...,2,1,1,...,1,0, nnodebitiNnuv nkn i

=−==→  

Here 
iknv → denotes the message that goes from bit node n to its adjacent check node ik , 

nu denotes the a-priori log-likelihood for the bit n and N is the codeword size. The 
initialization process is also shown in Figure 2. 
 

 
Figure 2.  Initialization of outgoing messages from bit nodes 

 
2.2 Check node update: 
  
Let us denote the incoming messages to the check node k from its cd adjacent bit nodes 

by knknkn dc
vvv →→→ ,...,,

21
 (see Figure 3). Our aim is to compute the outgoing messages 

from the check node k back to cd adjacent bit nodes. Let us denote these messages by 
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Figure 3.  Message update at check nodes 
 
 
Each outgoing message from check node k to its adjacent bit nodes is computed as            
                                ),....,,,....,,(

1121 knknknknknnk dciii
vvvvvgw →→→→→→ +−

=  

where ),(|)}||,{min(|)()(),( baLUTbabsignasignbag g+××=  and  

        )1log()1log(),( |||| baba
g eebaLUT −−+− +−+=  

In practice, (.)gLUT function is implemented using a small look up table. Also it can be 

shown that the g  function with multiple inputs can be recursively computed, i.e. 
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It is easy to intuitively understand check node computations, if we ignore the small 
correction factor, i.e. 0=gLUT . In that case, we have 

)(....)()(....)()()(
1121 knknknknknnk dciii

vsignvsignvsignvsignvsignwsign →→→→→→ ××××××=
+−

and  |)||,....,||,||,....,||,min(|||
1121 knknknknknnk dciii

vvvvvw →→→→→→ +−
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The first equality is merely a re-statement of the fact that hard decision on a certain bit 
is modulo-2 sum of all the other bits that participate in the same parity check equation, 
whereas the second equality states that this hard decision can only be as reliable as the 
least reliable bit in the modulo-2 sum.  
 
2.3 Bit Node Update:  
 
Let us denote the incoming messages to the bit node n from its vd adjacent check nodes 

by nknknk dv
www →→→ ,....,,

21
 (see Figure 4). Our aim is to compute the outgoing messages 
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from the bit node n back to vd adjacent check nodes. Let us denote these messages by 

dvknknkn vvv →→→ ,....,,
21

. 

  
 
 

Figure 4.  Message update at bit nodes 
 
They are computed as follows:    ∑

≠
→→ +=

ij
nknkn ji

wuv .   Intuitively, this is a soft 

majority vote on the value of the bit n, using all relevant information except nki
w →                  

 
 
2.4 Hard Decision Making: 
 
After the bit node updates, hard decision can be made for each bit n by looking at the 
sign of  

iknv → + nki
w →  for any ik .  If the hard decisions satisfy all the parity check 

equations, it means a valid codeword has been found, therefore the process stops. 
Otherwise another check node/bit node update is performed. If no convergence is 
achieved after a pre-determined number of iterations, the current output is given out 
and a decoding failure can be declared.  
 
 
3 Structure of Parity Check Matrices of Standardized LDPC Codes:  
 
LDPC codes can be specified through their parity check matrices. On the other hand,  
the standardized LDPC codes are tens of thousands of bits long. Therefore for DVB-S2 
codes, certain structure is imposed on parity check matrices H, to facilitate the 
description of the codes and for easy encoding. The next subsections are devoted to 
describe this structure. 
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3.1 Lower Triangular Parity Check Matrices for Easy Encoding: 
 
Even though parity check matrices of LDPC codes are sparse, in general generator 
matrices are needed for encoding. Of course, for any linear code once the parity check 
matrix is known, a generator matrix can be derived using for instance Gaussian 
elimination method. But the resulting generator matrix would no longer be sparse 
leading to storage and encoding complexity problems. Even though there are methods 
that partially solves the problem [4], restricting a sub-matrix of the parity check matrix 
to be lower triangular eliminates the need to derive a generator matrix and leads to 
linear encoding complexity.  
 
More specifically, we restrict the parity check matrix to be of the form, 

][ )()()()( KNxKNxKKNxNKN BAH −−−− = where B is staircase lower triangular as in Figure 

5. 

                             
                               Figure 5.  Submatrix of Parity Check Matrix 
  
Then any information block  i ),...,,( 110 −= kiii  is encoded to a codeword 

c ),...,,,...,,( 110110 −−−= knk pppiii  using HcT = 0, and recursively solving for parity bits. 
 

0011,0101000 0... pSolvepiaiaia kk ⇒=++++ −−  

11011,1111010 0... pSolveppiaiaia kk ⇒=+++++ −−  

 :  :                                     : 

11211,111,100,1 0... −−−−−−−−−−−−−− ⇒=+++++ KNKNKNkkKNKNKN pSolveppiaiaia  

Note that the matrix A is sparse; as a result encoding has linear complexity with 
respect to the block length. 
 
Our simulations show that the above lower-triangular restriction on the parity check 
matrix lead to negligible (within 0.1 dB) performance loss with respect to a general 
parity check matrix for the cases of practical interest to us. 
 
3.2 Periodicity on Parity Check Matrices for Reduced Storage: 
 
The following restriction on the A submatrix of parity check matrix design reduces the 
storage requirement of the matrix description by a factor of M. 
For a group of M bit nodes, if the check nodes connected to the first bit node of degree, 
say vd , are numbered as 

vdccc ,...,, 21 then the check nodes connected to the thi bit node 
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)( Mi ≤ are numbered as, 

)mod(})1({),.....,mod(})1({),mod(})1({ 21 KNqicKNqicKNqic
vd −−+−−+−−+  

where KN − = total number of check nodes and 
M

KNq −= .  

For the following groups of M bit nodes, the check nodes connected to the first bit node 
of the group are in general randomly chosen so that the resulting LDPC code is cycle-4 
free and occurrence of cycle-6 is minimized to the extent a solution can be found within 
a reasonable search time. Too many short cycles (such as cycle-4 and cycle-6), where 
one can find cycles in the bipartite graph containing 4 or 6 nodes, are detrimental to 
code performance since they lead to non-extrinsic information being fed back after a 
small number of iterations.  
 
From the above description, it is clear that adjacent check nodes of only one bit node 
need to be specified in a group of M, simplifying the code description by a factor of M.  
In DVB-S2,  we choose M = 360. 
 
4 Description of Standardized LDPC Codes: 
 
In DVB-S2, a wide range of bandwidth efficiency from 0.5 bits/symbol up to 4.5 
bits/symbol is covered by defining ten different code rates 1/4, 1/3, 1/2, 3/5, 2/3, 
3/4, 4/5, 5/6, 8/9 and 9/10 with four different modulation schemes QPSK, 8-PSK, 16-
APSK and 32-APSK. Rate 1/4, 1/3, 1/2 and 2/3 codes are also used in the low priority 
branch of hierarchical 8-PSK of backward compatible mode, as described in the DVB-S2 
standard document.  For each code rate, a parity check matrix is specified by listing 
adjacent check nodes for the first bit node in a group of M = 360. The coded block 
length is N = 64800 bits for all rates. To improve the performance, irregular LDPC codes 
are used where degrees of bit nodes are varying. The reason for this improvement is due 
to the fact that bit nodes with high degrees collect more information from their adjacent 
check nodes and they get corrected first after a small number of iterations. They then 
help other bit nodes get corrected through iterative decoding, similar to “wave effect”.  
When all bit nodes have the same degrees, as in regular codes, this wave effect is not 
present and all the bit nodes can simultaneously get stuck during the decoding process. 
The list of bit node degrees and the total number of nodes with those degrees are shown 
in Table 1 for all the code rates. 
 
 

Table 1. Number of Bit Nodes of Various Degrees 
 
Code Rate 13 12 11 8 4 3 2 1 

1/4  5400    10800 48599 1 
1/3  7200    14400 43199 1 
1/2    12960  19440 32399 1 
3/5  12960    25920 25919 1 
2/3 4320     38880 21599 1 
3/4  5400    43200 16199 1 
4/5   6480   45360 12959 1 
5/6 5400     48600 10799 1 
8/9     7200 50400 7199 1 
9/10     6480 51840 6479 1 

 
Constellation labelings are shown in Figure 6. 16-APSK and 32-APSK (as opposed to  
16-QAM and 32-QAM) are chosen due to their “non-linearity friendly” characteristics. 



 

 

Moreover their performance on linear channels are almost as good as their QAM 
competitors.  
 
 
 

 
                     (a) QPSK                                                    (b) 8-PSK 
 
 
 
 
 
 
 
 

 
                                               
 
            (c) 16-APSK                                                         (d) 32-APSK 
                                 Figure 6. Constellation Labelings 
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5 Performance Results: 
 
Even though the above design restricts the parity check matrix to be structured, the 
performance is still very good due to the careful choice of check node/bit node 
connections. Performance of various code rates with different constellations on AWGN 
channel is depicted in Figure 7. Maximum number of decoder iterations is 50. If a valid 
codeword is not found by then, the decoder outputs its current bit estimates at the end 
of 50 iterations. Each LDPC frame is divided to form multiple MPEG packets, 188 bytes 
each. Since the error rate requirements of DVB-S2 are rather stringent (10-7 packet 
error rate), an outer BCH code with the same block length as LDPC frame and an error 
correction capability of up to 12 bits is employed. 
  
 
 
 
 

 
 

Figure 7. Performance of LDPC+BCH Codes over AWGN Channel, N=64800 bits  
 

 
 
C/N requirements of DVB-S2 concatenated LDPC and BCH codes at 10-7 MPEG PER for 
various code rates and modulation schemes are shown in Figure 8. For comparison, the 
performance of DVB-S code and Shannon limits of constellations are also plotted. It is 
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important to note that the DVB-S2 design follows closely the theoretical limit for the 
entire range of operation. Also compared to DVB-S concatenated convolutional and 
Reed-Solomon codes, a capacity improvement of more than 35% is achieved at the same 
C/N. 
 
 

 
 

Figure 13. Comparison of DVB-S2 (LDPC+BCH) Codes to DVB-S1 and Channel 
Capacity 

 
 
6 Conclusion: 
 
LDPC codes of DVB-S2 approach Shannon limit to within 0.6-0.8 dB for a wide range of 
throughput and yet they are easy to implement. It may be hard to justify their 
replacements for decades to come. 
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