

DVB-S2 Low Density Parity Check Codes with Near Shannon
Limit Performance

Mustafa Eroz, Feng-Wen Sun, Lin-Nan Lee

Hughes Network Systems
11717 Exploration Lane

Germantown, MD 20876, USA

Abstract:

Low density parity check (LDPC) codes are chosen for the second generation digital
video broadcasting (DVB) standard. In this paper, we review LDPC codes in general,
present belief propagation decoding algorithm in simple terms, describe the
standardized LDPC codes and show their performance.

Index Terms: Low density parity check codes, iterative decoding, digital video
broadcasting.

1 Introduction:

In 2002, Digital Video Broadcasting (DVB) standards body started a search for a more
efficient transmission technology for second generation satellite applications (DVB-S2).
The first generation, DVB-S, was introduced as a standard in 1994 and is now used
widely for television and data broadcasting services throughout the world. It uses QPSK
modulation and concatenated convolutional and Reed-Solomon codes. But since then
more powerful coding techniques have been feasible due to advances in VLSI
technology. As a result, DVB-S2 Project called for new coding proposals that use higher
order modulation with a goal of 30% throughput increase for the same bandwidth and
power. After closely examining several candidates in terms of performance and
estimated ASIC size, the committee chose a solution based on low density parity check
(LDPC) codes which actually delivered more than 35% throughput increase with respect
to DVB-S. In this paper, we describe the specifics of the standardized LDPC codes in
detail.

In the following section, we first review LDPC codes in general and a belief propagation
decoding algorithm that works in the logarithm domain. In Section 3, we describe the
restrictions that we impose on random codes to simplify implementation. Section 4
presents standardized LDPC codes for DVB-S2. Their performance compared to the
DVB-S standard and theoretical Shannon limit is given in Section 5.

2 Review of LDPC Codes:

LDPC codes were discovered by Gallager in 1962 [1], but they were not given much
attention for decades as the technology at the time was not mature for efficient
implementation. Motivated by the success of iterative decoding of turbo codes, MacKay
and Neal reintroduced LDPC codes in 1995 [2],[3], and generated great interest and
activity on the subject. Unlike turbo codes, LDPC codes have an easily parallelizable
decoding algorithm which consists of simple operations such as addition, comparison

and table look-up. Moreover the degree of parallelism is “adjustable” which makes it
easy to trade-off throughput and complexity.

LDPC codes are linear block codes with sparse parity check matrices xNKNH)(− , where
each block of K information bits are encoded to a codeword of size N.
As an example, an LDPC code of codeword size N=8 and rate 1/2 can be specified by the
following parity check matrix.

The same code can be equivalently represented by the bipartite (Tanner) graph in Figure
1 which connects each check equation (check node) to its participating bits (bit nodes).
Parity check equations imply that for a valid codeword, modulo-2 sum of adjacent bits
of every check node has to be zero.

Figure 1. Bipartite (Tanner) graph of an LDPC code

The purpose of the decoder is to determine the transmitted values of the bits. Bit nodes
and check nodes communicate with each other to accomplish that. The decoding starts
by assigning the received channel value of every bit to all the outgoing edges from the
corresponding bit node to its adjacent check nodes. Upon receiving that, the check
nodes make use of the parity check equations to update the bit node information and
sends it back. Each bit node then performs a soft majority vote among the information
reaching from its adjacent check nodes. At this point, if the hard decisions on the bits
satisfy all of the parity check equations, it means a valid codeword has been found and
the process stops. Otherwise bit nodes go on sending the result of their soft majority
votes to the check nodes.

In the following sections, we briefly describe the above decoding algorithm more
quantitatively. The number of edges adjacent to a node is called the degree of that
node.

n1 n2 n3 n4 n5 n6 n7 n8

m1

m2

m3
m4



















=

01101010
10100101
01010110
10011001

H

n1

n2

n3

n4

n5

n6

n7

n8

m1

m2

m3

m4

 bit nodes check nodes

2.1 Initialization:

Let x denote the transmitted binary phase shift keying (BPSK) symbol corresponding to
a codeword bit, and let y denote the noisy received symbol,

 zxy += where z is a Gaussian random variable with zero mean.

Let us assume that 1+=x when the transmitted bit 0 and 1−=x when the transmitted
bit is 1.

Let
)|1(
)|1(log

yxp
yxpu

−=
+== denote the a-priori log-likelihood ratio for the transmitted bit.

The sign of u signals the hard decision on the transmitted bit, whereas the magnitude
of u gives an indication on the reliability of the decision, the bigger is the magnitude,
the higher is the reliability.

Decoding starts by assigning the a-priori log-likelihood to all of the outgoing edges of
every bit node:

)deg(,...,2,1,1,...,1,0, nnodebitiNnuv nkn i

=−==→

Here
iknv → denotes the message that goes from bit node n to its adjacent check node ik ,

nu denotes the a-priori log-likelihood for the bit n and N is the codeword size. The
initialization process is also shown in Figure 2.

Figure 2. Initialization of outgoing messages from bit nodes

2.2 Check node update:

Let us denote the incoming messages to the check node k from its cd adjacent bit nodes

by knknkn dc
vvv →→→ ,...,,

21
 (see Figure 3). Our aim is to compute the outgoing messages

from the check node k back to cd adjacent bit nodes. Let us denote these messages by

dcnknknk www →→→ ,...,,
21

.

.

nkn uv =→ 1

nkn uv =→ 2

Bit node n :
:

nkn uv
i
=→

Figure 3. Message update at check nodes

Each outgoing message from check node k to its adjacent bit nodes is computed as
),....,,,....,,(

1121 knknknknknnk dciii
vvvvvgw →→→→→→ +−

=

where),(|)}||,{min(|)()(),(baLUTbabsignasignbag g+××= and

)1log()1log(),(|||| baba
g eebaLUT −−+− +−+=

In practice, (.)gLUT function is implemented using a small look up table. Also it can be

shown that the g function with multiple inputs can be recursively computed, i.e.

)),,....,,,....,,((),....,,,....,,(
111211121 knknknknknknknknknknkn dcdciidcii

vvvvvvggvvvvvg →→→→→→→→→→→ −+−+−
=

It is easy to intuitively understand check node computations, if we ignore the small
correction factor, i.e. 0=gLUT . In that case, we have

)(....)()(....)()()(
1121 knknknknknnk dciii

vsignvsignvsignvsignvsignwsign →→→→→→ ××××××=
+−

and |)||,....,||,||,....,||,min(|||
1121 knknknknknnk dciii

vvvvvw →→→→→→ +−
=

The first equality is merely a re-statement of the fact that hard decision on a certain bit
is modulo-2 sum of all the other bits that participate in the same parity check equation,
whereas the second equality states that this hard decision can only be as reliable as the
least reliable bit in the modulo-2 sum.

2.3 Bit Node Update:

Let us denote the incoming messages to the bit node n from its vd adjacent check nodes

by nknknk dv
www →→→ ,....,,

21
 (see Figure 4). Our aim is to compute the outgoing messages

..

.. Check node k

knv →1

knv →3

knv →2

kndc
v →

1nkw →

2nkw →

3nkw →

dcnkw →

from the bit node n back to vd adjacent check nodes. Let us denote these messages by

dvknknkn vvv →→→ ,....,,
21

.

Figure 4. Message update at bit nodes

They are computed as follows: ∑

≠
→→ +=

ij
nknkn ji

wuv . Intuitively, this is a soft

majority vote on the value of the bit n, using all relevant information except nki
w →

2.4 Hard Decision Making:

After the bit node updates, hard decision can be made for each bit n by looking at the
sign of

iknv → + nki
w → for any ik . If the hard decisions satisfy all the parity check

equations, it means a valid codeword has been found, therefore the process stops.
Otherwise another check node/bit node update is performed. If no convergence is
achieved after a pre-determined number of iterations, the current output is given out
and a decoding failure can be declared.

3 Structure of Parity Check Matrices of Standardized LDPC Codes:

LDPC codes can be specified through their parity check matrices. On the other hand,
the standardized LDPC codes are tens of thousands of bits long. Therefore for DVB-S2
codes, certain structure is imposed on parity check matrices H, to facilitate the
description of the codes and for easy encoding. The next subsections are devoted to
describe this structure.

nkw →1

nkw →2

nkw →3

1knv →

2knv →

3knv →

Bit node n

nkdv
w →

dvknv →

....

3.1 Lower Triangular Parity Check Matrices for Easy Encoding:

Even though parity check matrices of LDPC codes are sparse, in general generator
matrices are needed for encoding. Of course, for any linear code once the parity check
matrix is known, a generator matrix can be derived using for instance Gaussian
elimination method. But the resulting generator matrix would no longer be sparse
leading to storage and encoding complexity problems. Even though there are methods
that partially solves the problem [4], restricting a sub-matrix of the parity check matrix
to be lower triangular eliminates the need to derive a generator matrix and leads to
linear encoding complexity.

More specifically, we restrict the parity check matrix to be of the form,

][)()()()(KNxKNxKKNxNKN BAH −−−− = where B is staircase lower triangular as in Figure

5.

 Figure 5. Submatrix of Parity Check Matrix

Then any information block i),...,,(110 −= kiii is encoded to a codeword

c),...,,,...,,(110110 −−−= knk pppiii using HcT = 0, and recursively solving for parity bits.

0011,0101000 0... pSolvepiaiaia kk ⇒=++++ −−

11011,1111010 0... pSolveppiaiaia kk ⇒=+++++ −−

 : : :

11211,111,100,1 0... −−−−−−−−−−−−−− ⇒=+++++ KNKNKNkkKNKNKN pSolveppiaiaia

Note that the matrix A is sparse; as a result encoding has linear complexity with
respect to the block length.

Our simulations show that the above lower-triangular restriction on the parity check
matrix lead to negligible (within 0.1 dB) performance loss with respect to a general
parity check matrix for the cases of practical interest to us.

3.2 Periodicity on Parity Check Matrices for Reduced Storage:

The following restriction on the A submatrix of parity check matrix design reduces the
storage requirement of the matrix description by a factor of M.
For a group of M bit nodes, if the check nodes connected to the first bit node of degree,
say vd , are numbered as

vdccc ,...,, 21 then the check nodes connected to the thi bit node

1

1 1

1 1

1

1

1 1

. . .

0

0
B =

)(Mi ≤ are numbered as,

)mod(})1({),.....,mod(})1({),mod(})1({ 21 KNqicKNqicKNqic
vd −−+−−+−−+

where KN − = total number of check nodes and
M

KNq −= .

For the following groups of M bit nodes, the check nodes connected to the first bit node
of the group are in general randomly chosen so that the resulting LDPC code is cycle-4
free and occurrence of cycle-6 is minimized to the extent a solution can be found within
a reasonable search time. Too many short cycles (such as cycle-4 and cycle-6), where
one can find cycles in the bipartite graph containing 4 or 6 nodes, are detrimental to
code performance since they lead to non-extrinsic information being fed back after a
small number of iterations.

From the above description, it is clear that adjacent check nodes of only one bit node
need to be specified in a group of M, simplifying the code description by a factor of M.
In DVB-S2, we choose M = 360.

4 Description of Standardized LDPC Codes:

In DVB-S2, a wide range of bandwidth efficiency from 0.5 bits/symbol up to 4.5
bits/symbol is covered by defining ten different code rates 1/4, 1/3, 1/2, 3/5, 2/3,
3/4, 4/5, 5/6, 8/9 and 9/10 with four different modulation schemes QPSK, 8-PSK, 16-
APSK and 32-APSK. Rate 1/4, 1/3, 1/2 and 2/3 codes are also used in the low priority
branch of hierarchical 8-PSK of backward compatible mode, as described in the DVB-S2
standard document. For each code rate, a parity check matrix is specified by listing
adjacent check nodes for the first bit node in a group of M = 360. The coded block
length is N = 64800 bits for all rates. To improve the performance, irregular LDPC codes
are used where degrees of bit nodes are varying. The reason for this improvement is due
to the fact that bit nodes with high degrees collect more information from their adjacent
check nodes and they get corrected first after a small number of iterations. They then
help other bit nodes get corrected through iterative decoding, similar to “wave effect”.
When all bit nodes have the same degrees, as in regular codes, this wave effect is not
present and all the bit nodes can simultaneously get stuck during the decoding process.
The list of bit node degrees and the total number of nodes with those degrees are shown
in Table 1 for all the code rates.

Table 1. Number of Bit Nodes of Various Degrees

Code Rate 13 12 11 8 4 3 2 1

1/4 5400 10800 48599 1
1/3 7200 14400 43199 1
1/2 12960 19440 32399 1
3/5 12960 25920 25919 1
2/3 4320 38880 21599 1
3/4 5400 43200 16199 1
4/5 6480 45360 12959 1
5/6 5400 48600 10799 1
8/9 7200 50400 7199 1
9/10 6480 51840 6479 1

Constellation labelings are shown in Figure 6. 16-APSK and 32-APSK (as opposed to
16-QAM and 32-QAM) are chosen due to their “non-linearity friendly” characteristics.

Moreover their performance on linear channels are almost as good as their QAM
competitors.

 (a) QPSK (b) 8-PSK

 (c) 16-APSK (d) 32-APSK
 Figure 6. Constellation Labelings

00

I

Q

ρ=1ρ=1ρ=1ρ=1

10

11 01

000

I

Q

ρ=1ρ=1ρ=1ρ=1

011

111

001

101

010

110

100

text

1100

11011111

1110

0000

0100

0101

0001

10011011

0011

0111

0110

0010

1010 1000

I

Q

R1

R2

text

10001

1001110111

10101

00000

10000

10010

00010

0001100111

00110

10110

10100

00100

00101 00001

I

Q

R1

R2

R3

11000

01000

11001

01001
01101

11101

01100

11100

11110

01110

11111

01111
01011

11011

01010

11010

5 Performance Results:

Even though the above design restricts the parity check matrix to be structured, the
performance is still very good due to the careful choice of check node/bit node
connections. Performance of various code rates with different constellations on AWGN
channel is depicted in Figure 7. Maximum number of decoder iterations is 50. If a valid
codeword is not found by then, the decoder outputs its current bit estimates at the end
of 50 iterations. Each LDPC frame is divided to form multiple MPEG packets, 188 bytes
each. Since the error rate requirements of DVB-S2 are rather stringent (10-7 packet
error rate), an outer BCH code with the same block length as LDPC frame and an error
correction capability of up to 12 bits is employed.

Figure 7. Performance of LDPC+BCH Codes over AWGN Channel, N=64800 bits

C/N requirements of DVB-S2 concatenated LDPC and BCH codes at 10-7 MPEG PER for
various code rates and modulation schemes are shown in Figure 8. For comparison, the
performance of DVB-S code and Shannon limits of constellations are also plotted. It is

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Es/No (dB)

Pa
ck

et
 E

rr
or

 R
at

e

2/3

1/2
3/4

9/10
8/9

4/5 5/6

QPSK 8-PSK

2/3
3/4 3/4

16-APSK

4/5

5/6

8/9

32-APSK

3/5

8/9

5/6

9/10

4/5

5/6

8/9

3/4

9/10

2/3

3/5

important to note that the DVB-S2 design follows closely the theoretical limit for the
entire range of operation. Also compared to DVB-S concatenated convolutional and
Reed-Solomon codes, a capacity improvement of more than 35% is achieved at the same
C/N.

Figure 13. Comparison of DVB-S2 (LDPC+BCH) Codes to DVB-S1 and Channel
Capacity

6 Conclusion:

LDPC codes of DVB-S2 approach Shannon limit to within 0.6-0.8 dB for a wide range of
throughput and yet they are easy to implement. It may be hard to justify their
replacements for decades to come.

References:

1. R. G. Gallager, “Low density parity check codes”, IRE Trans. Info. Theory, 1962, IT-8,

pp. 21-28
2. D. J. MacKay and R. M. Neal, “Good codes based on very sparse matrices”, 5th IMA

Conf. 1995, pp.100-111
3. D. J. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity

check codes”,
Electronics Lett. Mar. 1997, vol. 33, no.6, pp. 457-458

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bits/symbol

C
/N

 (d
B

)

 DVB-S2
(LDPC + BCH codes)

8-PSK, Channel Capacity

QPSK, Channel Capacity

 DVB-S1
(convolutional + RS codes) 16-APSK, Channel Capacity

4. T. Richardson and R. Urbanke, “Efficient encoding of low-density parity check
codes”, IEEE Trans. Info. Theory, vol. 47, pp.638-656, Feb. 2001

5. T. Richardson, A. Shokrollahi and R. Urbanke, “Design of capacity approaching
irregular low density parity check codes”, IEEE Trans. Inform. Theory, Feb. 2001,
vol. 47, pp. 619-637

	Figure 1. Bipartite (Tanner) graph of an LDPC code
	Figure 2. Initialization of outgoing messages from bit nodes
	Figure 3. Message update at check nodes
	Figure 4. Message update at bit nodes
	3.1 Lower Triangular Parity Check Matrices for Easy Encoding:
	Even though parity check matrices of LDPC codes are sparse, in general generator matrices are needed for encoding. Of course, for any linear code once the parity check matrix is known, a generator matrix can be derived using for instance Gaussian elimina
	3.2 Periodicity on Parity Check Matrices for Reduced Storage:
	4 Description of Standardized LDPC Codes:
	Table 1. Number of Bit Nodes of Various Degrees
	(c) 16-APSK (d) 32-APSK
	Figure 6. Constellation Labelings
	Figure 13. Comparison of DVB-S2 (LDPC+BCH) Codes to DVB-S1 and Channel Capacity
	6 Conclusion:

