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PREFAZIONE

”But surpassing all stupendous inventions, what sublimity of mind was his who dreamed of finding
means to communicate his deepest thoughts to any other person, though distant by mighty intervals
of place and time?”

— Galileo Galilei, Dialogo sopra i due massimi sistemi del mondo

Florence 1632, trans. by Albert Van Helden
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CAPITOLO 1

1-2-3 OF SIGNALS AND SYSTEMS

“Le système Chappe: The world’s first (wireless) telegraph network developed by Napoleon,
carrying digitally-encoded text messages across 19h-Century France via optical signals relayed by
a network of repeating stations extended from Lyon to Venice”

—Optical telegraph station next to the Rohan Castle in Saverne, France, renovated in 1998

Lecture Notes on Communication Technologies, 1st Edition.
di M. Luise Copyright © 2022 University of Pisa
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2 1-2-3 OF SIGNALS AND SYSTEMS

Figura 1.1 Example of a periodic signal

The motto of this chapter is: back to the basics. Its aim is in fact reviewing the main
concepts related to the nature and processing of analog and digital signals, something that
the experienced reader may either skip with no harm or read with renovated pleasure.

1.1 Basics of Fourier analysis of analog signals

The “Swiss Knife” of every communications engineer dealing with (wireless) systems
design is Fourier analysis. We do not pretend to perform a comprehensive review of such
a huge and fundamental topic. We just want to re-state here the main results and settle
a notation concerning the analysis of time-continuous and time-discrete signals that will
be the foundation of many, many concepts and tools we will extensively use in the next
Chapters.

1.1.1 Periodic Signals and the Fourier Series

We’ve been taught back in primary schools that white light is a combination of all colors.
This is a very first example of Fourier analysis. To be a little bit more specific, we know
that every periodic signal xp(t) (i.e., such that xp(t) = xp(t+ T0) for some T0 > 0 that is
called repetition period as in Fig. 1.1) can be decomposed into a sum of simpler periodic
signals, namely, sinusoids as follows:

xp(t) = A0 +A1 cos(2πf0t+ θ1) +A2 cos(2π2f0t+ θ2) + ...

+Ak cos(2πkf0t+ θk) + ... (1.1)

Apart from the constant, DC value, A0, it is seen that the sinusoids oscillate at frequencies
kf0, the so-called harmonic frequencies, that are integer multiples of the fundamental or
repetition frequency f0 = 1/T0. The k-th component of the expansion (1.1) bears an
amplitude Ak, and a phase θk. Whilst the value of the oscillation frequencies are always the
same for any T0-periodic signal, the specific values of Ak and θk do depend on the shape
of the actual xp(t) under analysis. The sequence of coefficients Ak is called the amplitude
spectrum of xp(t), and the sequence of the phases θk is the phase spectrum. Knowledge of
the amplitude and phase spectra is equivalent to knowledge of the signal itself, since based
on that knowledge we can from (1.1) synthesize back the signal in the time domain. This is
why (1.1) is called the synthesis equation. And this is why the popular musical instrument
MiniMoog of the glorious 70’s was called a synthesizer: it simply implemented (1.1) by
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Figura 1.2 The MiniMoog
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Figura 1.3 Synthesis of a rectangular pulse train with a finite number N=15 of sinusoidal
components

heroic low-cost analog hardware to generate (arbitrary) periodic waveforms to be used in
musical compositions as a replacement of naturally-generated sounds.

Equation (1.1) is the simplest form of a Fourier series for a periodic signal. In a sense,
the pitfall of such representation is that exact synthesis of the periodic signal theoretically
requires an infinite number of components. Nonetheless, such a representation can be
used in the practice by truncating the series to a (small) number of significant components
only, just as the MiniMoog used to do. Figure 1.3 shows how a periodic rectangular pulse
train can be synthesized by the superposition of a finite number of elementary sinusoidal
components, according to (1.1). Of course, given a certain waveform that we intend to
synthesize, the problem is: what are the correct values of Ak and θk to be used in our
synthesis equation? Giving a response to this question means analyzing signal xp(t) by
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means of a proper analysis equation that we are to find. This is most easily done by resorting
to a complex-number representation of the Fourier series. The key to such representation is
Euler’s formula for the cosine function:

Ak cos(2πkf0t+ θk) =

1

2
[Ak exp(2πkf0t) · exp(θ) + Ak exp(−2πkf0t) · exp(−θ)] (1.2)

The real-valued oscillating function is decomposed as the sum of two rotating vectors on
the complex plane. The first one, exp(2πkf0t) rotates counterclockwise with a frequency
f0 cycles/s (Hz), and the second one, exp(−2πkf0t), rotates (counterclockwise) at the
negative frequency−f0 Hz. Teh sun of the two complex rotating vectors gives just the
real-valued cosinusoidal oscillation we started from. This complex decomposition entails
the introduction of (complex) signal components with negative frequencies. The amplitude
and phase spectra of the sinusoid are collapsed into a single complex-valued coefficient
Xk = Ak exp[jθk] (k positive) that is called the Fourier coefficient of xp(t). Elaborating
(1.1) with (1.2), we get the following expression of the Fourier series containing the complex
Fourier coefficients Xk:

xp(t) =

∞∑
k=−∞

Xk exp(2πkf0t) (1.3)

that is exactly equivalent to the real-valued form (1.1). Finding the amplitude and phase
spectra Ak and θk is tantamount to finding the k-th Fourier coefficient Xk. With some
effort, it is found that the analysis equation we were looking for is relatively simple:

Xk =
1

T0

∫ T0/2

−T0/2

xp(t) exp(−2πkf0t)dt (1.4)

Esempio 1.1

Let us analyze the pulse train xp(t) we tried to synthesize in Fig. 1.3. Its Fourier coefficient
is given by

Xk =
1

T0

∫ T0/2

−T0/2

xp(t) exp(−2πkf0t)dt =
1

T0

∫ T0/2

−T0/2

xp(t) cos(2πkf0t)dt (1.5)

where we have exploited the even-symmetry of our waveform. Now, considering that xp(t)
is piecewise-constant, we also have

Xk =
1

T0

∫ T0/4

−T0/4

cos(2πkf0t)dt =
1

T0

sin(2πkf0t)|T0/4

−T0/4

2πkf0
=

=


1/2 k = 0

0 k = 2m,m 6= 0
(−1)m

πk
k = 2m+ 1

(1.6)

The Fourier coefficients Xk turns out to be real-valued (due to the even symmetry of
xp(t)); the resulting amplitude line spectrum of xp(t) is shown in Fig. 1.4.
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Figura 1.4 Amplitude spectrum of a rectangular pulse train
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1.1.2 Non-periodic Signals and the Fourier Transform

What was said until now was only applicable to periodic signals. What happens with
impulsive signals x(t) that are not periodic? Figure 1.5 shows a rectangular pulse that we
define as follows:

rect(t/T )
4
=


1 |t| ≤ T/2

1/2 |t| = T/2

0 elsewhere

(1.7)

The question is: is this kind of signal amenable to Fourier analysis/synthesis? The answer
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is (of course) positive, and how to do it can be found quite easily if we think of a non-periodic
signal as a periodic signal with infinitely-long repetition period. The fundamental frequency
thus becomes vanishingly small (infinitesimal), and so two components in the frequency
spectrum of the signal that were previously separated by ∆f = (k + 1)f0 − kf0 = f0
now become infinitesimally close to each other. The frequency spectrum of the signal that
used to be discrete (the line spectrum of Fig. 1.4 with a frequency “quantum” given by the
fundamental frequency f0) now becomes continuous. The relevant analysis equation turns
out to be now

X(f) =

∫ ∞
t=−∞

x(t) exp(−2πft)dt (1.8)

where the frequency f that appears as the argument of this complex-valued quantity X(f)
takes all real values with continuity.

This counterpart of the former Fourier coefficient is called the Fourier Transform (FT)
of x(t) and bears the same meaning as Xk. It has an amplitude |X(f)| and a phase ∠X(f),
so that we still speak of (continuous) amplitude and phase spectra, respectively. Since the
spectrum is now continuous, the synthesis equation cannot be a series any more, rather it is
expressed in the form of a Fourier Integral:

x(t) =

∫ ∞
f=−∞

X(f) exp(2πft)dt (1.9)

This relation is also called the Inverse Fourier Transform (IFT) of X(f). The physical
meaning that we can attach to the pair of relations (1.8)-(1.9) is the same as with the Fourier
coefficient-series pair: the IFT is a synthesis equation that tells us how to build our own
signal starting from a set of simpler components (the complex-valued sinusoids), and the
FT tells us the specific values of the amplitude and phase of each sinusoid that has to be
used in our synthesis procedure to build a specific signal. We can show easily that the
FT X(f) of a real-valued x(t) (that we will denote at times F [x(t)]) has a particular kind
of symmetry that is called Hermitian: X(−f) = X∗(f), i,e, |X(−f)| = |X(f)|, and
∠X(−f) = −∠X(f).

We will not waste any precious space in describing the many features of the FT as a
tool for signal design and analysis in communications engineering. We just want here to
recall some elementary results about FT theory that will be used in many places in the
Chapters to follow. For instance, it is an easy exercise for the reader to show that the FT of
the time-shifted version x(t− t0) of the signal x(t) is

F [x(t− to)] = X(f) exp(−2πft0) (1.10)

so that the amplitude spectrum of the signal is left unchanged, and the phase spectrum is
modified by a term proportional to the frequency of each component. Similarly, it is easy to
show what happens if we perform an operation of radio-frequency modulation on the signal
x(t) as follows:

xRF (t) = x(t) cos(2πf0t) =
x(t) exp(2πf0t) + x(t) exp(−2πf0t)

2
(1.11)

where f0 is the carrier frequency. The corresponding modification of the FT is

XRF (f) =
X(f + f0) +X(f − f0)

2
(1.12)
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Figura 1.6 sinc function

that is, a frequency-shift of each of the frequency components the modulating signal is made
of.

Esempio 1.2

Let us find the FT of the rect function x(t) in (1.7):

X(f) =

∫ +∞

−∞
rect(t) exp(−2πft)dt =

∫ +T/2

−T/2
exp(−2πft)dt

=
sin(πfT )

πf
= T

sin(πfT )

πfT
= T sinc(fT ) (1.13)

We have introduced here a new identifier for a special waveform that we will extensively
use in the following: the so-called sinc function (represented in Fig.1.6) that we define as
sinc(α) = sin(πα)/(πα).

1.1.3 Bandlimited Signals

We will say that a signal is bandlimited when it has an amplitude spectrum |X(f)| that is
confined into a limited frequency band [−B,B]. Such limitation may hold exactly (strictly
bandlimited signal) or to a good approximation, in the sense that out of the interval [−B,B]
the signal components, though not exactly null, are so small as to be considered negligible.
An example of a (strictly) bandlimited signal is the popular Frequency Raised Cosine
(FRC)pulse (or Nyquist’s pulse) given by

gN (t) = sinc(t/T )
cos(βπt/T )

1− (2βt/T )2
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Figura 1.7 Waveform (a) and Fourier Transform (b) of the FRC pulse
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GN (f) =


T |f | < (1− β)/2T
T
2

{
1 + cos

[
πT
β

(
|f | − 1−β

2T

)]}
(1− β)/2T ≤ |f | ≤ (1 + β)/2T

0 elsewhere
(1.14)

and whose spectrum/waveform are represented in Fig. 1.7. Here, the bandwidth is B =
(1 + β)/2T , and β, 0 ≤ β ≤ 1 is a parameter that regulates the signal bandwidth and that
is called roll-off factor. The value 1/2T is the so-called Nyquist frequency, corresponding
to the minimum pulse bandwidth when β = 0.

1.1.4 Dirac’s delta function

A peculiar signal that we will often use in the following chapters is Dirac’s delta function
δ(t). Its name is a little bit defying, since δ(t) is not actually a signal in the classical
sense. We may speak of a generalized signal whose definition and existence is only justified
through an integral property. Dirac’s delta is in fact defined through the so-called sampling
or sifting property:

δ(t) :

∫ −∞
−∞

x(t)δ(t)dt = x(0) (1.15)

where x(t) is any ordinary signal with no discontinuity at t = 0. From (1.15) we
immediately have as a particular case∫ −∞

−∞
δ(t)dt = 1 (1.16)

so we may say that the Dirac’s function has “unit area”. It is easily argued that no ordinary
function with property (1.15) exists, but this new mathematical entity proves useful in
system theory and linear filtering, as we’ll see in a while.

The standard heuristic representation of the delta function (also called unit impulse),
whose rigorous treatment is found within the so-called distributions theory, can be obtained
with the aid of a sequence of functions. Assume we have a rect function with duration
T = 2ε and amplitude A = 1/2ε as represented in Fig. 1.8(a). The “area” of this signal is 1,
irrespective of ε. Assume now that this pulse is made shorter and shorter (and consequently,
taller and taller) keeping its unit area but becoming thinner and thinner, as suggested in
Fig. 1.8(a). The limit of this pulse is a heuristic representation of δ(t): something whose
time width is null, but whose amplitude is infinite, so that its area is unitary. This is what is
symbolically depicted in Fig. 1.8(b) as the standard representation of a delta “function”. Of
course, such a signal does not exist in the ordinary sense.

The definition of δ(t) that follows our heuristic representation is

δ(t)
4
= lim
ε→0

1

2ε
rect

(
t

2ε

)
(1.17)

This relation not only gives an idea about how the delta function “looks like”, but can also
be used in the practice, provided that i) δ(t) appears under an integral operator (as in its
definition (1.15)), and ii) the limit in (1.17) is moved outside the integral operator, i.e., it is
computed subsequently to the computation of the integral. The reader may verify (1.16)
using this new definition. It is also easy to show that the definite integral of δ(t) on finite
intervals of the kind

∫ a
b
δ(t)dt gives a value equal to 1 when the instant t = 0 lies within

(a, b), otherwise it gives 0.
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Figura 1.8 Definition of Dirac’s function (a), and its symbolic representation (b)

Dirac’s delta is also peculiar as far as its FT ∆(f) is concerned. First, the problem of
finding the FT of δ(t) is well-posed since the FT (1.8) is an integral operator. Second, its
computation is trivial, according to (1.15):

∆(f) =

∫ ∞
t=−∞

δ(t) exp(−2πft)dt = exp(−2πft)|t=0 = 1 (1.18)

The FT of the unit impulse is thus constant on all frequencies, with no bandlimitation
whatever.

1.2 Linear Filtering

In the following Chapters, we will familiarize with a number of signal processing functions
that are implemented in a digital data receiver for wireless communications.

1.2.1 Systems and Signals

The simplest and most fundamental of such operations is perhaps filtering. In its simplest
realization, filtering means designing a device, an electronic circuit, a piece of software or,
in a word, a system that changes an input signal x(t) into an output signal y(t) according to
some processing criteria. Our notation to indicate this will be

y(t) = T [x(α); t] (1.19)

where T is an operator representing the signal processing function performed by the system,
and where we indicate that the processing depends in general on the whole input waveform
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x(α) and on time as well. The simplest family of system are the linear filters that obey the
superposition rule. Assume that we know that

y1(t) = T [x1(α); t] , y2(t) = T [x2(α); t] (1.20)

and that we build up a signal x(t) as a weighted superposition (i.e., a linear combination) of
x1 and x2 as x(t) = α1x1(t) + α2x2(t). The system is a linear filter iff

y(t) = T [x(α); t] = T [α1x1(α) + α2x2(α); t] = α1y1(t) + α2y2(t) (1.21)

This means that the output y(t) can be obtained as a linear combination with the same
coefficients α1 and α2 of the “single” outputs of the system to the single inputs x1 and x2.

In addition to the property of linearity many filters used in the practice are also time-
invariant. This means that their behavior does not change with time. Specifically, if we
know that y(t) = T [x(α); t], and we later submit to the system a time-shifted version of

the same signal, namely, xTS(t)
4
= x(t− t0), we expect that the filter output yTS(t) be just

the same waveform that we had earlier, modified only by the same time shift we introduced
on the input:

yTS(t) = T [xTS(α); t] = T [x(α− t0); t] = y(t− t0) (1.22)

Linear, Time-Invariant (LTI) systems are particularly simple to design and analyze, none-
theless they prove useful in many instances of signal processing, and especially for the
detection of known signals embedded into noise.

1.2.2 Time- and Frequency-Characterization of LTI Systems

The properties of any LTI filter are completely characterized by the knowledge of a particular
signal that is associated to the system, namely, its impulse response. The impulse response
of an LTI system is just the system output in response to a δ(t) input:

h(t)
4
= T [δ(α); t] (1.23)

In particular, it can be easily shown that the response (output) of an LTI to a generic input
x(t) can be found as

y(t) =

∫ ∞
−∞

x(α)h(t− α)dα = x(t)⊗ h(t) (1.24)

This kind of “mixing” of the two signals x and h to give y deserves a specific name and
notation: it is called the aperiodic convolution between the two signals, and is denoted by
the symbol ⊗ as in (1.24). The convolution is a symmetric, associative, and distributive
operator, as can be easily proved. The transformation carried out by an LTI system on its
input signal x(t) to give the output signal y(t) is often symbolized in a graphical form as in
Fig. 1.9 where the impulse response of the system is explicitly indicated.

Fourier analysis of a signal reveals a fundamental tool also in the characterization of the
properties of an LTI system. Everything revolves around a cardinal property of convolution.
Starting back from the constituent relation (1.24) of an LTI system, and taking the FT of
both sides of the equation, we find:

Y (f) = X(f) ·H(f) (1.25)
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Figura 1.9 Graphical representation of the transformation effected by an LTI system
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Figura 1.10 Amplitude response of lowpass filters

where H(f) is the FT of the impulse response h(t). It is seen that a (complicated) operation
of convolution in the time domain has changed into a (simple) operation of product between
two transforms in the frequency domain. This suggest that often the analysis and design
of an LTI system is much simpler in the frequency domain than in the time domain due to
the simpler operation that the system implicitly carries out on the FT of the input signal.
The quantity H(f) is called the frequency response of the filter, and is an alternative means
to provide a full characterization of the behavior of the system. In particular, it can be
shown that the response of the system to a purely sinusoidal input x(t) = cos(2πf0t) is just
another sinusoidal signal at the same frequency in the form

x(t) = cos(2πf0t) ⇒ y(t) = |H(f0)| · cos(2πf0t+ ∠H(f0)) (1.26)

The effect of the filter on the sinusoidal signal is an amplitude change by a factor equal to
|H(f0)| (the amplitude response of the system at the frequency f0), and a phase shift by
∠H(f0) (the phase response). The complex-valued version of (3.1) is

x(t) = exp(2πf0t) ⇒ y(t) = H(f0) · exp(2πf0t) (1.27)

If we change the frequency of the sinusoidal signal, the amplitude and phase responses
change, and so our system responds to different components at different frequencies in a
different way. This is why H(f0) is called the frequency response, and also suggests that
in general the system bears a selective (i.e., unequal) behavior with respect to frequency.
Different components in the spectrum of a signals are treated differently. Some may pass
substantially unaltered, others may be blocked altogether. An example of such behavior is
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Figura 1.11 Sliding-window Integrator

given by the low-pass ideal filter, whose frequency response HLP (f) is represented in Fig.
1.10 (solid line). The “low” frequency components are passed unaltered (they are multiplied
by HLP (f) = 1), whilst higher-frequency components, in particular those outside the
passband B are blocked. The same is substantially true for the system whose amplitude
response |H(f)| is also represented in Fig. 1.10 (dashed line). We can not call this an “ideal”
filter, but it is nonetheless a good approximation of the ideal filter we have just mentioned,
and it is easily realizable.

Esempio 1.3

We intend to find the impulse and the frequency response of a sliding window integrator.
This LTI system produces an output whose value at a specific instant is the value of the
integral of the input signal on a T -wide integration window immediately leading that
instant, as i shown in Fig. 1.11:

h(t) =
1

T

∫ t

t−T
x(α)dα (1.28)

We leave to the reader the proof that (1.31) defines indeed an LTI. Assuming this, the
impulse response is by definition the output of the system when the input is δ(t) and is
given by

y(t) =
1

T

∫ t

t−T
δ(α)dα (1.29)

As we know by the properties of Dirac’s δ function, the integral above is either equal to 1
if the instant α = 0 (where δ(α) is applied) is within the integration interval, otherwise it
is equal to 0. This means that the output value is going to be 1 whenever t− T ≤ 0 < t,
that is to say, 0 < t ≤ T , and is going to be 0 outside this interval. The impulse resonse
we seek for is a causal rectangular pulse that we can cast into the form

h(t) =
1

T
rect

(
t− T/2
T

)
(1.30)

The frequency response is trivially the Fourier transform of h(t), namely,

H(f) = sinc(fT ) exp(−πfT ) (1.31)
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1.3 Filtering of Random Signals

Random signals or, in the parlance of probability theory, random processes play a central
role in communications theory. Not only a random process is the standard mathematical
representation of all kinds of noise, interference, and disturbance of any sort that may afflict
a signal to be detected. A random process is also the representation for the information-
bearing signal itself: were the signal known in advance to the receiver, no need of sending
it out by the transmitter would arise. The randomness of such signal is just related to the
quantity of information that it contains: the more random it looks to the receiver before
being received, the larger quantity of information it conveys after it is actually received.

1.3.1 Basics of random signals

A random signal (process) is a function of time whose shape is not (exactly) known in
advance. The value at time t of a deterministic signal w(t) like those encountered until now
in the book is exactly known for every possible t, either because we have a mathematical
representation of such signal, or because we have recorded it and stored it in a computer
file. On the contrary, we can say that the value at a certain time t of a random signal is a
random variable. The random process is thus the collection of all random variables at all
times t, that we denote with the same notation as an ordinary deterministic signal, w(t).

So we do not know in advance the value of the signal for each value of t. Rather, we
only know statistical properties of such values. When we observe a random signal, what we
get is a realization of all such random variables time after time, and, after our observation,
we are left with a deterministic signal that could not be predicted in advance. The statistical
description that we need to completely characterize the properties of such signal may appear
to be the probability density function (pdf) fw(a; t) of the random variable w(t) at time
t, that allows to compute probabilities of any kind on w(t). That is not the case indeed.
For such signal it may be needed to know, just to make an example, the probability that
w(t) ≤ 0 and, together with this, that after a certain time τ , the probability thatw(t+τ) ≥ 0.
This joint probability cannot be computed from fw(a; t). What we need here is a second-
order joint pdf fw(a1, a2; t, t+ τ). But then, why stopping just at the second order? The
conclusion is that the complete characterization of a random process requires the knowledge
of the class of joint pdf’s of order K of the form

fw(a1, a2, . . . , aK ; t, t+ τ1, . . . , t+ τK−1) (1.32)

for each (arbitrary large) K. This piece of knowledge is clearly very difficult to get, apart
from simple cases. One such exception is that of Gaussian processes, for which the pdf’s
(1.32) are (jointly) Gaussian for any K.

1.3.2 Expectation, Autocorrelation function, and Power Spectral Density

In the practice, a very partial knowledge of the statistical properties of a random process
may be sufficient to solve many problems in communications engineering. The simplest
statistical property of a random process is its expectation function or simply mean value:

ηw(t)
4
=

∫ −∞
−∞

afw(a; t)da (1.33)

This function represents, time instant by time instant, the most likely value that the process
is going to assume before it is actually observed. In particular, the relation (1.33) is often
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summarized into the following simplified notation:

ηw(t) = E{w(t)} (1.34)

where we introduced the linear operator E{·} called Expectation whose definition is self-
evident. In many examples of random signals that are dealt with in communications systems
(be them information-bearing or just noise), we will see that ηw(t) is a constant, and very
very often ηw(t) ≡ η = 0.

Esempio 1.4

We are given the random process

w(t) = A cos(2πf0t+ Θ) (1.35)

whereA and f0 are known, while Θ is a uniform random variable in the interval [−π/2, π/2).
Let us find first the average value ηw(t). According to the expectation theorem, instead
of using fw(a; t) to perform the expectation we need, we can use the statistics of the
parameter Θ the process depends on:

ηw(t) = E {w(t)} = E {A cos(2πf0t+ Θ)}

=

∫ −∞
−∞

A cos(2πf0t+ θ)fΘ(θ)dθ = A

∫ π/2

−π/2
cos(2πf0t+ θ)

1

π
dθ

= −2A

π
sin(2πf0t) (1.36)

The average value ηw(t) of w(t) is a first-order statistical quantity, or first-order statistics.
It is computed with a first-order pdf, and gives information of the statistical behavior of
our random signal when observed at a single time instant. Another example of first-order
statistics if the average instantaneous power of the process

Pw(t)
4
= E{w2(t)} =

∫ −∞
−∞

a2fw(a; t)da (1.37)

The main example of a second order statistics is the autocorrelation function

Rw(t, τ)
4
= E{w(t)w(t− τ)}

=

∫ −∞
a1=∞

∫ −∞
a2=∞

a1 · a2fw(a1, a2; t, t− τ)da1da2 (1.38)

It is computed as the statistical correlation between the two random variables w(t) and
w(t− τ) that the random process takes at the two instants t and t− τ , respectively. The
autocorrelation function plays a fundamental role in the spectral analysis of a random signal,
just as it does for deterministic signals. For deterministic signals, we know that it is a
function of the delay τ only, whereas, according to (1.38), R(t, τ) is a function of both t and
τ . We introduce therefore the notion of a wide-sense stationary (WSS) process. Assume
that

Rw(t, τ) = Rw(τ) , ηw(t) ≡ ηw (1.39)
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We may say that the properties of the random process are always the same, irrespective of
the time instant that we choose as our time origin: the average value does not depend on
time, and the autocorrelation function depend only on the time shift between the two time
instant t1 = t and t2 = t− τ that we consider on our signal. The instantaneous power of
a WSS process is constant in time and has the following relation with the autocorrelation
function:

Pw(t) ≡ Pw = Rw(0) (1.40)

For WSS processes, we may define a power spectral density (psd) function as the FT of the
autocorrelation function:

Sw(f)
4
=

∫ +∞

−∞
Rw(τ) exp(−2πfτ)dτ = 2

∫ +∞

0

Rw(τ) cos(2πfτ)dτ (1.41)

where the second equality comes from the fact (easy to show) that Rw(τ) = Rw(−τ). The
psd function indicates how the power associated to a certain signal is distributed on the
different component of the frequency spectrum, and the total signal power can be found as

Pw =

∫ +∞

−∞
Sw(f)df (1.42)

As with any random variable, the power of a WSS process can be evaluated as Pw =
σ2
w + η2w.

Esempio 1.5

Take back into consideration the process we defined in Example 4, but assume that Θ
is uniform in [−π, π). The average value is now easily found to be 0, irrespective of
time. We may wonder wether the process is WSS. To possibly verify this, we compute
the autocorrelation function Rw(t, τ) = E{w(t)w(t − τ)} by virtue of the expectation
theorem:

Rw(t, τ) = E{cos(2πf0t+ Θ) cos(2πf0(t− τ) + Θ)}∫ −∞
−∞

A cos(2πf0t+ θ)A cos(2πf0(t− τ) + θ)fΘ(θ)dθ

=
A2

2π

∫ π

−π
cos(2πf0t+ θ) cos(2πf0(t− τ) + θ)dθ (1.43)

Using trigonometric formulas, it is easy to show that

Rw(t, τ) =
A2

2
cos(2πf0τ) = Rw(τ) (1.44)

that does not depend on t. Our suspicion about the wide-sense stationarity of the process
was well founded indeed!

A special example of WSS random signal is the white noise process. White light is the
one made of all of the colors, we’ve already mentioned. Color means wavelength, and
wavelength means frequency. A white noise process is zero-mean, and such that its psd is
constant throughout the whole frequency range:

Sw(f) = N0/2 ∀f (1.45)
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This is of course an idealization, since no such signal may exist: its associated power
is clearly infinite (recall (1.53)). But it is a good model for a random signal that has
a much wider bandwidth than that of another “reference” signal or of a system under
consideration. This is often the case for the electronic noise (thermal noise, Johnson noise)
of active and passive devices, for the “ambient” noise detected by an antennas and so on. In
such examples, the noise is generated by the superposition of a multitude of independent
elementary components. A well-known result in probability (the central limit theorem)
states that the outcome of such superposition is a Gaussian process: any set of random
variables w(t1), w(t2),...,w(tN ) obtained after observation of the signal at the time instants
t1, t2,...,tN has a multivariate Gaussian pdf.

Filtering is a fundamental operation for random signals, just as it is for deterministic
waveforms. What happens in particular when a process w(t) is filtered with an LTI system
to obtain (the random process) n(t)? It is easy to understand how to derive the mean value
function. From (1.33) we see that the computation of such function is obtained through
linear operations: the “Expectation” operator is linear. We can invoke thus a “commutative”
property of linear operators and say that

ηn(t) = E{n(t)} = E{T [w(α); t]} = T [E{w(α)}; t]

= T [ηw(α); t] = ηw(t)⊗ h(t) (1.46)
If w(t) is zero-mean, n(t) will always be zero-mean as well, irrespective of the particular
LTI filter we may consider.

Esempio 1.6

Take back into consideration the parametric process of Example 4

w(t) = A cos(2πf0t+ Θ) (1.47)

where Θ is a uniform random variable in the interval [−π/2, π/2). Its average value was
found to be

ηw(t) = −2A

π
sin(2πf0t) (1.48)

What if w(t) is filtered by the sliding-window integrator of Example 3? Let us call n(t)
the result of such filtering. From (1.46) we know that ηn(t) = ηw(t)⊗ h(t). But ηw(t)
is sinusoidal with time, so that the result of filtering can be easily evaluated through the
notion of frequency response of the filter, as in (3.1):

ηn(t) = −2A

π
|H(f0)| sin(2πf0t+ ∠H(f0))

= −2Asinc(f0T )

π
sin(2πf0t+ πf0T ) (1.49)

Filtering a WSS random process w(t) is a special case that is easily characterized if
we stick to a simple characterization of the output process n(t). We already know from
(1.46) how to compute the output average value. The output psd function is also easy to
compute since, as happens with deterministic signals,

Sn(f) = |H(f)|2 · Sw(f) (1.50)

where |H(f)|2 is the power response of the LTI filter.
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Figura 1.12 Time-limited signal s(t) (a) and its noisy version r(t) (b)

Esempio 1.7

A certain known signal s(t) is sent out on a wireless radio channel. The receiver collects
such signal corrupted by Additive White Gaussian Noise (AWGN) w(t) with psd N0/2
(a sketch of a possible noisy signal is in Fig. 1.12 (b)). The received signal processes
r(t) = s(t) + w(t) with an LTI system (filter) to get a filtered signal y(t) = x(t) + n(t),
where x and n are the filtered signal and noise components, respectively. Assume also that
s(t) is time-limited within the interval [0, T ) as in Fig. 1.12 (a), and that the reception
filter has impulse response

h(t) =
1

Es
s(T − t) (1.51)

i.e., a reversed and time-delayed (to be causal) version of the transmitted pulse, scaled by
the factor Es =

∫
s2(t)dt that is, by the energy of the time-limited signal s. The output of

the receive filter at time T is:

y(T ) = x(T ) + n(T ) =
1

Es

∫ +∞

−∞
s(α)s(T − (T − α))dα+N = 1 +N (1.52)



BANDPASS SIGNALS AND SYSTEMS 19

where N is a zero-mean Gaussian random variable with variance

σ2
N =

∫ +∞

−∞
Sn(f)df =

∫ +∞

−∞

N0

2
|H(f)|2df

=
N0

2

1

E2
s

∫ +∞

−∞
|S(f)|2df =

1

2Es/N0
(1.53)

We can compute now the signal to noise ratio (SNR) as the ratio between the squared
signal component (signal power) and the variance of the noise component (noise power):

SNR
4
=
x2(T )

σ2
N

=
1

(2Es/N0)−1
=

2Es
N0

(1.54)

It can be shown that (1.54) is the best SNR that can be attained upon filtering of r(t) with
any LTI system. The shape of h(t) as in 1.51 is the “best match” to the received signal,
and so this special filter is called the matched filter

1.4 Bandpass Signals and Systems

1.4.1 Baseband equivalent of a bandpass signal

The general form of a sinusoidal bandpass signal at frequency f0 is

xBP (t) = A cos(2πf0t+ ϑ) (1.55)

where A is the amplitude of the signal and ϑ its phase. An alternative formulation of (1.55)
is

xBP (t) = A cos(ϑ) cos(2πf0t)−A sin(ϑ) sin(2πf0t)

= xI cos(2πf0t)− xQ sin(2πf0t)

= <{(xI + xQ) exp(2πf0t)}
= <{xBB exp(2πf0t)} (1.56)

where we have introduced other quantities than the amplitude and phase of the sinusoid,
that will be used extensively in the following. First, we defined the In-phase/Quadrature
components xI = A cos(ϑ) and xQ = A sin(ϑ) as the “projections” of the sinusoid along
the two main quadrature carriers at frequency f0, namely, cos(2πf0t) and − sin(2πf0t),
respectively. Also, we introduced the complex-valued notation of the baseband equivalent
of our sinusoidal signal xBB = xI + xQ. The amplitude of xBB is the amplitude of our
sinusoid, and the phase of xBB is its initial phase, xBB = A exp(jϑ). We summarize all
this in the easy-to-remember visual representation given in Fig. 1.13

The spectrum of a sinusoid is monochromatic, i.e., it contains only one component at
the frequency f0 (and its twin at −f0 if we use complex-valued FTs). What happens if by
virtue of some kind of modulation the amplitude and/or phase of xBP (t) are made slowly
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Figura 1.13 Visual representation of I/Q components and amplitude/phase of a baseband signal
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Figura 1.14 Samples of Bandpass and Baseband-equivalent spectra

varying in time? We can write

xBP (t) = A(t) cos(2πf0t+ ϑ(t))

= A(t) cos(ϑ(t)) cos(2πf0t)−A(t) sin(ϑ(t)) sin(2πf0t)

= xI(t) cos(2πf0t)− xQ(t) sin(2πf0t)

= <{(xI(t) + xQ(t)) exp(2πf0t)}
= <{xBB(t) exp(2πf0t)} (1.57)

The quantities (I/Q components, baseband equivalent) that we mentioned above are now
(slowly) varying in time, where “slowly” is to be intended “on a time scale much larger than
1/f0”. It turns out that the spectrum of xBP (t) as in (1.57) is no longer monochromatic,
but it is concentrated around the carrier frequency f0. The passband of such spectrum is
B � f0, and so the signal is quasi-monochromatic or bandpass. On the contrary, xBB(t)
has a spectrum that is confined to baseband, with a bandwdithB much smaller than f0. Since
the signal is complex valued, the spectrum of xBB(t) will not bear any Hermitian symmetry
around 0. Figure 1.14 shows fictional examples of spectra of a bandpass, modulated,
quasi-monochromatic signal, as well as its (non-Hermitian-symmetric) baseband equivalent.

1.4.2 The I-Q modulator

So the bandpass signal, once the carrier frequency is known, is completely specified by
its baseband equivalent (also called complex envelope) xBB(t). Equation (1.57) tells us
that xBP (t) = xI(t) cos(2πf0t) − xQ(t) sin(2πf0t). This is not only a mathematical
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Figura 1.15 General architecture of an I-Q modulator

representation, but it also corresponds to the architecture of the so-called I-Q modulator
that is used in the practice to generate an arbitrary bandpass modulated signal from its I-Q
components as in Fig. 1.15. In the Chapters to follow, we will systematically adopt the
complex-valued notation of baseband equivalent signals. To make notation shorter, we will
drop the subscripts BP or BB to denote bandpass or baseband signals, respectively, but we
will implicitly assume, unless otherwise stated, that all signals are complex envelopes.

1.4.3 The I-Q demodulator

The usual way of modulating a bandpass signal with a digital data stream is to encode the
digital information into either xI(t), or xQ(t), or both. Once we have done so, and we send
the bandpass modulated signal on a physical medium (radio, copper, fiber), the receiver
needs to reconstruct either xI(t), or xQ(t), or both, to recover (demodulate) the digital data.
The simplest way to do this starts from the general expression of the bandpass signal:

xBP (t) = <{xBB(t) exp(2πf0t)}

=
xBB(t) exp(2πf0t) + x∗BB(t) exp(−2πf0t)

2
(1.58)

From this we have,

xBP (t) · 2 exp(−2πf0t) = xBB(t) + x∗BB(t) exp(−2π · 2f0t) (1.59)

and we see that such (complex-valued) signal contains two components: the first one
is just the one we intend to get, and the second is something unwanted and centered at
the frequency −2f0. What we have to do to get rid of the latter and keep the former is
processing this signal with a lowpass filter whose bandwidth is just that of xBB(t) to remove
the double-frequency components at 2f0. The result of this reasoning is simple:

xBB(t) = xI(t) + xQ(t) = {xBP (t) · 2 exp(−2πf0t)} ⊗ hLP (t) (1.60)

where hLP (t) is the impulse response of the lowpass filter. Again, (1.60) is not just mathe-
matics, but it is the outline of the so-called I-Q demodulator represented in Fig. 1.16 that is
implemented in the vast majority of modern radio receivers. It is seen that the product of
the received bandpass signal xBP (t) with the complex oscillation 2 exp(−2πf0t) is im-
plemented as a pair of real products between the former and the real-imaginary components
of the latter, and the lowpass filter is applied to both components as well.
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1.5 Fourier analysis of digital signals

1.5.1 Analog and Digital signals

In the previous section we have reviewed the main concepts and results in Fourier analysis
of time-continuous (analog) signals. The same results can be extended to digital signals,
or, properly speaking, time-discrete ones. The most immediate way of generating a digital
signal is using an analog-to-digital converter (ADC), or, in the parlance of signal analysis,
performing the operation of sampling. Sampling an analog signal x(t) with a certain
sampling rate fs samples/s (or simply Hz) or equivalently a sampling period Ts = 1/fs
means extracting from x(t) a sequence of samples x[n] such as

x[n] = x(nTs) (1.61)

The square brackets indicates the the time index n they enclose is discrete, as opposed to
continuous time t that is usually enclosed into round brackets. The value at time n of x[n]
is real-valued, and so its representation theoretically requires an infinite number of digits.
In the practice, the ADC represents each value as an integer on a fixed (finite) number of
binary digits. This introduces a (small) representation error: what we get out of the ADC
is actually xq[n] = x[n] + q[n], where xq is the quantized version of x[n], and q[n] is the
quantization noise. When the number of bits in the digital representation of xq[n] is large
(say, larger than 16), the quantization noise can be safely disregarded.

1.5.2 FT of Digital signals

Sampling and the ADC are the foundation of Digital Signal Processing (DSP). DSP techni-
ques are again heavily based on Fourier analysis, so that we have to review the basics of
Fourier transforms for time-discrete signals.

Generalizing the notions already introduced for analog signals, it can be easily shown
that a non-periodic sequence x[n] can be Fourier-decomposed as

x[n] =
1

fs

∫ +fs/2

−fs/2
X(f) exp(2πnf/fs)df (1.62)

where X(f) is the FT of the sequence x[n]. Equation (1.62) is apparently a synthesis
equation much similar to (1.8) for analog signals. The corresponding analysis equation that
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gives the FT X(f) is

X(f) =

+∞∑
n=−∞

x[n] exp(−2πnf/fs) (1.63)

A fundamental difference exists between the FT of analog and of digital signals. It is seen
from (1.62) that the digital signal can be synthesized from a finite interval of continuous
frequency components, whilst the analog signal requires component at all frequencies on
the real axis. The reason for this is that the FT X(f) of a sequence is a periodic function of
frequency, with a period equal to the sampling frequency fs. Thus, the only independent
components of x[n] actually lie on an fs-wide frequency interval, and no more components
than those are required in the synthesis. This has also something to do with the property
of sampled sinusoids. The sequence extracted by sampling a sinusoidal signal x1(t) at
frequency f1 is

x1[n] = x1(n/fs) = cos(2πnf1/fs) (1.64)

The ratio f1/fs is sometimes indicated with F1 and is called the normalized frequency.
Assume now we have a second sinusoidal signal x2(t) at the frequency f1 + fs. x2(t) is
clearly (much) different from x1(t). After sampling x2(t) we get

x2[n] = cos(2πnf2/fs) = cos(2πnf1/fs + 2πn) = cos(2πnf1/fs) = x1[n] (1.65)

After sampling, the two previously different sinusoidal signals look exactly the same! This
means that in the digital domain, there can be no more independent sinusoidal components
to synthesize a signal than those into a fs-wide “base” interval: a component outside that
interval is actually the “image” of another one that lies into the base interval at a distance
equal to an integer multiple of fs.

Esempio 1.8

Assume that we sample a time-continuous exponential signal x(t) = exp(−t/α)u(t) with
a sampling interval T − s. What we get is

x[n] = x(nTs) = exp(−nT/α) = anu[n] (1.66)

where a
4
= exp(−T/α) < 1 is a real constant depending on the time constant of the signal

and on the sampling frequency. The FT of the resulting sequence is

X(f) =
∑

x[n] exp (−2πnfTs) =

∞∑
n=0

an exp (−2πnfTs)

=

∞∑
n=0

[a exp (−2πfTs)]n =
1

1− a exp (−2πfTs)
(1.67)

where certainty about the convergence of the series comes from the condition

|a exp (−2πfTs) | = |a| < 1

The amplitude and phase spectra of x[n] as resulting from (1.67) are shown in Fig. 1.17.
Note that they are shown across a frequency span equal to ±fs/2 since the two functions
are periodic with period fs.
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Figura 1.17 Amplitude (a) and phase (b) spectrum of the exponential sequence
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Many of the properties that we already mentioned for the FTs of analog signals hold true
for FT of sequences as well, whit minor modifications. We refer in particular to Hermitian
symmetry, delay and modulation theorems, and so on.

Esempio 1.9

In the domain of analog signals, special attention was devoted to the definition and
properties of Dirac’s delta function (Sect. 1.1.4). Is there something similar in the digital
domain? The answer is simpler than expected. While δ(t) was a very special signal, its
time-discrete counterpart is just the ordinary sequence

δ[n]
4
=

{
1 n = 0

0 elsewhere
(1.68)

Its FT is clearly

∆(f) =

+∞∑
n=−∞

δ[n] exp(−2πnf/fs) = 1 (1.69)

just like the FT of δ(t).

If our sequence x[n] comes from sampling of an analog signal x(t) with FT X(f), a
fundamental question is: what is the relation between the FT X(f) of the signal we start
from, and the FT of the resulting sequence x[n] ? The answer is called Poisson’s relation
and reads

X(f) = fs

+∞∑
k=−∞

X(f − kfs) (1.70)

This equation tells us that the FT of x[n] is the superposition of an infinite series of
repetitions of the original FT of the analog signal, with a repetition period that is equal to
the sampling frequency fs. This of course gives a periodic FT X(f) as that of any digital
signal. Notice that there might a sort of “interference” between adjacent repetitions of the
original spectrum that is called aliasing. An example of aliasing due to sampling is shown
in Fig. 1.18 (b) that show the FT X(f) of the sequence x[n] obtained after sampling thh
analog signal x(t) whose FT X(f) is hown in Fig. 1.18 (a). Such superposition of adjacent
spectra does not occur only if the original signal x(t) is bandlimited into the band B, and
the sampling frequency is larger than 2B. The condition fs > 2B is called the Nyquist’s
condition. When it is verified, there’s no aliasing in the sampled signal spectrum. Compare
in this respect Fig. 1.18 (a) showing again X(f) resulting form the sampling of the signal
in Fig. 1.18 (a), this time meeting Nyquist’s condition. In particular, the main replica with
k = 0 in Poisson’s relation (1.70) that lies in the main interval [−fs/2, fs/2) of the FT is a
perfect replica (apart from an immaterial scale factor) of the original spectrum X(f).

1.5.3 Filtering and Interpolation of digital signal

Needless to say, the notion of an LTI system translates nicely and neatly into the digital
domain as well. Using a notation similar to the one we introduced for analog systems, a
digital LTI filter is identified by an impulse response

h[n]
4
= T [δ[n];n] (1.71)
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Figura 1.18 Spectrum of an analog signal (a), of the sampled digital signal with aliasing (b), and
of the sampled digital signal without aliasing (c)
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Figura 1.19 Implementation of an FIR filter

and its operation is described by the time-discrete aperiodic convolution between the input
signal x[n] and such impulse response h[n]:

y[n] = x[n]⊗ h[n]
4
=

+∞∑
m=−∞

x[m] · h[n−m] =

+∞∑
m=−∞

h[m] · x[n−m] (1.72)

The system may also have a frequency response

H(f)
4
=

+∞∑
n=−∞

h[n] exp(−2πnf/fs) (1.73)

so that the frequency-domain input-output relationship still is

Y (f) = X(f)H(f) (1.74)

If the impulse response h[n] of the LTI system has a finite number of samples different
from zero, the filter is Finite Impulse Response (FIR), otherwise it is IIR (Infinite Impulse
Response). The operations to be computed to implement an FIR filter can be represented as
in Fig. 1.19, where the blocks labeled z−1 implement the delay of their input sequence by
one sample (unit-delay element), and where we have assumed that h[n] = 0 when n < 0 or
n ≥ N .

Once we have turned an analog signal into a digital sequence via sampling, and after
we have possibly performed some digital processing on such (digital) signal (even simple
storage on a digital medium such as a Compact Disc or a flash memory stick), it may
be desired to reconstruct an analog signal form the resulting (retrieved) sequence. This
reverse-sampling operation is called interpolation and in the practice it is implemented by a
Digital to Analog Converter (DAC). The general form of an interpolated signal x̂(t) is

x̂(t) =

+∞∑
n=−∞

x[n] · p(t− nTs) (1.75)

where x[n] is the sequence being interpolated, and p(t) is the pulse shape that is specific
of a particular interpolator. If p(t) is the rectangular pulse in Fig. 1.20 (a), then we have a
zero-hold interpolator that basically produces a sample-and-hold signal. If on the contrary
p(t) is the triangular pulse in Fig. 1.20 (b) we get a linear intepolator that joins consecutive
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Figura 1.20 Interpolating pulses: (a) ZOH interpolator; (b) linear interpolator

values of the signal samples with straight line segments to produce the interpolated analog
signal x̂(t). The frequency-domain counterpart of (1.75) is very simple:

X̂(f) = P (f)X(f) (1.76)

Notice that both X̂(f) and P (f) are FTs of analog signals, whilst X(f) is the FT of the
sequence x[n] to be interpolated.

1.5.4 The sampling theorem

A rather fundamental question about signal sampling comes immediately to one’s mind.
Once an analog signal is sampled, and its samples are all collected and, say, stored, is
it possible to fully recover such signal with no loss? At first sight the response is NO,
since when converting a signal from time-continuous to time-discrete all that is in between
samples appears to have been lost for ever. BUT... a glance in the frequency domain may
give more hope. If the signal is bandlimited to B and we meet the Nyquist’s condition
fs ≥ 2B, we already know that we have no aliasing, and we “see” an undistorted replica of
the spectrum of the analog signal in the spectrum of our sequence (the replica with k = 0 in
the Poisson formula (1.70)). The real issue is how to recover such replica and get back to the
analog domain. The answer is relatively simple: we are to use an appropriate interpolator
that preserves the replica with k = 0 while canceling all of the others. Figure 1.21 explains
that (the reference is again the analog signal spectrum shown in Fig. 1.18 (a)): we need an
interpolator whose FT P (f) is flat within the frequency interval [−fs/2, fs/2) that contains
the main replica with k = 0, and zero outside that band. Also, it has to compensate the
factor fs in Posisson’s relation. In a word, we have to choose

P (f) =
1

fs
rect

(
f

fs

)
= Tsrect(fTs) (1.77)

Under Nyquist’s condition and using this interpolator, it is apparent that X̂(f) = X(f),
so that we can say that the issue of reconstructing the sampled signal is now solved. The
interpolating pulse that corresponds to such P (f) is trivially p(t) = sinc(t/Ts), so that the
relevant interpolation formula is

x̂(t) =

+∞∑
n=−∞

x[n] · sinc
(
t− nTs
Ts

)
(1.78)

that is called the cardinal interpolator. Since we known that X̂(f) = X(f), it is also clear
that x̂(t) = x(t)
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Figura 1.21 Frequency-domain interpretation of cardinal interpolation
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TECHNOLOGIES FOR THE ”LAST
KILOMETER” (LAST MILE)

“Ahead of the Pack”

—The dreaded ”Last Kilometer” banner of an Italian cycling race

In logistics, cycling races, and... communications, the last kilometers is the final segment
that brings (goods, racer, bits) to it destination. The means to cover the last kilometer
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has to be fast and reliable, so that special technologies are developed for the purpose. In
the Internet, the main technologies of the last kilometer (or last mile in the USA) are the
so-called xDSL for conventional telephone lines and FTTx for newly-installed fiber cables -
the subject of this last chapter.

2.1 Multicarrier meets Information Theory: DSL Technologies and Shannon
Capacity of the Additive Colored Gaussian Channel

The technology that is currently most widespread to cover efficiently and at low cost the
last kilometer of the network and thus to provide ”broadband” (i.e., high capacity) Internet
connection to the residential subscriber, is a family of standards called xDSL, where DSL
stands for Digital Subscriber Line, and x identifies two variants within the family, namely,
ADSL and VDSL in order of commercial availability. The main features of xDSL will be
described in the following sections, with particular emphasis on the information-theoretic
aspects related to the DMT format (Discrete Multi Tone).

2.1.1 xDSL system architecture

xDSL access network technologies are intended to provide Internet connectivity to residen-
tial end-users, exploiting the pre-existing twisted pair wires belonging to the old (analog)
telephone network. Such connection covers as already mentioned the last kilometer - the
average distance between the subscriber’s (fixed) location and the closest point-of-presence
(POP) of an operator’s transport network: a central exchange office or a cabinet on the street.
In particular, the requirement is being able to provide a bit-rate up to 100 Mbit/s while at
the same time guaranteeing the traditional telephone service (POTS, Plain Old Telephone
Service).

The most popular and oldest version of the xDSL family is Asymmetric DSL), developed
in the late 90’s, meaning that the downstream (from the network to the end-user) has larger
capacity than the upstream (from the end-user to the network). The overall architecture
of xDSL is shown in Fig. 3.1. Here we assume that the user terminal connected to the
Internet is a WiFi access point/router to implement a local wireless/wired area network,
coexisting with a traditional telephone bearing an analog connection. Focusing on the
upstream, the two connections are coupled through a splitter, actually a low-pass filter
which selects the lower part of the spectrum for the analog connection and a high pass filter
which selects the high-frequency band for the digital connection. The latter makes use of a
remote ADSL transmission unit (ATU-R, ADSL Transmission Unit-Remote side, in other
words, the modem) which generates the digitally modulated analog signal to be coupled with
the telephone analog signal. The two signals are sent on a twisted pair to the cabinet/central
office/POP, where the telephone signal is decoupled (via a splitter on the central side)
and routed towards the telephone network (PSTN, Public Switched Telephone Network),
while the digitally modulated signal is demodulated by a twin ADSL modem (ATU-C,
Central-side ATU) and sent to the broadband digital transport network. In particular, the
streams coming from the different ATU-Cs belonging to different users are multiplexed by
the DSLAM (Digital Subscriber Line Access Multiplexer) into a single high-rate stream
to be sent out onto the transport fiber. In addition to the central DSLAM, the necessary
modification to the preexisting infrastructure lies in the addition of the ATU-R and ATU-C
devices to be installed at the subscriber’s site and at the POP, respectively.
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Figura 2.1 Architecture of an xDSL link

2.1.2 xDSL Frequency Plan and Communication Channel Model

Achieving hundred-Mbit/s capacity on a twisted pair represented at the time of development
of xDSL technology a real technological challenge. It is pretty clear that, whatever the
digital coding and modulation is going to be, a bit rate of tens of MBit/s requires a signal
bandwidth of, at least, a few MHz, much, much wider that the 4kHz typical of POTS signals.

The starting requirement of xDSL is that concurrent provision of POTS and Internet
connection must be guaranteed - this is actually easy to achieve and is obtained through
the FDM/FDMA approach depicted in Fig. 3.2: POTS continues using its own preexisting
baseband, with no change whatsoever, while the digital service is allocated onto a higher-
frequency band, separated from POTS frequencies by a suited guard band. The digital
connection is Frequency-Division Duplexed (FDD), with the upstream being allocated to a
low-frequency sub-band and the downstream allocated to a high-frequency, wider-bandwidth
sub-band.

But, the main issues related to the technological challenge mentioned above are related
to the very physical nature of the physical medium, namely: i) the frequency response of
the twisted pair, and ii) the dominant noise affecting the digital signal. Concerning the
frequency response, the twisted pair is actually a transmission line whose characteristics
depends on a few factors: its length, the section of the conducting wires and so on. On
the typical length of 1 km and on a bandwidth as wide as 1 MHz, the response is widely
variable with frequency, creating a relevant issue of frequency selectivity for the digital
signal. A simple model of the amplitude response of the twisted pair is

|H(f ;L)|dB = −α · L ·
√
f (2.1)

where L is the length of the link, and α is the usual proportionality constant (also) depending
on the section of the wires. Equation (3.1) show an exponential decay of the received
power with the length of the cable, as well as a marked low-pass behavior with frequency.
Frequency selectivity is negligible only over a few kHz bandwidth (just the one of POTS)
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Figura 2.2 Frequency allocation of POTS/ADSL Upstream/ADSL Downstream

Figura 2.3 Unshielded Twisted Pair (UTP) cable aka Binder

and becomes essential across the wide bandwidth of xDSL services: 1 MHz of classical
ADSL and 2 MHZ of more modern ADSL2+, not to mention the 12 MHz of VDSL.

In addition to the bad frequency response, the twisted pair does not have any feature of
protection against external interference (as opposed to more costly coaxial cables). So much
so, that the limiting factor of the xDSL capacity turns out to be a well-known phenomenon
dating back to the time of analog telephony: crosstalk. Crosstalk is the interference caused
by a neighboring twisted pair carrying xDSL signals (the interferer) to another twisted pair
(the victim) and it is caused by electromagnetic coupling of the two signals. This is why the
pair of conductors of a telephone line are twisted: trying to avoid as much as possible this
phenomenon by creating some degree of “spatial symmetry” seen by the interferer and thus
diminishing the coupling. We will see in a while that crosstalk (abbreviated as XTalk) is
very limited at the low frequencies of POTS, and this the reason why nobody cared about
using coax instead of the twisted pair in the past.

The reason why XTalk arises stands in the way different pairs belonging to different
subscribers are grouped together in their path to the cabinet/central. Figure 3.3 pictures an
example of an underground cable (the so-called binder) of 25 twisted pairs coming from
neighboring subscribers: the unshielded pairs are packed very close to each other, therefore
they are prone to mutual interference, i.e., Xtalk.
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Figura 2.4 Upstream NEXT/FEXT

Further consideration of the issue revels that we can identify two different sources of
Xtalk: the so-called Far-End XTalk (FEXT) generated by transmitters that lie at the opposite
(far) end of the link wrt the victim receiver, and the Near-End XTaLK (NEXT) caused by
transmitters that lie at the same (near) end of the link wrt the victim receiver, as is clearly
shown in Fig. 3.4. It is also seen that the FEXT is generated by signals co-propagating
with the victim (propagating in the same direction) whilst NEXT is generated by counter-
propagating signals. Either kind of XTalk is, from the standpoint of the victim, a random
process. The statistics of such processes are necessary to be able to find out the capacity
limitation of the technology. To a good approximation, we can assume that the NEXT/FEXT
is Gaussian by virtue of the central-limit theorem, since it is generated by a number of
independent contributions coming from independent sources (the different subscribers’
xDSL signals) that add-up when interfering with the victim’s signal. In terms of spectral
properties, it is easy understood that this kind of noiselike process cannot be white since
it is caused by a non-white signals - it is a colored Gaussian noise, whose psd is well
approximated by the following expression:

SNEXT (f) ∼= αNEXT · f3/2SxDSL(f) (2.2)

where kNEXT is proportional to the number of active pairs in the binder, and SxDSL(f) is
the psd of the (other users’) xDSL digital signal. A similar model applies to the FEXT:

SFEXT (f) ∼= αFEXT · f2 · L · |H(f ;L)|2SxDSL(f) (2.3)

where the main difference is that it also contains the amplitude response of the twisted pair
H(f ;L) across the cable length L since the interfereres come from the far end. At any
frequency in the spectrum, it is seen that the intensity of the NEXT is larger then FEXT’s.
The physical reason is simple: the downstream signals that are generated by the ATU-C’s
are very strong in the binder section close to the Central (i.e., close to the upstream receiver),
where at the same time the victim upstream signal is weak - therefore, the ampoount of
interference collected there accounts for most of the NEXT, and its relative amplitude is
relevant. On the contrary, in the same section of the binder where the upstream victim
signal is weak, the interferingly signals are weak as well since they (too) have traveled the
whole connection, and their relative amplitude is modest. It is also seen that the NEXT,
the most annoying noise component, has a substantially high-pass spectrum because of the
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presence of the f3/2 term in the spectrum. Such term is due to the dominant capacitive
coupling effect between twisted pairs, with an intrinsically high-pass nature. The conclusion
is that high-frequency components of the upstream signal are very much affected by NEXT
- so much so, that in the FDD arrangement in Fig. 3.2 the upstream spectrum has been
allocated to lower frequencies than the downstream’s, also taking advantage of a smaller
signal attenuation (see (3.1)).

Why is downstream not affected by NEXT as much as the upstream? Just because the
“final” section of the twisted pairs of the victim user in the downstream is separated from the
other pairs, since it enters the user’s premise and travels individually for a few tens of meters.
In such final path, where the victim downstream signal is weak, there is no possibility for
the strong but physically separated near-end upstream signals to create interference - when
they are grouped into the binder the interferer is not so strong any longer, the victim is
not so weak any longer as well, and the NEXT is greatly reduced. On the contrary, in the
cabinet/central office, the pairs are immediately collected into the binder at the output of the
ATU-C’s, and that is why the NEXT on the upstream, as described before, is much stronger.

From the discussion above, we also understand why xDSL services are forced to be
asymmetric: bit-rate asymmetry is generated of course by asymmetric bandwidth allocation
between upstream and downstream, and this is trivial. The reason why the two bands are
asymmetric is just the presence of upstream NEXT: there is no point in trying to make the
two bandwidths equal, because in so doing we decrease the capacity of the downlink, but
we do not proportionally increase the capacity of the uplink, since we’d take in a further
band of frequencies that is very noisy, and therefore (as we will see in detail later on) does
not add very much to capacity.

All of the other impairments on the link, like environmental RF interference, impulsive
noise, receiver noise, etc. do not add very much to the analysis above and can safely be
neglected. As a consequence, all of our analysis above can be summarized into the following
two main issue: i) frequency selectivity originated by the bad frequency response of the
physical medium across the signal bandwidth, and ii) (strong) Additive Colored Gaussian
Noise (ACGN) with a rising spectrum with frequency (we may call it.. blue noise). And
such issues bring forward a further fundamental question: how can we use such trasmission
medium at best (that is, at the maximum bit arte that is possible)? In other words, for the
channel modeling above, can we find the Shannon capacity of this frequency selective,
ACGN link? The subject of the next section.

2.2 Shannon Capacity of the ACGN Channel

We already know about the celebrated Shannon capacity formula for the band-limited
AWGN channel:

C = B log2 (1 + SNR) = B log2

(
1 +

P

σ2

)
= B log2

(
1 +

P

N0B

)
[bit/s] (2.4)

where B is the channel bandwdith, SNR is the receiver signal-to-noise ratio, P and σ2

indicate the signal and noise power, respectively, and Sw (f) = N0/2 is the two-sided
psd of the white Gaussian noise (so that σ2 = N0B). Unfortunately, (3.4) only holds for
a non-selective channel with wite noise. How can we possibly adapt it to our case? The
simplified model of our xDSL uplink is in fact depicted in Fig. 3.5a, where the (colored)
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Figura 2.5 Frequency-Selective ACGN Channel and its Shannon-capacity equivalents

noise psd is the SNEXT (f) that we already know1. We see that frequency selectivity is
given by the frequency response H(f), and the effect of NEXT is concentrated at the end
of link - a reasonable approximation. Can we compute the Shannon capacity of this link?

The effect of selectivity can be easily accounted for. Since the noise is Gaussian, we can
build an equivalent link model as in Fig. 3.5b, where the actual NEXT at the output of the
twisted pair is replaced by an equivalent Gaussian noise N(t) with psd SN (f) at its input.
This can be done because Gaussian processes stay Gaussian when filtered, so that an input
Gaussian noise gives an output noise component that is Gaussian. To make the two models
equivalent, we have to enforce that

SNEXT (f) = SN (f) · |H(f)|2 → SN (f) =
SNEXT (f)

|H(f)|2
(2.5)

The two models are completely end-to-end equivalent from any standpoint, so that their
Shannon capacity is also the same - but what is the use of this transformation? The point is
that now the filter representing the twisted pair is the last processing block in the link. If the
response of the filter is invertible (as it happens for any physical medium), we can go on
with our equivalent systems and come to the one in Fig. 3.5c where H(f) has disappeared.
We do this because the Shannon capacity of the original link is the same as that of this
new equivalent one: the final channel filter is a deterministic invertible transformation not
altering mutual information nor, therefore, capacity: the information transmission channel
obtained observing either the input or the output of such filter bear the same Shannon
capacity.

In conclusion, our final channel model is the one in Fig. 3.5c where we don’t apparently
have any frequency selectivity, and we have ACGN with psd SN (f) - selectivity is actually
embedded into the new equivalent psd, making the noise spectrum even more “colored”
than before. But still, the issue of finding Shannon capacity is not solved since we don’t
have white noise. How can we make the colored noise look any “whiter”?

The idea is simple: we can imagine to split the whole available bandwidth B into
a number K of adjacent sub-bands all bearing the same bandwidth ∆f = B/K, as

1In reality, the analysis that we will perform is valid for any colored psd SNEXT
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sketched in Fig. 3.6. We can also imagine of splitting the input bit stream at the rate
Rb into K sub-streams that are modulated onto K separate bandlimited digital signals
xk(t), k = 0, 1, ...K − 1 each having the same bandwidth ∆f and each allocated to the
corresponding k-th sub-band [k∆f, (k + 1)∆f), k = 0, ...,K − 1. If K is sufficiently
large, then each digital signals xk(t) “sees” within its own bandwidth a band-limited, sliced,
bandpass version Nk(t) of the total Gaussian noise N(t) that is still Gaussian (since it is
obtained after bandpass filtering of a Gaussian process) with a psd that in the narrow band
[k∆f, (k + 1)∆f) is substantially flat:

SNk
(f) ' SN (k∆f) =

SNEXT (k∆f)

|H(k∆f)|2
, k∆f ≤ f < (k + 1)∆f (2.6)

The noise component Nk(t) on the k-th sub-band is also statistically independent of the
noise Nm(t) on another sub-band m 6= k since the two psd’d of the two processes are non-
overlapping in frequency and therefore the processes are uncorrelated (therefore independent
since jointly Gaussian). The consequence of this is that the total Shannon capacity C of the
channel is the sum of the partial capacities Ck of the parallel, independent channels on each
sub-band. On the other hand, since the Gaussian noise in each subchannel is (approximately)
white, it is easy to find Ck by the usual AWGN formula:

Ck = ∆f · log2 (1 + SNRk) = ∆f · log2

(
1 +

Pk
σ2
Nk

)
(2.7)

If the subchannel bandwidth ∆f is sufficiently small (in ADSL, ∆f=4.3215 kHz), we can
(easily) compute the signal and noise power through their respective psd’s, assuming they
are constant across such band, so that

Ck = ∆f · log2

(
1 +

Pk
2 ·∆f · SN (k∆f)

)
= ∆f · log2

(
1 +

2 ·∆f · SX(k∆f)

2 ·∆f · SN (k∆f)

)

= ∆f · log2

(
1 +

SX(k∆f)|H(k∆f)|2

SNEXT (k∆f)

)
[bit/s] (2.8)

The total Shannon capacity of the link is therefore

C =

K−1∑
k=0

Ck =

K−1∑
k=0

∆f ·log2

(
1 +

Pk|H(k∆f)|2

2SNEXT (k∆f)∆f

)

=

K−1∑
k=0

∆f · log2

(
1 +

SX(k∆f)|H(k∆f)|2

SNEXT (k∆f)

)
[bit/s] (2.9)

where SX(f) is the psd of the transmitted digital signal, completely under the control of
the modem, and to be specified later on according to some criterion.

This expression is the starting point to derive on one side a general theoretical formula,
and on the other to suggest a technology to be actually implemented in mass-market devices.
Starting with theoretical derivations, if we let the number of sub-bands grow indefinitely
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Figura 2.6 Computing Shannon Capacity of the ACGN Link

in (3.9), we get the general expression of Shannon capacity for the ACGN with frequency
selectivity:

CACGN =

B∫
0

log2

(
1 +

Sx(f)|H(f)|2

SNEXT (f)

)
df (2.10)

where, still, the signal psd can be freely specified.

2.2.1 Power allocation and the Water Filling Criterion

The ACGN capacity formula (3.10) assume that the psd of the transmitted signal Sx(f)
is known or, in practical, discrete-sub-band version (3.7), that the individual power levels
Pk are known. How can the modem find a proper “spectral shaping” or “power allocation”
across the different sub-bands? We already know that lower-frequency sub-bands are in
general less noisy than higher-frequency ones, so the temptation would be to allocate more
power on those sub-bands bearing a higher level of noise just to balance the SNR across the
whole xDSL bandwidth. Is this the correct approach?

We have first to understand what “correct” means in this context: rather than correct we
should strive to find an optimum approach to allocate power - and in this context optimum
means the one that can give us the maximum Internet connection speed Rb ≤ C. In other
words, the correct approach is that of finding the power allocation criterion that maximizes
the Shannon capacity C of the link. When we speak of “allocation” what we intend is
distributing a finite resource: the xDSL modem is allowed to transmit no more than a certain
total signal power Ptot not to interfere with broadcast radio transmissions in the same band.
Therefore, the power levels that we attribute to the various sub-band must be always such
that P0 +P1 + · · ·+PK−1 = Ptot. To sum up, we are faced with the following constrained
optimization problem:

Find

Pk , k = 0, ...,K − 1

such that

C = max
P0,P1,...,PK−1

[
∆f

K−1∑
k=0

log2

(
1 +

Pk
σ2
k

)]
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with the constraints

K−1∑
k=0

Pk = Ptot

Pk ≥ 0 ∀k .

where we used the simplified notation σ2 4= σ2
Nk

. It is pretty clear that the problem makes no
sense without the constant-total-power constraint - we could get in that case any arbitrarily
high capacity by ever increasing the power levels allocated to the sub-bands.

The problem is solved by Lagrange multipliers method. Introducing the multiplier λ, the
Lagrangian function to be maximized is

L(P0, P1, . . . , PK−1, λ) = ∆f
K−1∑
k=0

log2

(
1 +

Pk
σ2
k

)
+ λ

(
K−1∑
k=0

Pk − Ptot

)
(2.11)

Differentiating wrt to Pk and equating to 0 we get

∆f log2 e

1 + Pk

σ2
k

1

σ2
k

+ λ = 0 , k = 0, 1, . . . ,K − 1 (2.12)

or

Pk + σ2
k = −∆f log2 e

λ
, k = 0, 1, . . . ,K − 1 (2.13)

computing the term-by-term summation on k of all these equations we also get

Ptot + σ2
tot = −K∆f log2 e

λ
→ −∆f log2 e

λ
=
Ptot + σ2

tot

K
(2.14)

where we used the constraint equation
∑
Pk = Ptot and where σ2

tot
4
=
∑
σ2
k represents the

total noise power across all sub-bands - a value depending on the status of the channel and
not depending on the particular power allocation. Using (3.14) into (3.13) we end up with

Pk + σ2
k = P̄ , P̄

4
=
Ptot + σ2

tot

K
(2.15)

with, again, P̄ a constant not depending on power allocation. The continuous-frequency
version of this relation is (as the reader can easily verify)

Sx(f) + SN (f) = S̄ , S̄
4
=

1

B

B∫
0

(Sx(f) + SN (f)) df (2.16)

These two final equation identify the criterion the modem has to use in allocating the power
levels (i.e., finding the optimum spectral shaping of the transmitted signal) to maximize the
ACGN capacity - it is called the water-filling criterion.
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Figura 2.7 Representation of the “Water Filling” criterion

2.2.2 Why is “water-filling” called like that?

To understand why the solution to the previous problem has ben named “water-filling”
(WF), we start from the theoretical continuous-frequency solution (3.16) that we summarize
hereafter: {

Sx(f) = S̄ − SN (f) = S̄ − SNEXT (f)
|H(f)|2 SN (f) < S̄

Sx(f) = 0 SN (f) ≥ S̄
(2.17)

The frequency-flat (constant) value S̄ corresponds to the total signal+noise psd at the
receiver: Stot(f) = Sx(f) + SW ′(f) = S̄, provided of course that the noise level on any
subcarrier (frequency) does not exceed the noise level. The WF solution is represented in
Fig. 3.7, and suggest what happens into an aquarium fish-tank, where the bottom is filled
with sand (our colored noise level) and on top of that a certain quantity of water is poured
to fill the tank until we come to a certain (flat) water-surface level. Frequency by frequency,
the height of the water-level wrt the sand on the bottom represents the quantity of power
that is allocated to that frequency, and the total amount of water-filled represents our Ptot
(the shaded area in Fig. 3.7, whilst the total quantity of sand is σ2

tot.tità di sabbia sul fondale
(area bianca nella figura).

It is pretty clear that the water level S̄ depends on the amount of power Ptot that can be
expended - in some cases where the noise peaks on high frequencies, it may happen that
the total water (power) quantity is not enough to cover all of the sand on the bottom, and
some “dry islands” are left, as shown in Fig. 3.8. In such cases, the WF solution is clear: no
power at all has to be allocated to those frequencies, i.e., the signals on the corresponding
sub-bands in the finite-bands solution (3.15) has to be switched off, without wasting any
signal power where the noise is too high2.

As a final comment, we can say that WF is a counterintuitive criterion to allocate power:
without solving the capacity maximization problem, a sensible heuristics might have been:
let’s allocate in any sub-band a power level that is proportional to the relative noise level,
so that each sub-band operates with the same value of SNR (i.e., Pk = SNRσ2

k ∀k,
SNR = Ptot/σ

2
tot). Such solution would be labeled as fair, but it is not the optimal one.

2Since we are speaking here of the equivalent noise N(t), this may mean either that the NEXT is very high
(because we have all pairs active in the binder and we are considering high frequencies), and/or that the frequency
response of the channel is very low (again on high frequencies, and when the length of the pair is relevant).
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Figura 2.8 The “Island” effect in WF

2.3 DMT (Discrete MultiTone) Modulation Format

How can we actually design a digital signal format that implements all of the notions derived
in the previous sections? The idea of splitting the whole bandwidth B into K separated
sub-bands recalls the notion of a multicarrier format like the popular OFDM of wireless
communications and broadcasting. Separation of the sub-bands is not implemented through
strict bandlimitation of the signals xk(t); rather, it is realized via the usual orthogonality
condition that we will discuss later on. In addition, to come as close as possible to Shannon’s
capacity, a further step after power allocation is further needed.

Once power allocation is accomplished according to WF, like Pk = P̄ − σ2
k, we have

a widely variable level of operating SNRk across the different sub-bands: typically, low-
frequency sub-bands have a very good SNR (close to 40 dB) and high-frequency sub-bands
have worst values (down to 10 dB and less). Therefore, the diverse sub-bands bear very
different individual capacity

Ck = ∆f log2

(
1 +

Pk
σ2
k

)
[bit/s] (2.18)

When we split the overall modem bit rate Rb across the bandwidth and create the K
modulated digital signals to be sent out, the different bit-rates on the different subcarriers will
be widely different as well, and will have to obey individually the reliable-communication
condition:

Rb,k ≤ Ck ,

K−1∑
k=0

Rb,k = Rb (2.19)

As is apparent, after power allocation is done, we have also to perform a function of bit
allocation, i.e., distribution of the total bit-rate across the active subcarriers.

The particular flavor of the multicarrier technology that does all this and is at the base
of xDSL format is called (Discrete MultiTone). We already know how to construct an
efficient multicarrier modem: using FFT algorithms at the transmission and reception ends.
This is what is also done in xDSL modems, which also includes the cyclic-prefix feature
already examined for OFDM. The difference between OFDM and DMT lies however in a
fundamental feature: in the xDSL link, the transmitter has also available a return channel
from the receiver to provide frequency-by-frequency channel status information, something
that OFDM formats in general do not have/exploit. Through the return channel we can
make the modulation Rate-Adaptive (the so called RA-DMT), in the sense that the bit-rate
is optimized against the available capacity via power/bit-rate (adaptive) allocation.
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Figura 2.9 General Architecture of a DMT link

As already mentioned, separation of the sub-bands is achieved through carrier orthogo-
nality. This means that the multicarrier symbol rate RM is the same for all signals on any
subcarrier, and it is equal to the subcarrier spacing: RM = ∆f . Therefore, the only way to
allocate unevenly the bit-rate across the subcarriers is, on any subcarrier, to adapt and custo-
mize the constellation size, i.e., the number of points Mk in the constellation (16-QAM 64-
QAM, 256-QAM, etc.) that is used onto subcarrier k: Rb,k = RM · log2(Mk) = ∆f ·Nb,k.
In xDSL, ∆f = RM=4.3125 kHz and in the first commercially available version of ADSL
K = 256, so that the overall bandwidth is B = 1.104 MHz and the downstream bit-rate is
about 10 Mbit/s. The latest version is called ADSL2+ with B = 2.208 MHz and Rb = 20
Mbit/s, while the wideband version VDSL2 has B = 12 MHz and Rb=100 Mbit/s on a
shorter connection not exceeding 500 m.

RA-DMT needs accurate knowledge of the noise level on each subcarrier. To accomplish
this, when the connection is started, the transmitter sends a preamble formatted with uniform
power allocation on all carriers, and the receiver evaluates the signal-to-noise ratio on each
subcarrier, sending such values back to the transmitter through the return channel. Form the
uniform-allocation SNRs, the transmitter derives the noise levels and performs power/bit
allocation according to the WF criterion. The most “noisy” carriers, i.e. those with low
SNRk after power allocation, will use simple modulations with very few bits/symbol
(BPSK, QPSK), or will be switched off altogether if the noise is exceedingly high. Vice
versa, carriers with high SNRk will use multi-bit/symbol constellation.

Just to make an example, DMT modulation for first-generation ADSL has a maximum
of 32 subcarriers with a cyclic prefix of 5 upstream symbols and 256 subcarriers with a
prefix cycle of 32 downstream symbols. Constellations can allocate up to a maximum of
15 bits per symbol (M =32768 points !), with a special kind of channel encoding (trellis
encoding with Viterbi detection). The general architecture of the RA-DMT link reflecting
our description above is shown in Fig. 3.9.
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Figura 2.10 Comparison between OFDM and DMT

Contrary to what happens with OFDM, where the mapping is unique for all subcar-
riers (and can therefore be placed before the S/P converter), the “constellation encoder”
(or mapper) block in DMT individually maps the input groups of bits to different QAM
constellations according to the bit allocation outcome. In addition, the amplitude of the
IDFT coefficients (which converts the frequency domain input to samples of the output time
signal), will be different for each sub-band, according to the power allocation outcome -
see Fig. 3.10.

Esempio 2.10

The ACGN Shannon capacity is

CACGN =

B∫
0

log2

(
1 +

Sx(f)

SN (f)

)
df (2.20)

Can we derive from this (more) general expression the (simpler) formula for the AWGN
channel ?

Concerning noise, we start by letting SN (f) = N0/2 into (3.20), but we also need to
specify the signal spectral shaping Sx(f) - this can be done bu allocating our signal power
according to the WF criterion:

Sx(f) = S̄ −N0/2 (2.21)

so that

CACGN =

B∫
0

log2

(
2S̄

N0

)
df = B log2

(
2S̄

N0

)
(2.22)

On the other hand,

S̄ =
Px + σ2

N

2B
=
Px +N0B

2B
(2.23)
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and therefore

CACGN = B log2

(
2(Px +N0B)

2BN0

)
= B log2

(
1 +

Px
N0B

)
(2.24)

Q.E.D.

2.4 Fiber-Based UltraBroadBand (UBB) Connectivity fo the Access Network

Copper-based access networks, even with the most advanced versions of xDSL, namely
VDSL2 with complicated DSP-based interference mitigation techniques (so-called vecto-
ring) cannot break the 1Gbit/s barrier in terms of user bit-rate - a connection speed that is
considered today (2022) UBB. The only way to provide such high-capacity is adopting opti-
cal technologies that, as already anticipated, are extending their reach beyond the traditional
arena of backbone connectivity for the transport network to the last kilometer of access
networks.

2.4.1 The Migration from Copper to Fiber in the Last Kilometer

Figure 3.11 shows from left to right the evolution of last-km technologies in chronological
order of adoption and in increasing order of connection speed. In metropolitan areas
encompassing a short distance between user terminals and the nearest cabinet/central office,
ADSL is being replaced by a mixed copper/fiber technology, identified by the acronym
FTTC, Fiber To The Curb or Fiber To The Cabinet, where the fiber connection is a bridge
between the true operator PoP and a cabinet on the street shared by many users. The last
hundreds of meters are covered by a broadband VDSL2 connections on copper, and we
cannot label this architecture as truly UBB. Truly UBB technologies are based on the two
rightmost technologies in Fig. 3.11, namely, FTTB Fiber To The Building or FTTH Fiber To
The Home. In FTTB, the fiber comes to a residential building with a few to many subscriber
properties, and the final connection to the end-user is just a so-called vertical connection
from an optical network unit in the basement of the building up to the individual users’
apartments. A vertical connection can be easily provided via Ethernet RJ cables and do
not create any restrictions in term of user bit-rate. The ultimate UBB technology is clearly
FTTH, where the whole access network is based on fiber, including vertical connections, so
that the end-users has available a fiber connection right at the wall socket.

2.4.2 FTTH Passive Optical Networks

The dominant technology that is rapidly being adopted (especially in metropolitan areas)
to provide FTTH UBB services is that of so-called Passive Optical Networks (PONs). A
PON is a point-to-multipoint fiber network architecture to connect a group of end users with
an Internet Point of Presence (PoP) belonging to a network operator (ISP, Internet Service
Provider). The main feature of the PON, whose architecture is shown in Fig. 3.13, is that no
active devices are used along the connection: the active devices (modems) only reside in the
PoP and at the end users, while the network itself is made up of single-mode fiber segments
and a series of passive optical splitters (an example is shown in Fig. 3.14). The optical
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Figura 2.11 Evolution of Technologies for the Last kilometer

splitter is just a “fork” of fibers (from one into many) to propagate a single multiplexed
digital optical signal towards a number of users, without any intermediate processing (Fig.
3.12). The PON inherits the high-speed performance of optical links, resulting in addition
intrinsically not subject to interference (because based on fibre) and robust (because it is
passive). Depending on the extension of the coverage area and on specifications about the
users’ bit-rates, there may be several successive splitting stages to serve large groups of
users - an example is shown in Fig. 3.15 which represents the architecture of a multi-stage
PON. Figure 3.13 also shows the appropriate naming of PON devices: the ONTs, Optical

Figura 2.12 General Architecture of a PON for the provision of FTTH Services

Network Terminators (aka ONU, Optical Network Units), are the user-side modems, whilst
the OLT, Optical Line Termination, is the analogue of the DSLAM of xDSL networks,
i.e. the flow aggregator and the interface to the external IP-based transport network. It is
also seen that the PON supports both communication directions on a single fiber using a
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Figura 2.13 General Architecture of a PON for the provision of FTTH Services

Figura 2.14 1 x 4 Passive Optical Splitter (from http://www.fs.com)

Wavelength-Division Duplexing (WDD) approach, in which the downstream takes place in
the third window and the upstream in the second window, respectively.
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Figura 2.15 Multi-Stage PON Example (courtesy of OpenFiber S.p.A.) - POP=Point Of Presence,
PFP=Primary Flexibility Point, SFP=Secondary Flexibility Point, U.I.=Unità Immobiliare (Real-
Estate Unit)

2.4.3 The dominant technology for FTTH: ITU’s Gigabit PON (G-PON)

All of the architectural schematics above already referred to the PON standard that is widely
being adopted worldwide: ITU-T G.984 G-PON. From the standpoint of communication
technologies, the G-PON is based on conventional IM/DD modems over standard G.652
single-mode fiber with WDD to provide full-duplex. Digital streams are protected with
Reed-Solomon (255,239) block codes, and the nominal capacity offered to the end-user is
2.4 Gbit/s downstream and 1.2 or 2.4 Gbit/s upstream depending on implementation - that’s
why we speak of UBB. The maximum connection distance (from OLT to ONU) is 20 km,
much longer than in copper-based ADSL networks. Multiple-access is accomplished via

Figura 2.16 Formato delle trame G-PON Transmission Convergence layer (GTC) up/downstream

the a classic TDM/TDMA with a centrally formatted 125 µs frame downstream from the
ONT, and multiple bursts of upstream TDMA data, still organized into an upstream 125
mus frame (3.16). The upstream synchronization of ONUs in the TDMA frame is very
simple and effective and will not be treated here.

From what we have said until now it is pretty clear that the basic technologies of G-PON
are quite consolidated; the most complex issue in the development of PON in particular and
of FTTH in general is economic and resides in the large investments that are necessary to
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replace the decades-old copper connections with new fiber-based one. After the deployment
of G.PON architectures is accomplished, operators will have the opportunity to upgrade
the capacity of the network without the need to further replace the physical medium. The
roadmap of such development, that in some areas has already started, is shown in Figure
3.17. Broadly speaking, the penetration of FTTx technologies worldwide is highly variable
from area to area within a country, and from country to country, creating further “divide” in
the opportunity to access information services by the end-user.

Figura 2.17 Evolution Roadmap of PON Technologies
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