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The Wireless

Communications
Engineer’s Toolokit

”There is no distance on Earth that radio communications cannot conquer.”
—Guglielmo Marconi, 1901, Comment to his own successful first trans-Atlantic

radio communication experiment

Communications is information transfer, and information transfer is signal trans-
mission. The conclusion is that the foundations of communications lie in the treatment
of signal. Radio signals, in our case. This chapter will review, with the mere intent
of performing a survey of supposedly known concepts, the issues of signal analysis

23



24 BASICS OF WIRELESS COMMUNICATIONS ENGINEERING

Fig. 2.1 Example of a periodic signal

and filtering, data modulation, synchronization and detection, with a few hints on
multiple access. This will be the background expertise on which the remaining three
chapters will capitalize.

2.1 BASICS OF FOURIER ANALYSIS OF ANALOG SIGNALS

The ”Swiss Knife” of every communications engineer dealing with wireless systems
design is Fourier analysis. We do not pretend to perform a comprehensive review of
such a huge and fundamental topic. We just want to re-state here the main results and
settle a notation concerning the analysis of time-continuous and time-discrete signals
that will be the foundation of many, many concepts and tools we will extensively use
in the next Chapters.

2.1.1 Periodic Signals and the Fourier Series

We’ve been taught back in primary schools that white light is a combination of all
colors. This is a very first example of Fourier analysis. To be a little bit more specific,
we know that every periodic signal xp(t) (i.e., such that xp(t) = xp(t+T0) for some
T0 > 0 that is called repetition period as in Fig. 2.1 can be decomposed into a sum
of simpler periodic signals, namely, sinusoids as follows:

xp(t) = A0 + A1 cos(2πf0t + θ1) + A2 cos(2π2f0t + θ2) + ...

+Ak cos(2πkf0t + θk) + ... (2.1)

Apart from the constant, DC value, A0, it is seen that the sinusoids oscillate at
frequencies kf0, the so-called harmonic frequencies, that are integer multiples of the
fundamental or repetition frequencyf0 = 1/T0. Thek-th component of the expansion
(2.1) bears an amplitude Ak, and a phase θk. Whilst the value of the oscillation
frequencies are always the same for any T0-periodic signal, the specific values of Ak

and θk do depend on the shape of the actual xp(t) under analysis. The sequence of
coefficients Ak is called the amplitude spectrum of xp(t), and the sequence of the
phases θk is the phase spectrum. Knowledge of the amplitude and phase spectra is
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Fig. 2.2 The MiniMoog

equivalent to knowledge of the signal itself, since based on that knowledge we can
from (2.1) synthesize back the signal in the time domain. This is why (2.1) is called
the synthesis equation. And this is why the popular musical instrument MiniMoog
of the glorious 70’s was called a synthesizer: it simply implemented (2.1) by heroic
low-cost analog hardware to generate (arbitrary) periodic waveforms to be used in
musical compositions as a replacement of naturally-generated sounds.

Equation (2.1) is the simplest form of a Fourier series for a periodic signal. In a
sense, the pitfall of such representation is that exact synthesis of the periodic signal
theoretically requires an infinite number of components. Nonetheless, such a repre-
sentation can be used in the practice by truncating the series to a (small) number of
significant components only, just as the MiniMoog used to do. Figure 2.3 shows how
a periodic rectangular pulse train can be synthesized by the superposition of a finite
number of elementary sinusoidal components, according to (2.1). Of course, given
a certain waveform that we intend to synthesize, the problem is: what are the correct
values of Ak and θk to be used in our synthesis equation? Giving a response to this
question means analyzing signal xp(t) by means of a proper analysis equation that we
are to find. This is most easily done by resorting to a complex-number representation
of the Fourier series. The key to such representation is Euler’s formula for the cosine
function:

Ak cos(2πkf0t + θk) =

1
2

[Ak exp(2πkf0t) · exp(θ) + Ak exp(−2πkf0t) · exp(−θ)] (2.2)

The real-valued oscillating function is decomposed as the sum of two rotating vectors
on the complex plane. The first one, exp(2πkf0t) rotates counterclockwise with a
frequency f0 cycles/s (Hz), and the second one, exp(−2πkf0t), rotates (counter-
clockwise) at the negative frequency−f0 Hz. Teh sun of the two complex rotating
vectors gives just the real-valued cosinusoidal oscillation we started from. This com-
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Fig. 2.3 Synthesis of a rectangular pulse train with a finite number N=15 of sinusoidal
components

plex decomposition entails the introduction of (complex) signal components with
negative frequencies. The amplitude and phase spectra of the sinusoid are collapsed
into a single complex-valued coefficient Xk = Ak exp[jθk] (k positive) that is called
the Fourier coefficient of xp(t). Elaborating (2.1) with (2.2), we get the following
expression of the Fourier series containing the complex Fourier coefficients Xk:

xp(t) =
∞∑

k=−∞
Xk exp(2πkf0t) (2.3)

that is exactly equivalent to the real-valued form (2.1). Finding the amplitude and
phase spectra Ak and θk is tantamount to finding the k-th Fourier coefficient Xk. With
some effort, it is found that the analysis equation we were looking for is relatively
simple:

Xk =
1
T0

∫ T0/2

−T0/2

xp(t) exp(−2πkf0t)dt (2.4)

Example 2.1

Let us analyze the pulse train xp(t) we tried to synthesize in Fig. 2.3. Its Fourier
coefficient is given by

Xk =
1

T0

∫ T0/2

−T0/2

xp(t) exp(−2πkf0t)dt =
1

T0

∫ T0/2

−T0/2

xp(t) cos(2πkf0t)dt

(2.5)
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Fig. 2.4 Amplitude spectrum of a rectangular pulse train

where we have exploited the even-symmetry of our waveform. Now, considering
that xp(t) is piecewise-constant, we also have

Xk =
1

T0

∫ T0/4

−T0/4

cos(2πkf0t)dt =
1

T0

sin(2πkf0t)|T0/4

−T0/4

2πkf0
=

=





1/2 k = 0
0 k = 2m, m 6= 0
(−1)m

πk
k = 2m + 1

(2.6)

The Fourier coefficients Xk turns out to be real-valued (due to the even symmetry
of xp(t)); the resulting amplitude line spectrum of xp(t) is shown in Fig. 2.4.

2.1.2 Non-periodic Signals and the Fourier Transform

What was said until now was only applicable to periodic signals. What happens with
impulsive signals x(t) that are not periodic? Figure 2.5 shows a rectangular pulse
that we define as follows:

rect(t/T )
4
=





1 |t| ≤ T/2
1/2 |t| = T/2
0 elsewhere

(2.7)
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Fig. 2.5 rect signal

The question is: is this kind of signal amenable to Fourier analysis/synthesis? The
answer is (of course) positive, and how to do it can be found quite easily if we think of
a non-periodic signal as a periodic signal with infinitely-long repetition period. The
fundamental frequency thus becomes vanishingly small (infinitesimal), and so two
components in the frequency spectrum of the signal that were previously separated
by ∆f = (k + 1)f0 − kf0 = f0 now become infinitesimally close to each other.
The frequency spectrum of the signal that used to be discrete (the line spectrum of
Fig. 2.4 with a frequency ”quantum” given by the fundamental frequency f0) now
becomes continuous. The relevant analysis equation turns out to be now

X(f) =
∫ ∞

t=−∞
x(t) exp(−2πft)dt (2.8)

where the frequency f that appears as the argument of this complex-valued quantity
X(f) takes all real values with continuity.

This counterpart of the former Fourier coefficient is called the Fourier Transform
(FT) of x(t) and bears the same meaning as Xk. It has an amplitude |X(f)| and
a phase 6 X(f), so that we still speak of (continuous) amplitude and phase spectra,
respectively. Since the spectrum is now continuous, the synthesis equation cannot be
a series any more, rather it is expressed in the form of a Fourier Integral:

x(t) =
∫ ∞

f=−∞
X(f) exp(2πft)dt (2.9)

This relation is also called the Inverse Fourier Transform (IFT) of X(f). The physical
meaning that we can attach to the pair of relations (2.8)-(2.9) is the same as with
the Fourier coefficient-series pair: the IFT is a synthesis equation that tells us how
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to build our own signal starting from a set of simpler components (the complex-
valued sinusoids), and the FT tells us the specific values of the amplitude and phase
of each sinusoid that has to be used in our synthesis procedure to build a specific
signal. We can show easily that the FT X(f) of a real-valued x(t) (that we will
denote at times F [x(t)]) has a particular kind of symmetry that is called Hermitian:
X(−f) = X∗(f), i,e, |X(−f)| = |X(f)|, and 6 X(−f) = − 6 X(f).

We will not waste any precious space in describing the many features of the FT as
a tool for signal design and analysis in communications engineering. We just want
here to recall some elementary results about FT theory that will be used in many
places in the Chapters to follow. For instance, it is an easy exercise for the reader to
show that the FT of the time-shifted version x(t− t0) of the signal x(t) is

F [x(t− to)] = X(f) exp(−2πft0) (2.10)

so that the amplitude spectrum of the signal is left unchanged, and the phase spectrum
is modified by a term proportional to the frequency of each component. Similarly, it is
easy to show what happens if we perform an operation of radio-frequency modulation
on the signal x(t) as follows:

xRF (t) = x(t) cos(2πf0t) =
x(t) exp(2πf0t) + x(t) exp(−2πf0t)

2
(2.11)

where f0 is the carrier frequency. The corresponding modification of the FT is

XRF (f) =
X(f + f0) + X(f − f0)

2
(2.12)

that is, a frequency-shift of each of the frequency components the modulating signal
is made of.

Example 2.2

Let us find the FT of the rect function x(t) in (2.7):

X(f) =

∫ +∞

−∞
rect(t) exp(−2πft)dt =

∫ +T/2

−T/2

exp(−2πft)dt

=
sin(πfT )

πf
= T

sin(πfT )

πfT
= T sinc(fT ) (2.13)

We have introduced here a new identifier for a special waveform that we will
extensively use in the following: the so-called sinc function (represented in
Fig.2.6) that we define as sinc(α) = sin(πα)/(πα).
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Fig. 2.6 sinc function

2.1.3 Bandlimited Signals

We will say that a signal is bandlimited when it has an amplitude spectrum |X(f)|
that is confined into a limited frequency band [−B,B]. Such limitation may hold
exactly (strictly bandlimited signal) or to a good approximation, in the sense that out
of the interval [−B, B] the signal components, though not exactly null, are so small
as to be considered negligible. An example of a (strictly) bandlimited signal is the
popular Frequency Raised Cosine (FRC)pulse (or Nyquist’s pulse) given by

gN (t) = sinc(t/T )
cos(βπt/T )

1− (2βt/T )2

GN (f) =





T |f | < (1− β)/2T
T
2

{
1 + cos

[
πT
β

(
|f | − 1−β

2T

)]}
(1− β)/2T ≤ |f | ≤ (1 + β)/2T

0 elsewhere
(2.14)

and whose spectrum/waveform are represented in Fig. 2.7. Here, the bandwidth is
B = (1+β)/2T , and β, 0 ≤ β ≤ 1 is a parameter that regulates the signal bandwidth
and that is called roll-off factor. The value 1/2T is the so-called Nyquist frequency,
corresponding to the minimum pulse bandwidth when β = 0.

2.1.4 Dirac’s delta function

A peculiar signal that we will often use in the following chapters is Dirac’s delta
function δ(t). Its name is a little bit defying, since δ(t) is not actually a signal in the
classical sense. We may speak of a generalized signal whose definition and existence
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Fig. 2.7 Waveform (a) and Fourier Transform (b) of the FRC pulse
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is only justified through an integral property. Dirac’s delta is in fact defined through
the so-called sampling or sifting property:

δ(t) :
∫ −∞

−∞
x(t)δ(t)dt = x(0) (2.15)

where x(t) is any ordinary signal with no discontinuity at t = 0. From (2.15) we
immediately have as a particular case

∫ −∞

−∞
δ(t)dt = 1 (2.16)

so we may say that the Dirac’s function has ”unit area”. It is easily argued that no
ordinary function with property (2.15) exists, but this new mathematical entity proves
useful in system theory and linear filtering, as we’ll see in a while.

The standard heuristic representation of the delta function (also called unit im-
pulse), whose rigorous treatment is found within the so-called distributions theory,
can be obtained with the aid of a sequence of functions. Assume we have a rect func-
tion with duration T = 2ε and amplitude A = 1/2ε as represented in Fig. 2.8(a). The
”area” of this signal is 1, irrespective of ε. Assume now that this pulse is made shorter
and shorter (and consequently, taller and taller) keeping its unit area but becoming
thinner and thinner, as suggested in Fig. 2.8(a). The limit of this pulse is a heuristic
representation of δ(t): something whose time width is null, but whose amplitude is
infinite, so that its area is unitary. This is what is symbolically depicted in Fig. 2.8(b)
as the standard representation of a delta ”function”. Of course, such a signal does not
exist in the ordinary sense.

The definition of δ(t) that follows our heuristic representation is

δ(t)
4
= lim

ε→0

1
2ε

rect
(

t

2ε

)
(2.17)

This relation not only gives an idea about how the delta function ”looks like”, but can
also be used in the practice, provided that i) δ(t) appears under an integral operator
(as in its definition (2.15)), and ii) the limit in (2.17) is moved outside the integral
operator, i.e., it is computed subsequently to the computation of the integral. The
reader may verify (2.16) using this new definition. It is also easy to show that the
definite integral of δ(t) on finite intervals of the kind

∫ a

b
δ(t)dt gives a value equal to

1 when the instant t = 0 lies within (a, b), otherwise it gives 0.
Dirac’s delta is also peculiar as far as its FT ∆(f) is concerned. First, the problem

of finding the FT of δ(t) is well-posed since the FT (2.8) is an integral operator.
Second, its computation is trivial, according to (2.15):

∆(f) =
∫ ∞

t=−∞
δ(t) exp(−2πft)dt = exp(−2πft)|t=0 = 1 (2.18)

The FT of the unit impulse is thus constant on all frequencies, with no bandlimitation
whatever.
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Fig. 2.8 Definition of Dirac’s function (a), and its symbolic representation (b)

2.2 LINEAR FILTERING

In the following Chapters, we will familiarize with a number of signal processing
functions that are implemented in a digital data receiver for wireless communications.

2.2.1 Systems and Signals

The simplest and most fundamental of such operations is perhaps filtering. In its
simplest realization, filtering means designing a device, an electronic circuit, a piece
of software or, in a word, a system that changes an input signal x(t) into an output
signal y(t) according to some processing criteria. Our notation to indicate this will
be

y(t) = T [x(α); t] (2.19)

where T is an operator representing the signal processing function performed by the
system, and where we indicate that the processing depends in general on the whole
input waveform x(α) and on time as well. The simplest family of system are the
linear filters that obey the superposition rule. Assume that we know that

y1(t) = T [x1(α); t] , y2(t) = T [x2(α); t] (2.20)
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and that we build up a signal x(t) as a weighted superposition (i.e., a linear com-
bination) of x1 and x2 as x(t) = α1x1(t) + α2x2(t). The system is a linear filter
iff

y(t) = T [x(α); t] = T [α1x1(α) + α2x2(α); t] = α1y1(t) + α2y2(t) (2.21)

This means that the output y(t) can be obtained as a linear combination with the same
coefficients α1 and α2 of the ”single” outputs of the system to the single inputs x1

and x2.
In addition to the property of linearity many filters used in the practice are also time-

invariant. This means that their behavior does not change with time. Specifically, if
we know that y(t) = T [x(α); t], and we later submit to the system a time-shifted

version of the same signal, namely, xTS(t)
4
= x(t − t0), we expect that the filter

output yTS(t) be just the same waveform that we had earlier, modified only by the
same time shift we introduced on the input:

yTS(t) = T [xTS(α); t] = T [x(α− t0); t] = y(t− t0) (2.22)

Linear, Time-Invariant (LTI) systems are particularly simple to design and analyze,
nonetheless they prove useful in many instances of signal processing, and especially
for the detection of known signals embedded into noise.

2.2.2 Time- and Frequency-Characterization of LTI Systems

The properties of any LTI filter are completely characterized by the knowledge of a
particular signal that is associated to the system, namely, its impulse response. The
impulse response of an LTI system is just the system output in response to a δ(t)
input:

h(t)
4
= T [δ(α); t] (2.23)

In particular, it can be easily shown that the response (output) of an LTI to a generic
input x(t) can be found as

y(t) =
∫ ∞

−∞
x(α)h(t− α)dα = x(t)⊗ h(t) (2.24)

This kind of ”mixing” of the two signals x and h to give y deserves a specific name
and notation: it is called the aperiodic convolution between the two signals, and is
denoted by the symbol ⊗ as in (2.24). The convolution is a symmetric, associative,
and distributive operator, as can be easily proved. The transformation carried out by
an LTI system on its input signal x(t) to give the output signal y(t) is often symbolized
in a graphical form as in Fig. 2.9 where the impulse response of the system is explicitly
indicated.

Fourier analysis of a signal reveals a fundamental tool also in the characterization
of the properties of an LTI system. Everything revolves around a cardinal property
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of convolution. Starting back from the constituent relation (2.24) of an LTI system,
and taking the FT of both sides of the equation, we find:

Y (f) = X(f) ·H(f) (2.25)

where H(f) is the FT of the impulse response h(t). It is seen that a (complicated)
operation of convolution in the time domain has changed into a (simple) operation of
product between two transforms in the frequency domain. This suggest that often the
analysis and design of an LTI system is much simpler in the frequency domain than
in the time domain due to the simpler operation that the system implicitly carries out
on the FT of the input signal. The quantity H(f) is called the frequency response of
the filter, and is an alternative means to provide a full characterization of the behavior
of the system. In particular, it can be shown that the response of the system to a
purely sinusoidal input x(t) = cos(2πf0t) is just another sinusoidal signal at the
same frequency in the form

x(t) = cos(2πf0t) ⇒ y(t) = |H(f0)| · cos(2πf0t + 6 H(f0)) (2.26)

The effect of the filter on the sinusoidal signal is an amplitude change by a factor
equal to |H(f0)| (the amplitude response of the system at the frequency f0), and a
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Fig. 2.11 Sliding-window Integrator

phase shift by 6 H(f0) (the phase response). The complex-valued version of (2.73)
is

x(t) = exp(2πf0t) ⇒ y(t) = H(f0) · exp(2πf0t) (2.27)

If we change the frequency of the sinusoidal signal, the amplitude and phase responses
change, and so our system responds to different components at different frequencies in
a different way. This is why H(f0) is called the frequency response, and also suggests
that in general the system bears a selective (i.e., unequal) behavior with respect to
frequency. Different components in the spectrum of a signals are treated differently.
Some may pass substantially unaltered, others may be blocked altogether. An exam-
ple of such behavior is given by the low-pass ideal filter, whose frequency response
HLP (f) is represented in Fig. 2.10 (solid line). The ”low” frequency components
are passed unaltered (they are multiplied by HLP (f) = 1), whilst higher-frequency
components, in particular those outside the passband B are blocked. The same is sub-
stantially true for the system whose amplitude response |H(f)| is also represented in
Fig. 2.10 (dashed line). We can not call this an ”ideal” filter, but it is nonetheless a
good approximation of the ideal filter we have just mentioned, and it is easily realiz-
able.

Example 2.3

We intend to find the impulse and the frequency response of a sliding window
integrator. This LTI system produces an output whose value at a specific instant
is the value of the integral of the input signal on a T -wide integration window
immediately leading that instant, as i shown in Fig. 2.11:

h(t) =
1

T

∫ t

t−T

x(α)dα (2.28)

We leave to the reader the proof that (2.31) defines indeed an LTI. Assuming
this, the impulse response is by definition the output of the system when the input
is δ(t) and is given by

y(t) =
1

T

∫ t

t−T

δ(α)dα (2.29)

As we know by the properties of Dirac’s δ function, the integral above is either
equal to 1 if the instant α = 0 (where δ(α) is applied) is within the integration
interval, otherwise it is equal to 0. This means that the output value is going to
be 1 whenever t − T ≤ 0 < t, that is to say, 0 < t ≤ T , and is going to be
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0 outside this interval. The impulse resonse we seek for is a causal rectangular
pulse that we can cast into the form

h(t) =
1

T
rect

(
t− T/2

T

)
(2.30)

The frequency response is trivially the Fourier transform of h(t), namely,

H(f) = sinc(fT ) exp(−πfT ) (2.31)

2.3 FILTERING OF RANDOM SIGNALS

Random signals or, in the parlance of probability theory, random processes play a
central role in communications theory. Not only a random process is the standard
mathematical representation of all kinds of noise, interference, and disturbance of any
sort that may afflict a signal to be detected. A random process is also the representation
for the information-bearing signal itself: were the signal known in advance to the
receiver, no need of sending it out by the transmitter would arise. The randomness
of such signal is just related to the quantity of information that it contains: the more
random it looks to the receiver before being received, the larger quantity of information
it conveys after it is actually received.

2.3.1 Basics of random signals

A random signal (process) is a function of time whose shape is not (exactly) known
in advance. The value at time t of a deterministic signal w(t) like those encountered
until now in the book is exactly known for every possible t, either because we have a
mathematical representation of such signal, or because we have recorded it and stored
it in a computer file. On the contrary, we can say that the value at a certain time t of a
random signal is a random variable. The random process is thus the collection of all
random variables at all times t, that we denote with the same notation as an ordinary
deterministic signal, w(t).

So we do not know in advance the value of the signal for each value of t. Rather, we
only know statistical properties of such values. When we observe a random signal,
what we get is a realization of all such random variables time after time, and, after
our observation, we are left with a deterministic signal that could not be predicted
in advance. The statistical description that we need to completely characterize the
properties of such signal may appear to be the probability density function (pdf)
fw(a; t) of the random variable w(t) at time t, that allows to compute probabilities
of any kind on w(t). That is not the case indeed. For such signal it may be needed to
know, just to make an example, the probability that w(t) ≤ 0 and, together with this,
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that after a certain time τ , the probability that w(t + τ) ≥ 0. This joint probability
cannot be computed from fw(a; t). What we need here is a second-order joint pdf
fw(a1, a2; t, t+ τ). But then, why stopping just at the second order? The conclusion
is that the complete characterization of a random process requires the knowledge of
the class of joint pdf’s of order K of the form

fw(a1, a2, . . . , aK ; t, t + τ1, . . . , t + τK−1) (2.32)

for each (arbitrary large) K. This piece of knowledge is clearly very difficult to get,
apart from simple cases. One such exception is that of Gaussian processes, for which
the pdf’s (2.32) are (jointly) Gaussian for any K.

2.3.2 Expectation, Autocorrelation function, and Power Spectral
Density

In the practice, a very partial knowledge of the statistical properties of a random
process may be sufficient to solve many problems in communications engineering.
The simplest statistical property of a random process is its expectation function or
simply mean value:

ηw(t)
4
=

∫ −∞

−∞
afw(a; t)da (2.33)

This function represents, time instant by time instant, the most likely value that the
process is going to assume before it is actually observed. In particular, the relation
(2.33) is often summarized into the following simplified notation:

ηw(t) = E{w(t)} (2.34)

where we introduced the linear operator E{·} called Expectation whose definition is
self-evident. In many examples of random signals that are dealt with in communica-
tions systems (be them information-bearing or just noise), we will see that ηw(t) is a
constant, and very very often ηw(t) ≡ η = 0.

Example 2.4

We are given the random process

w(t) = A cos(2πf0t + Θ) (2.35)

where A and f0 are known, while Θ is a uniform random variable in the interval
[−π/2, π/2). Let us find first the average value ηw(t). According to the expec-
tation theorem, instead of using fw(a; t) to perform the expectation we need, we
can use instead the statistics of the parameter Θ the process depends on:

ηw(t) = E {w(t)} = E {A cos(2πf0t + Θ)}

=

∫ −∞

−∞
A cos(2πf0t + θ)fΘ(θ)dθ = A

∫ π/2

−π/2

cos(2πf0t + θ)
1

π
dθ
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= −2A

π
sin(2πf0t) (2.36)

The average value ηw(t) of w(t) is a first-order statistical quantity, or first-order
statistics. It is computed with a first-order pdf, and gives information of the statistical
behavior of our random signal when observed at a single time instant. Another
example of first-order statistics if the average instantaneous power of the process

Pw(t)
4
= E{w2(t)} =

∫ −∞

−∞
a2fw(a; t)da (2.37)

The main example of a second order statistics is the autocorrelation function

Rw(t, τ)
4
= E{w(t)w(t− τ)}

=
∫ −∞

a1=∞

∫ −∞

a2=∞
a1 · a2fw(a1, a2; t, t− τ)da1da2 (2.38)

It is computed as the statistical correlation between the two random variables w(t)
and w(t−τ) that the random process takes at the two instants t and t−τ , respectively.
The autocorrelation function plays a fundamental role in the spectral analysis of a
random signal, just as it does for deterministic signals. For deterministic signals, we
know that it is a function of the delay τ only, whereas, according to (2.38), R(t, τ) is a
function of both t and τ . We introduce therefore the notion of a wide-sense stationary
(WSS) process. Assume that

Rw(t, τ) = Rw(τ) , ηw(t) ≡ ηw (2.39)

We may say that the properties of the random process are always the same, irrespective
of the time instant that we choose as our time origin: the average value does not depend
on time, and the autocorrelation function depend only on the time shift between the two
time instant t1 = t and t2 = t− τ that we consider on our signal. The instantaneous
power of a WSS process is constant in time and has the following relation with the
autocorrelation function:

Pw(t) ≡ Pw = Rw(0) (2.40)

For WSS processes, we may define a power spectral density (psd) function as the FT
of the autocorrelation function:

Sw(f)
4
=

∫ +∞

−∞
Rw(τ) exp(−2πfτ)dτ = 2

∫ +∞

0

Rw(τ) cos(2πfτ)dτ (2.41)

where the second equality comes from the fact (easy to show) that Rw(τ) = Rw(−τ).
The psd function indicates how the power associated to a certain signal is distributed
on the different component of the frequency spectrum, and the total signal power can
be found as

Pw =
∫ +∞

−∞
Sw(f)df (2.42)
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As with any random variable, the power of a WSS process can be evaluated as
Pw = σ2

w + η2
w.

Example 2.5

Take back into consideration the process we defined in Example 4, but assume
that Θ is uniform in [−π, π). The average value is now easily found to be 0,
irrespective of time. We may wonder wether the process is WSS. To possibly
verify this, we compute the autocorrelation function Rw(t, τ) = E{w(t)w(t−
τ)} by virtue of the expectation theorem:

Rw(t, τ) = E{cos(2πf0t + Θ) cos(2πf0(t− τ) + Θ)}
∫ −∞

−∞
A cos(2πf0t + θ)A cos(2πf0(t− τ) + θ)fΘ(θ)dθ

=
A2

2π

∫ π

−π

cos(2πf0t + θ) cos(2πf0(t− τ) + θ)dθ (2.43)

Using trigonometric formulas, it is easy to show that

Rw(t, τ) =
A2

2
cos(2πf0τ) = Rw(τ) (2.44)

that does not depend on t. Our suspicion about the wide-sense stationarity of the
process was well founded indeed!

A special example of WSS random signal is the white noise process. White light is
the one made of all of the colors, we’ve already mentioned. Color means wavelength,
and wavelength means frequency. A white noise process is zero-mean, and such that
its psd is constant throughout the whole frequency range:

Sw(f) = N0/2 ∀f (2.45)

This is of course an idealization, since no such signal may exist: its associated power
is clearly infinite (recall (2.53)). But it is a good model for a random signal that
has a much wider bandwidth than that of another ”reference” signal or of a system
under consideration. This is often the case for the electronic noise (thermal noise,
Johnson noise) of active and passive devices, for the ”ambient” noise detected by an
antennas and so on. In such examples, the noise is generated by the superposition of a
multitude of independent elementary components. A well-known result in probability
(the central limit theorem) states that the outcome of such superposition is a Gaussian
process: any set of random variablesw(t1), w(t2),...,w(tN )obtained after observation
of the signal at the time instants t1, t2,...,tN has a multivariate Gaussian pdf.

Filtering is a fundamental operation for random signals, just as it is for deterministic
waveforms. What happens in particular when a process w(t) is filtered with an LTI
system to obtain (the random process) n(t)? It is easy to understand how to derive
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the mean value function. From (2.33) we see that the computation of such function
is obtained through linear operations: the ”Expectation” operator is linear. We can
invoke thus a ”commutative” property of linear operators and say that

ηn(t) = E{n(t)} = E{T [w(α); t]} = T [E{w(α)}; t]
= T [ηw(α); t] = ηw(t)⊗ h(t) (2.46)

If w(t) is zero-mean, n(t) will always be zero-mean as well, irrespective of the par-
ticular LTI filter we may consider.

Example 2.6

Take back into consideration the parametric process of Example 4

w(t) = A cos(2πf0t + Θ) (2.47)

where Θ is a uniform random variable in the interval [−π/2, π/2). Its average
value was found to be

ηw(t) = −2A

π
sin(2πf0t) (2.48)

What if w(t) is filtered by the sliding-window integrator of Example 3? Let us call
n(t) the result of such filtering. From (2.46) we know that ηn(t) = ηw(t)⊗h(t).
But ηw(t) is sinusoidal with time, so that the result of filtering can be easily
evaluated through the notion of frequency response of the filter, as in (2.73):

ηn(t) = −2A

π
|H(f0)| sin(2πf0t + 6 H(f0))

= −2Asinc(f0T )

π
sin(2πf0t + πf0T ) (2.49)

Filtering a WSS random process w(t) is a special case that is easily characterized if
we stick to a simple characterization of the output process n(t). We already know
from (2.46) how to compute the output average value. The output psd function is also
easy to compute since, as happens with deterministic signals,

Sn(f) = |H(f)|2 · Sw(f) (2.50)

where |H(f)|2 is the power response of the LTI filter.

Example 2.7

A certain known signal s(t) is sent out on a wireless radio channel. The receiver
collects such signal corrupted by Additive White Gaussian Noise (AWGN) w(t)
with psd N0/2 (a sketch of a possible noisy signal is in Fig. 2.12 (b)). The
received signal processes r(t) = s(t) + w(t) with an LTI system (filter) to get
a filtered signal y(t) = x(t) + n(t), where x and n are the filtered signal and
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Fig. 2.12 Time-limited signal s(t) (a) and its noisy version r(t) (b)

noise components, respectively. Assume also that s(t) is time-limited within
the interval [0, T ) as in Fig. 2.12 (a), and that the reception filter has impulse
response

h(t) =
1

Es
s(T − t) (2.51)

i.e., a reversed and time-delayed (to be causal) version of the transmitted pulse,
scaled by the factor Es =

∫
s2(t)dt that is, by the energy of the time-limited

signal s. The output of the receive filter at time T is:

y(T ) = x(T ) + n(T ) =
1

Es

∫ +∞

−∞
s(α)s((T − (T − α)))dα + N = 1 + N

(2.52)
where N is a zero-mean Gaussian random variable with variance

σ2
N =

∫ +∞

−∞
Sn(f)df =

∫ +∞

−∞

N0

2
|H(f)|2df
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=
N0

2

1

E2
s

∫ +∞

−∞
|S(f)|2df =

1

2Es/N0
(2.53)

We can compute now the signal to noise ratio (SNR) as the ratio between the
squared signal component (signal power) and the variance of the noise component
(noise power):

SNR
4
=

x2(T )

σ2
N

=
1

(2Es/N0)−1
=

2Es

N0
(2.54)

It can be shown that (2.54) is the best SNR that can be attained upon filtering of
r(t) with any LTI system. The shape of h(t) as in 2.51 is the ”best match” to the
received signal, and so this special filter is called the matched filter

2.4 BANDPASS SIGNALS AND SYSTEMS

2.4.1 Baseband equivalent of a bandpass signal

The general form of a sinusoidal bandpass signal at frequency f0 is

xBP (t) = A cos(2πf0t + ϑ) (2.55)

where A is the amplitude of the signal and ϑ its phase. An alternative formulation of
(2.55) is

xBP (t) = A cos(ϑ) cos(2πf0t)−A sin(ϑ) sin(2πf0t)
= xI cos(2πf0t)− xQ sin(2πf0t)
= <{(xI + xQ) exp(2πf0t)}
= <{xBB exp(2πf0t)} (2.56)

where we have introduced other quantities than the amplitude and phase of the si-
nusoid, that will be used extensively in the following. First, we defined the In-
phase/Quadrature components xI = A cos(ϑ) and xQ = A sin(ϑ) as the ”projec-
tions” of the sinusoid along the two main quadrature carriers at frequency f0, namely,
cos(2πf0t) and− sin(2πf0t), respectively. Also, we introduced the complex-valued
notation of the baseband equivalent of our sinusoidal signal xBB = xI + xQ. The
amplitude of xBB is the amplitude of our sinusoid, and the phase of xBB is its initial
phase, xBB = A exp(jϑ). We summarize all this in the easy-to-remember visual
representation given in Fig. 2.13

The spectrum of a sinusoid is monochromatic, i.e., it contains only one component
at the frequency f0 (and its twin at−f0 if we use complex-valued FTs). What happens
if by virtue of some kind of modulation the amplitude and/or phase of xBP (t) are
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Fig. 2.13 Visual representation of I/Q components and amplitude/phase of a baseband signal
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Fig. 2.14 Samples of Bandpass and Baseband-equivalent spectra

made slowly varying in time? We can write

xBP (t) = A(t) cos(2πf0t + ϑ(t))
= A(t) cos(ϑ(t)) cos(2πf0t)−A(t) sin(ϑ(t)) sin(2πf0t)
= xI(t) cos(2πf0t)− xQ(t) sin(2πf0t)
= <{(xI(t) + xQ(t)) exp(2πf0t)}
= <{xBB(t) exp(2πf0t)} (2.57)

The quantities (I/Q components, baseband equivalent) that we mentioned above are
now (slowly) varying in time, where ”slowly” is to be intended ”on a time scale
much larger than 1/f0”. It turns out that the spectrum of xBP (t) as in (2.57) is no
longer monochromatic, but it is concentrated around the carrier frequency f0. The
passband of such spectrum is B ¿ f0, and so the signal is quasi-monochromatic
or bandpass. On the contrary, xBB(t) has a spectrum that is confined to baseband,
with a bandwdith B much smaller than f0. Since the signal is complex valued, the
spectrum of xBB(t) will not bear any Hermitian symmetry around 0. Figure 2.14
shows fictional examples of spectra of a bandpass, modulated, quasi-monochromatic
signal, as well as its (non-Hermitian-symmetric) baseband equivalent.
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Fig. 2.15 General architecture of an I-Q modulator

2.4.2 The I-Q modulator

So the bandpass signal, once the carrier frequency is known, is completely specified
by its baseband equivalent (also called complex envelope) xBB(t). Equation (2.57)
tells us that xBP (t) = xI(t) cos(2πf0t) − xQ(t) sin(2πf0t). This is not only a
mathematical representation, but it also corresponds to the architecture of the so-
called I-Q modulator that is used in the practice to generate an arbitrary bandpass
modulated signal from its I-Q components as in Fig. 2.15. In the Chapters to follow,
we will systematically adopt the complex-valued notation of baseband equivalent
signals. To make notation shorter, we will drop the subscripts BP or BB to denote
bandpass or baseband signals, respectively, but we will implicitly assume, unless
otherwise stated, that all signals are complex envelopes.

2.4.3 The I-Q demodulator

The usual way of modulating a bandpass signal with a digital data stream is to encode
the digital information into either xI(t), or xQ(t), or both. Once we have done so,
and we send the bandpass modulated signal on a physical medium (radio, copper,
fiber), the receiver needs to reconstruct either xI(t), or xQ(t), or both, to recover
(demodulate) the digital data. The simplest way to do this starts from the general
expression of the bandpass signal:

xBP (t) = <{xBB(t) exp(2πf0t)}
=

xBB(t) exp(2πf0t) + x∗BB(t) exp(−2πf0t)
2

(2.58)

From this we have,

xBP (t) · 2 exp(−2πf0t) = xBB(t) + x∗BB(t) exp(−2π · 2f0t) (2.59)

and we see that such (complex-valued) signal contains two components: the first one
is just the one we intend to get, and the second is something unwanted and centered
at the frequency−2f0. What we have to do to get rid of the latter and keep the former
is processing this signal with a lowpass filter whose bandwidth is just that of xBB(t)
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Fig. 2.16 General architecture of an I-Q demodulator

to remove the double-frequency components at 2f0. The result of this reasoning is
simple:

xBB(t) = xI(t) + xQ(t) = {xBP (t) · 2 exp(−2πf0t)} ⊗ hLP (t) (2.60)

where hLP (t) is the impulse response of the lowpass filter. Again, (2.60) is not just
mathematics, but it is the outline of the so-called I-Q demodulator represented in Fig.
2.16 that is implemented in the vast majority of modern radio receivers. It is seen
that the product of the received bandpass signal xBP (t) with the complex oscillation
2 exp(−2πf0t) is implemented as a pair of real products between the former and
the real-imaginary components of the latter, and the lowpass filter is applied to both
components as well.

2.5 FOURIER ANALYSIS OF DIGITAL SIGNALS

2.5.1 Analog and Digital signals

In the previous section we have reviewed the main concepts and results in Fourier
analysis of time-continuous (analog) signals. The same results can be extended to
digital signals, or, properly speaking, time-discrete ones. The most immediate way
of generating a digital signal is using an analog-to-digital converter (ADC), or, in
the parlance of signal analysis, performing the operation of sampling. Sampling
an analog signal x(t) with a certain sampling rate fs samples/s (or simply Hz) or
equivalently a sampling period Ts = 1/fs means extracting from x(t) a sequence of
samples x[n] such as

x[n] = x(nTs) (2.61)

The square brackets indicates the the time index n they enclose is discrete, as opposed
to continuous time t that is usually enclosed into round brackets. The value at time
n of x[n] is real-valued, and so its representation theoretically requires an infinite
number of digits. In the practice, the ADC represents each value as an integer on a
fixed (finite) number of binary digits. This introduces a (small) representation error:
what we get out of the ADC is actually xq[n] = x[n]+q[n], where xq is the quantized
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version of x[n], and q[n] is the quantization noise. When the number of bits in the
digital representation of xq[n] is large (say, larger than 16), the quantization noise can
be safely disregarded.

2.5.2 FT of Digital signals

Sampling and the ADC are the foundation of Digital Signal Processing (DSP). DSP
techniques are again heavily based on Fourier analysis, so that we have to review the
basics of Fourier transforms for time-discrete signals.

Generalizing the notions already introduced for analog signals, it can be easily
shown that a non-periodic sequence x[n] can be Fourier-decomposed as

x[n] =
1
fs

∫ +fs/2

−fs/2

X(f) exp(2πnf/fs)df (2.62)

where X(f) is the FT of the sequence x[n]. Equation (2.62) is apparently a synthe-
sis equation much similar to (2.8) for analog signals. The corresponding analysis
equation that gives the FT X(f) is

X(f) =
+∞∑

n=−∞
x[n] exp(−2πnf/fs) (2.63)

A fundamental difference exists between the FT of analog and of digital signals. It
is seen from (2.62) that the digital signal can be synthesized from a finite interval of
continuous frequency components, whilst the analog signal requires component at all
frequencies on the real axis. The reason for this is that the FT X(f) of a sequence is
a periodic function of frequency, with a period equal to the sampling frequency fs.
Thus, the only independent components of x[n] actually lie on an fs-wide frequency
interval, and no more components than those are required in the synthesis. This has
also something to do with the property of sampled sinusoids. The sequence extracted
by sampling a sinusoidal signal x1(t) at frequency f1 is

x1[n] = x1(n/fs) = cos(2πnf1/fs) (2.64)

The ratio f1/fs is sometimes indicated with F1 and is called the normalized frequency.
Assume now we have a second sinusoidal signal x2(t) at the frequency f1 +fs. x2(t)
is clearly (much) different from x1(t). After sampling x2(t) we get

x2[n] = cos(2πnf2/fs) = cos(2πnf1/fs + 2πn) = cos(2πnf1/fs) = x1[n]
(2.65)

After sampling, the two previously different sinusoidal signals look exactly the same!
This means that in the digital domain, there can be no more independent sinusoidal
components to synthesize a signal than those into a fs-wide ”base” interval: a com-
ponent outside that interval is actually the ”image” of another one that lies into the
base interval at a distance equal to an integer multiple of fs.
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Example 2.8

Assume that we sample a time-continuous exponential signal x(t) = exp(−t/α)u(t)
with a sampling interval T − s. What we get is

x[n] = x(nTs) = exp(−nT/α) = anu[n] (2.66)

where a
4
= exp(−T/α) < 1 is a real constant depending on the time constant

of the signal and on the sampling frequency. The FT of the resulting sequence is

X(f) =
∑

x[n] exp (−2πnfTs) =

∞∑
n=0

an exp (−2πnfTs)

=

∞∑
n=0

[a exp (−2πfTs)]
n =

1

1− a exp (−2πfTs)
(2.67)

where certainty about the convergence of the series comes form the condition
|a exp (−2πfTs) | = |a| < 1. The amplitude and phase spectra of x[n] as
resulting from (2.67) are shown in Fig. 2.17. Note that they are shown across a
frequency span equal to ±fs/2 since the two functions are periodic with period
fs.

Many of the properties that we already mentioned for the FTs of analog signals
hold true for FT of sequences as well, whit minor modifications. We refer in particular
to Hermitian symmetry, delay and modulation theorems, and so on.

Example 2.9

In the domain of analog signals, special attention was devoted to the definition
and properties of Dirac’s delta function (Sect. 2.1.4). Is there something similar
in the digital domain? The answer is simpler than expected. While δ(t) was a
very special signal, its time-discrete counterpart is just the ordinary sequence

δ[n]
4
=

{
1 n = 0
0 elsewhere

(2.68)

Its FT is clearly

∆(f) =

+∞∑
n=−∞

δ[n] exp(−2πnf/fs) = 1 (2.69)

just like the FT of δ(t).

If our sequence x[n] comes from sampling of an analog signal x(t) with FT X(f), a
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Fig. 2.17 Amplitude (a) and phase (b) spectrum of the exponential sequence



50 BASICS OF WIRELESS COMMUNICATIONS ENGINEERING

fundamental question is: what is the relation between the FT X(f) of the signal we
start from, and the FT of the resulting sequence x[n] ? The answer is called Poisson’s
relation and reads

X(f) = fs

+∞∑

k=−∞
X(f − kfs) (2.70)

This equation tells us that the FT of x[n] is the superposition of an infinite series of
repetitions of the original FT of the analog signal, with a repetition period that is equal
to the sampling frequency fs. This of course gives a periodic FT X(f) as that of
any digital signal. Notice that there might a sort of ”interference” between adjacent
repetitions of the original spectrum that is called aliasing. An example of aliasing
due to sampling is shown in Fig. 2.18 (b) that show the FT X(f) of the sequence
x[n] obtained after sampling thh analog signal x(t) whose FT X(f) is hown in Fig.
2.18 (a). Such superposition of adjacent spectra does not occur only if the original
signal x(t) is bandlimited into the band B, and the sampling frequency is larger than
2B. The condition fs > 2B is called the Nyquist’s condition. When it is verified,
there’s no aliasing in the sampled signal spectrum. Compare in this respect Fig. 2.18
(a) showing again X(f) resulting form the sampling of the signal in Fig. 2.18 (a),
this time meeting Nyquist’s condition. In particular, the main replica with k = 0 in
Poisson’s relation (2.70) that lies in the main interval [−fs/2, fs/2) of the FT is a
perfect replica (apart from an immaterial scale factor) of the original spectrum X(f).

2.5.3 Filtering and Interpolation of digital signal

Needless to say, the notion of an LTI system translates nicely and neatly into the
digital domain as well. Using a notation similar to the one we introduced for analog
systems, a digital LTI filter is identified by an impulse response

h[n]
4
= T [δ[n]] (2.71)

and its operation is described by the time-discrete aperiodic convolution between the
input signal x[n] and such impulse response h[n]:

y[n] = x[n]⊗ h[n]
4
=

+∞∑
m=−∞

x[m] · h[n−m] =
+∞∑

m=−∞
h[m] · x[n−m] (2.72)

The system may also have a frequency response

H(f)
4
=

+∞∑
n=−∞

h[n] exp(−2πnf/fs) (2.73)

so that the frequency-domain input-output relationship still is

Y (f) = X(f)H(f) (2.74)
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Fig. 2.18 Spectrum of an analog signal (a), of the sampled digital signal with aliasing (b),
and of the sampled digital signal without aliasing (c)
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z-1 ... z-1 z-1

h[1] ... h[N-2]h[0] h[N-1]

x[n]

y[n]

x[n-1] x[n-N+1]

Fig. 2.19 Implementation of an FIR filter

If the impulse response h[n] of the LTI system has a finite number of samples different
from zero, the filter is Finite Impulse Response (FIR), otherwise it is IIR (Infinite
Impulse Response). The operations to be computed to implement an FIR filter can
be represented as in Fig. 2.19, where the blocks labeled z−1 implement the delay of
their input sequence by one sample (unit-delay element), and where we have assumed
that h[n] = 0 when n < 0 or n ≥ N .

Once we have turned an analog signal into a digital sequence via sampling, and
after we have possibly performed some digital processing on such (digital) signal
(even simple storage on a digital medium such as a Compact Disc or a flash memory
stick), it may be desired to reconstruct an analog signal form the resulting (retrieved)
sequence. This reverse-sampling operation is called interpolation and in the practice
it is implemented by a Digital to Analog Converter (DAC). The general form of an
interpolated signal x̂(t) is

x̂(t) =
+∞∑

n=−∞
x[n] · p(t− nTs) (2.75)

where x[n] is the sequence being interpolated, and p(t) is the pulse shape that is
specific of a particular interpolator. If p(t) is the rectangular pulse in Fig. 2.20
(a), then we have a zero-hold interpolator that basically produces a sample-and-hold
signal. If on the contrary p(t) is the triangular pulse in Fig. 2.20 (b) we get a
linear intepolator that joins consecutive values of the signal samples with straight
line segments to produce the interpolated analog signal x̂(t). The frequency-domain
counterpart of (2.75) is very simple:

X̂(f) = P (f)X(f) (2.76)

Notice that both X̂(f) and P (f) are FTs of analog signals, whilst X(f) is the FT of
the sequence x[n] to be interpolated.
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Fig. 2.20 Interpolating pulses: (a) ZOH interpolator; (b) linear interpolator

2.5.4 The sampling theorem

A rather fundamental question about signal sampling comes immediately to one’s
mind. Once an analog signal is sampled, and its samples are all collected and, say,
stored, is it possible to fully recover such signal with no loss? At first sight the response
is NO, since when converting a signal from time-continuous to time-discrete all that
is in between samples appears to have been lost for ever. BUT... a glance in the
frequency domain may give more hope. If the signal is bandlimited to B and we meet
the Nyquist’s condition fs ≥ 2B, we already know that we have no aliasing, and we
”see” an undistorted replica of the spectrum of the analog signal in the spectrum of
our sequence (the replica with k = 0 in the Poisson formula (2.70)). The real issue
is how to recover such replica and get back to the analog domain. The answer is
relatively simple: we are to use an appropriate interpolator that preserves the replica
with k = 0 while canceling all of the others. Figure 2.21 explains that (the reference
is again the analog signal spectrum shown in Fig. 2.18 (a)): we need an interpolator
whose FT P (f) is flat within the frequency interval [−fs/2, fs/2) that contains the
main replica with k = 0, and zero outside that band. Also, it has to compensate the
factor fs in Posisson’s relation. In a word, we have to choose

P (f) =
1
fs

rect
(

f

fs

)
= Tsrect(fTs) (2.77)

Under Nyquist’s condition and using this interpolator, it is apparent that X̂(f) =
X(f), so that we can say that the issue of reconstructing the sampled signal is now
solved. The interpolating pulse that corresponds to such P (f) is trivially p(t) =
sinc(t/Ts), so that the relevant interpolation formula is

x̂(t) =
+∞∑

n=−∞
x[n] · sinc

(
t− nTs

Ts

)
(2.78)

that is called the cardinal interpolator. Since we known that X̂(f) = X(f), it is also
clear that x̂(t) = x(t)
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Fig. 2.21 Frequency-domain interpretation of cardinal interpolation

2.6 BASEBAND TRANSMISSION OF DIGITAL SIGNALS

2.6.1 NRZ and bandlimited PAM signals

The basic form of a baseband data signal that conveys digital information (as is
encountered on wireline data communications) is that of a plain binary No Return to
Zero (NRZ) digital signal:

x(t) = A

+∞∑
n=−∞

a[n]g(t− nT ) (2.79)

Here, A is the overall signal amplitude, g(t) is a unit-amplitude rectangular pulse
with time width T , g(t) = rect[(t − T/2)/T )], and a[n] is the sequence of digital
data. For binary antipodal signals, a[n] takes either the value -1 or +1, according to
the particular sequence (pattern) of data to be transmitted. The values -1 and +1 are
associated to a logical values 0 or 1, respectively, of the data bits. If the width of the
data pulse g(t) is smaller than T , the format of the data signal is called RZ (return to
Zero) since the data pulse for each bit falls back to 0 before the next bit is sent out.
It is apparent that the signal (2.79) is a repetition of pulses with different amplitude

(polarity). The repetition rate R
4
= 1/T is called the signaling rate, symbol rate or

clock rate and is measured in symbols/s or Baud. The data signal can be thought
of as the result of an interpolation as in (2.75) of a digital sequence a[n] coming
with a sampling frequency R, with a basic interpolation pulse equal to the data pulse
g(t) = pZOH(t). Traditionally, the resulting signal format is called Pulse-Amplitude
Modulation (PAM).

From the standpoint of the receiver, the specific value at time n of the n-th data
symbol a[n] is not known in advance (otherwise there would be no need to carry out
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any transmission). Therefore, the data signal is modeled as a random process and as
such it has to be treated with the tools and approaches that we introduced in Sect. 2.3.
The simplest assumption, that is actually well verified in the practice, is that a[n] is
a sequence of i.i.d. (independent identically distributed) random variables. In most
cases, the values that a[n] can take are also equiprobable.

Although we have implicitly assumed so in our first discussion of digital signals,
it is not necessarily true that the data symbols a[n] are binary. This is the reason why
we call them ”symbols” and not ”bits”. The symbols of the digital signals that are
used in ISDN twisted pairs connections are quaternary, i.e., they can take the values
{−3,−1, +1, +3}. Such values are selected according to a law that associates them
to pairs of bits to be sent out, for instance 00 → −3, 01 → −1, 11 → 1, 10 → 3 (the
so-called mapping). It is apparent that in this example a single data symbols carries
the information of two bits at a time. Therefore, the bit rate Rb in the transmission
(as measured in bit/s) is different from the symbols rate: Rb = 2R. In general, if the
symbol a[n] can take one of M values (that is, a[n] belongs to an M -ary alphabet),
the bit rate is Rb = log2(M) ·R. The simplest alphabet for M -PAM signals is

A ≡ {−(M − 1),−(M − 3), . . . ,−1, +1, . . . , (M − 3), (M − 1)} (2.80)

NRZ signals are the most elementary form of digital signals, but they are not used
in telecommunications (they are only used for data communications in computer
networks or data acquistion/storage equipment). The reason for this is related to the
bandwidth of such signals.

2.6.2 Signals and spectra

How a data signal look like in the time domain, we already saw in the previous section.
What is still to be understood is its spectral appearance and bandwidth occupancy.
We find first the autocorrelation function of the baseband PAM data signal (2.79):

Rx(t, τ) = E {x(t)x(t− τ)}

= A2E

{
+∞∑

n=−∞
a[n]g(t− nT )

+∞∑
m=−∞

a[m]g(t− τ −mT )

}

= A2
+∞∑

n=−∞

+∞∑
m=−∞

E {a[n]a[m]} g(t− nT )g(t− τ −mT )

= A2 ·A2

+∞∑
n=−∞

g(t− nT )g(t− τ − nT ) (2.81)

where A2 is the average power of a[n], A2 = E
{
a2[n]

}
, and where we took into

account that a[n] and a[m] are zero mean and uncorrelated when n 6= m. We see that
the data signal is not a WSS process, since the autocorrelation function still depends
on t and not on τ only. We also see that Rx(t, τ) is a periodic function of the time
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t for any time lag τ . When this happens, the process is said to be cyclostationary.
The psd function of such process can be found by introducing the time-averaged
autocorrelation function, where averaging is performed over the repetition period:

ρx(τ)
4
=

1
T

∫ T/2

t=−T/2

Rx(t, τ)dt (2.82)

The psd function is now defined as the customary FT of ρx(τ). If we take back into
consideration (2.81), we get

ρx(τ)
4
=

A2

T

∫ T/2

t=−T/2

A2

+∞∑
n=−∞

g(t− nT )g(t− τ − nT )dt

=
A2 ·A2

T

+∞∑
n=−∞

∫ T/2

t=−T/2

g(t− nT )g(t− τ − nT )dt

=
A2 ·A2

T

∫ +∞

−∞
g(t)g(t− τ)dt (2.83)

We see that the (averaged) autocorrelation function of the random data signal x(t) is
proportional to the autocorrelation function of the deterministic signal g(t). Taking
the FT of ρx(τ) we get

Sx(f) =
A2 ·A2

T
|G(f)|2 (2.84)

The final result of our long but instructive computation is that the psd function of
a data signal is determined by the (squared) amplitude spectrum of the basic data
pulse. As a consequence, the bandwidth occupancy of a digital signal is equal to the
bandwidth of its elementary pulse. An NRZ signal with a full response rectangular
pulse has a psd function

Sx(f) = A2 ·A2T sinc2(fT ) (2.85)

as represented in Fig. 2.22, whose bandwidth is infinite. A practical measure of its
spectrum occupancy is the so-called bandwidth at the first null that is equal to 1/T .
On the other hand, we know that each physical medium (copper wire, optical fibre,
radio band) has a bandwidth limitation. So the real problem in telecommunications
is finding a ”good”, i.e., one that can support a high data rate Rb data signal when
sent onto a bandlimited physical channel with bandwidth B. Filtering an NRZ signal
is not efficient, since bandlimiting causes distortion and bad reception of data. The
solution is resorting to an intrinsically bandlimited data signal. This can be done by
using a bandlimited pulse g(t) such as the Nyquist FRC pulse gN (t) (2.14), whose
bandwidth is B = R(1 + β)/2. The most popular bandlimited pulse shape is the
Square-Root Frequency Raised Cosine (SRFRC) pulse whose FT is proportional to
the square root of the FT of the Nyquist FRC pulse gN (t):

G(f) = T
√

GN (f)/T =
√

TGN (f) (2.86)
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Fig. 2.22 Power spectrum of an NRZ data signal. Linear scale (a) and log (dB) scale (b)
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whose waveform is

g(t) =
sin

(
π(1− β) t

T

)
+ 4β t

T cos
(
π(1 + β) t

T

)

π t
T

[
1− 16β2

(
t
T

)2
] (2.87)

and whose bandwidth is again equal to R(1 + β)/2.
For any kind of basic pulse, integration of (2.84) gives the total power of the data

signal as

Px =
A2 ·A2

T

∫ +∞

−∞
|G(f)|2df =

A2 ·A2

T

∫ +∞

−∞
|g(t)|2dt = A2 ·A2Eg/T

(2.88)
where Eg is the energy of the data pulse g(t). In many cases, for instance the
rectangular pulse of NRZ signaling, or the SRFRC pulse, the energy of the pulse turn
out to be Eg = T , so that Px = A2 · A2. For a multilevel PAM signal with M -ary
symbols in the alphabet {−(M−1),−(M−3), . . . ,−1, +1, . . . , (M−3), (M−1)}
we get A2 = (M2 − 1)/3.

2.6.3 Detection of a PAM signal on the AWGN channel

One of the fundamental problems in communications theory is the reliable detection
of digital data signals in the presence of random noise. The simplest such case is
detection in the AWGN channel that is typical of wireless communications over a
line-of-sight link (as in satellite communications). We outlined such case in Example
7. Considering the simple case of a binary PAM signal with a T -energy pulse g(t),
the received signal is

r(t) =
√

Pr

+∞∑
n=−∞

a[n]g(t− nT ) + w(t) (2.89)

where w(t) is AWGN with psd N0/2 and Pr is the received signal power. The
received energy per data symbol Es is also Es = PrT . The detection problem is
easily formulated: the receiver has to recover (or regenerate) the transmitted data
stream upon observation of r(t). Unfortunately, the presence of the random noise
w(t) hinders such function. When the particular realization of the random process is
particularly unfavorable, it may happen that the regenerated datum â[n] is different
from a[n], and a symbol error is produced. ”When” and ”where” an error is produced
is not predictable in advance, due to the random nature of noise and data. What we
can evaluate upon knowledge of the statistical properties of the noise (and of the data
as well) is the probability that a symbol error (or bit error) occurs. So the preeminent
performance index of the communication link is the Symbol Error Rate (SER) or the
Bit Error Rate (BER), where rate is the practical interpretation of probability. The
detection problem is thus formulated as follows: find the signal processing that we
ought to apply to r(t) to regenerate the data symbol stream a[n] with the minimum
SER.
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Fig. 2.23 Matched filter receiver for baseband PAM data signals (a) and nonlinear element
characteristic (b)

This issue is not actually simple to solve, so let us tackle it step by step. Assume
that we have to detect a single isolated datum a[0] with its associated pulse g(t),
i.e., r(t) =

√
Pra[n]g(t) + w(t). This problem was solved back in the 50’s with

an elegant geometric interpretation based on expansion of r(t) onto a Hilbert space
of orthonormal functions. All in all, such solution is equivalent to the processing
scheme shown in Fig. 2.23 (a) for PAM signals with equiprobable i.i.d. symbols,
and is called the matched filter receiver. As was anticipated in Example 2.51, the
signal is processed by an LTI filter matched to g(t), i.e., with an impulse response1

hMF (t) = g(t0 − t)/Eg, with an appropriate t0. The resulting signal is

y(t) =
√

Pra[0]gr(t) + n(t) (2.90)

where gr(t) = g(t)⊗hMF (t) is the filtered data pulse, and n(t) is filtered zero-mean
Gaussian noise with psd function Sn(f) = N0|HMF (f)|2/2. The filtered signal is
evaluated at the time instant t0 to get the following ”soft” (i.e., real-valued) sample

y(0) =
√

Pra[0]gr(t0) + n(0) (2.91)

For an NRZ pulse, t0 = T , whereas for a symmetric SRFRC pulse, t0 = 0. In both
cases, gr(t0) = 1. Also, n(0) is a Gaussian random variable with zero mean and
variance

σ2
n =

N0

2

∫ +∞

−∞
|HMF (f)|2df =

N0

2E2
g

∫ +∞

−∞
|G(f)|2df =

N0

2Eg
=

N0

2T
(2.92)

1The impulse response cited in the text is optimum for real-valued pulses g(t). If the pulse is complex-
valued, the impulse response of the matched filter is hMF (t) = g∗(t0 − t)/Eg



60 BASICS OF WIRELESS COMMUNICATIONS ENGINEERING

The soft output y(0) (also called decision variable) is finally passed through a ”hard
detector” that implements the threshold nonlinearity shown in Fig. 2.23 (b) to change
the continuous-amplitude sample y(0) into the regenerated discrete-value symbol
â[0]. The probability of a symbol error (that, in our case of binary signaling, is equal
to that of a bit error) is

SER = BER =
1
2

Pr{y(0) > 0 | a[0] = −1}+
1
2

Pr{y(0) ≤ 0 | a[0] = +1}

=
1
2

Pr{−
√

Pr + n(0) ≤ 0}+
1
2

Pr{
√

Pr + n(0) ≤ 0}

= Pr{n(0) >
√

Pr} = Q

(√
Pr

σn

)
= Q

(√
2Es

N0

)
(2.93)

where Q(·) is the familiar Gaussian integral function

Q(α) =
1√
2π

∫ +∞

−α

exp(−β2/2)dβ (2.94)

With a computation only slightly more complex, it is easily found that the SER for
generic M -PAM with alphabet (2.80) is

SER = 2
(

1− 1
M

)
Q

(√
3

M2 − 1

√
2Es

N0

)
(M-PAM) (2.95)

Instead of the ratio Es/N0 it is sometimes more expedient to express the SER/BER
as a function of the ration between the received energy per bit Eb and the noise psd
N0. For M -PAM, Es = log2(M) · Eb and so

SER = 2
(

1− 1
M

)
Q

(√
3 log2(M)
M2 − 1

√
2Eb

N0

)
(M-PAM) (2.96)

A variant of the matched filter receiver that is equally optimum on the AWGN
channel is depicted in Fig. 2.24. Take back into consideration (2.90) that describes
the output of the matched filter for one-shot data transmission. We have

y(t) = r(t)⊗ hMF (t) + n(t) =
∫ ∞

−∞
r(α)hMF (t− α)dα

=
1

Eg

∫ ∞

−∞
r(α)g(t0 + α− t)dα (2.97)

The filtered received signal is evaluated at t = T0, so that the soft decision variable
is (Eg = T )

y(t0) =
1
T

∫ ∞

−∞
r(α)g(α)dα =

1
T

∫ ∞

−∞
r(t)g(t)dt (2.98)
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Fig. 2.24 Correlation receiver for baseband PAM data signals

This is just what is depicted in Fig. 2.24. The operation that is performed is the
correlation between the received signal r(t) and a local waveform that corresponds
to transmission of a data bit equal to 1. The correlation receiver is just an alternative
arrangement of the matched filter receiver, and so its BER performance is exactly the
same.

The same results concerning the BER/SER of the matched filter/correlation re-
ceiver can be arrived at if we normalize equation (2.91). If we divide both the
signal and the noise term (thus leaving the SNR unchanged) by the standard deviation
σn =

√
N0/2T of n(0) we get

y(0) =
√

2Es

N0
a[0]gr(t0) + n1(0) (2.99)

where n1(0) is a zero-mean Gaussian random variable with unit variance. We may
alternatively normalize by

√
Pr obtaining

y(0) = a[0]gr(t0) + N(0) (2.100)

where now N(0) is a zero-mean Gaussian random variable with variance σ2
N =

N0/(2Es). We explicitly mention these alternative formulations since in the fol-
lowing we will use indifferently one of the three expressions (un-normalized (2.91),
unit-variance (2.99), unit-amplitude (2.100)) that we introduced here.

Expression (2.93) for the BER/SER is called the matched filter bound and its
appearance as a function of the Eb/N0 ratio (that is basically a measure of the SNR
experienced on every data symbol) is shown in Fig. 2.25. Why is this called a
bound? Because this is what we would get for one-shot transmission of a single data
symbol.Taking back into consideration the adjacent symbols, what we actually get at
the output of the matched filter is

y(t) =
√

Pr

+∞∑
n=−∞

a[n]gr(t− nT ) + n(t) (2.101)

that, evaluated at t0 gives

y(t0) =
√

Pr

+∞∑
n=−∞

a[n]gr(t0 − nT ) + n(t0)

=
√

Pr a[0] +
∑

n6=0

a[n]gr(t0 − nT ) + n(t0) (2.102)
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Fig. 2.25 BER of the matched filter receiver for M-ary PAM with no ISI

In addition to the data symbol to be detected and to the noise term as in the ”one-shot”
computation above, we also have an additional term (the intermediate one) that is due
to the presence of trailing and leading symbols in the data stream, and is perceived as
an interference of them on a[0]: the InterSymbol Interference (ISI). The ISI makes
the BER degrade with respect to the value (2.93) given by the matched filter bound.
Of course, not any pulse shape gr(t) arises ISI. If we have

gr(t0 − nT ) ≡ 0 , n 6= 0 (2.103)

then the ISI is no longer present, and we experience again the BER of the matched
filter bound. The condition (2.103) is for instance actually satisfied by a (symmetric)
NRZ pulse filtered by its matched filter. The resulting gr(t) is a triangular pulse as
in Fig. 2.20 (b), and it is seen that its symbol-rate samples are all zero apart from
the one at t = t0 = 0. The same is true for the SRFRRC pulse, although is may not
seem so at a first glance. To see this, take into consideration that the impulse response
of the matched filter to an SRFRC is basically another SRFRC pulse, since g(t) is
even-symmetric. If we consider FTs, we have

Gr(f) = G(f) ·HMF (f) = G(f) ·G∗(f)/Eg

=
√

TGN (f) · (1/T )
√

TGN (f)/T = GN (f) (2.104)

and so gr(t) = gN (t). From (2.14) and from Fig. 2.7 it is easily seen that all samples
of the Nyquist pulse gN (t) at tn = nT are null, apart from the one with n = 0 that



MODULATION, DEMODULATION AND MODEM ARCHITECTURE 63

is equal to 1. The same conclusion can be actually drawn with frequency-domain
considerations. Take in fact again (2.103) with t0 = 0. The sequence of symbol
rate samples of gr(t) is such that gr(nT ) = δ[n]. Therefore, taking the FT of both
sequences and considering Poisson’s relation (2.70)), we have

R

+∞∑

k=−∞
Gr (f − kR) = 1 (2.105)

that is called the Nyquist criterion for the absence of ISI. If we replace Gr with GN

as above, we easily see that (2.105) is satisfied by virtue of the particular symmetry
around f = R/2 of the roll-off region of GN (f) in Fig. 2.7, for any value of β.

We can now motivate the adoption of the SRFRC pulse in almost all bandlimited
data communication systems currently in use: such pulse give rise to no ISI when
matched-filter detected, combining optimal immunity against noise with the absence
of ISI on a bandlimited channel.

2.7 MODULATION, DEMODULATION AND MODEM ARCHITECTURE

2.7.1 Linear I/Q digital modulation

It is widely known that a baseband signal like those encountered in the previous section
is not suited for transmission over a wireless channel. Radio signals can be efficiently
detected only when the size of the transmitting/receiving antenna is of the order of
magnitude of the wavelength of the electromagnetic wave. Just to make an example,
the wavelength of wave oscillating at a frequency f0=100 kHz is λ0 = c/f0=3
km, thus making transmission of such a component really problematic.The solution
to this is using a high-frequency carrier (for instance, in Wi-Fi wireless LANs the
carrier frequency is f0=2.4 GHz) and attaching to that carrier the digital data to be
sent by modulating the amplitude and/or the phase of the carrier with the data bearing
baseband signal much like what described in Sect. 2.4 concerning the general scheme
of an I/Q modulator of Fig. 2.15. When we intend to perform a digital modulation,
what we have to specify in that general scheme is how the I/Q baseband components
of the bandpass signal are related to the digital data to be sent. In a sense, the
different modulation schemes are different, specialized ”front-ends” to the general
I/Q modulator.

The simplest digital modulation is BPSK (Binary Phase-Shift Keying) wherein the
Q component xQ(t) is null, and the I component is just an NRZ binary PAM signal
like (2.79), so that the resulting complex envelope is

x(t) = A

+∞∑
n=−∞

a[n]g(t− nT ) + 0 (BPSK) (2.106)

At each time instant, the In-phase carrier cos(2πf0t) is either multiplied by a positive
value, or by a negative one, according to the polarity of the data to be transmitted.
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Fig. 2.26 Representation of BPSK (a) and QPSK (b) signals on the complex plane (A = 1)

Therefore, data modulation amounts to either not changing the phase of the carrier,
or by shifting it by 180 degrees.

2.7.2 Signal constellations

Many variants of digital modulation exist. We stick here for simplicity to linear
schemes, wherein the I and Q baseband components xI(t) and xQ(t), hence the
complex baseband equivalent x(t) of the modulated signal xBP (t), is obtained from
the data bits with linear operations only. The very form of the BPSK signal (2.106)
can be seen as a linear interpolation with pulse g(t) of the digital stream a[n]. The
simpler advancement to BPSK involves the use of the Q component that in BPSK
is absent. To do so, we build an NRZ signal with a decimated version of the binary
stream containing only even-index data a[2m], and another NRZ signal with the odd-
numbered bits a[2m + 1]. Using the two signals as xI and xQ respectively, gives a
Quadrature Phase-Shift Keying signal

x(t) = A

+∞∑
m=−∞

a[2m]g(t−mT ) + A

+∞∑
m=−∞

a[2m + 1]g(t−mT )

= A

+∞∑
m=−∞

(a[2m] + a[2m + 1]) g(t−mT ) (QPSK) (2.107)

At each time instant, the signal x(t) takes one of four possible values given by
A(±1± ) that lie on a circle in the complex plane with radius

√
2A, as represented

in Fig. 2.26 (b). The four points have constant amplitude but four different phases,
hence the denomination of quadri-phase signal. A BPSK signal on the contrary is
characterized by two points only, both lying on the real axis as in Fig. 2.26 (a). It is
apparent that for the same signaling rate R = 1/T , the two signals achieve different
bit rate. BPSK has Rb = R, whilst with QPSK Rb = 2R, akin to what happens with
a four-level PAM signal.
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Fig. 2.27 Linear digital data modulator
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Fig. 2.28 8PSK (a) and 64-QAM (b) constellations - (A = 1)

The appearance of the QPSK signal in (2.107) suggests the general form for the
”front-end” of a linear data modulator that is shown in Fig. 2.27. The input binary data
stream a[n] with a bit-rate Rb is segmented into words of Nb bits each, with a word
rate Rw = Rb/Nb. Every word is used to identify a specific symbol in the complex
plane selected in a set (the alphabet) of M = 2Nb elements. The representation
of the symbols in the set is also called the constellation of the digital modulation.
From the previous example, for QPSK we have Nb = 2 and M = 4. Higher-order
M -PSK constellations with M equal to 8, 16 or 32 are characterized by M points
evenly distributed on a circle in the complex plane. We show in Fig. 2.28 (a) an
8-PSK constellation where each symbol is labeled by the particular pattern of 3 bits
(the value of the 3-bit word) that causes its own transmission. The correspondence
between bit words and symbols in the constellation is the mapping that is implemented
by the relevant block in Fig. 2.27. Upon generation of Nb bits, the mapper generates
at time mT a new complex-valued symbol s[m] = sI [m] + sQ[m] selected in the
constellation. The symbol rate is R = 1/T = Rb/Nb.

As in baseband transmission, modulated signals need some form of bandlimiting
to fit a particular bandwidth (centered on the carrier frequency f0) that is assigned by
some regulatory body. Such function is accomplished by bandlimiting the baseband
equivalent of the signal prior to I/Q modulation. This is why the front-end in Fig.
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2.27 features a shaping filter (interpolator) with (bandlimited) pulse g(t), usually a
SRFRC function. The general form of the signal produced by the modulator is

s(t) = A

+∞∑
m=−∞

s[m]g(t−mT ) (2.108)

where s[m] is the m-th complex symbol taken from a constellation to be specified,
for instance the square 64-QAM constellation in Fig. 2.28 (b), that is produced by the
composition of two 8-level PAM signals with alphabet{−7,−5,−3,−1,+1, +3, +5,+7}
on each component.

2.7.3 Demodulation of Linear I/Q modulated signals

Demodulation of a digital signal is straightforward if we appropriately combine (we
would say ”cascade”) the I/Q demodulator as in Fig. 2.16 with matched filter detection
(Fig. 2.23). In particular, the I/Q demodulator has to be followed by a ”back-end”
that reverse the operation of the front-end in Fig. 2.27, resulting in the schematic
shown in Fig. ??. The low-pass filter of the I-Q demodulator in Fig. 2.16 no longer
appears since the double-frequency filtering function is performed by the matched
filters. At the output of the signal samplers we get two ”soft” values that represent a
noise-corrupted version of the I/Q components of the transmitted symbol s[m]. If we
collect a number of such samples and we report such values as dots on the complex
plane, what we get is called a scatter plot and appears as in Fig. 2.30 for a 16-QAM
constellation.

The ”complex slicer” in Fig. 2.16 is the complex counterpart of the threshold
detector for baseband PAM signals. The complex plane is partitioned into different
zones, the so-called decision regions according to a decision rule, so that digital
symbols are regenerated from the soft outputs y(mT ). Each region is labeled by a
constellation symbol so that whenever y(0) lies in a certain region, the ”label” symbol
is regenerated. The regenerated symbols ŝ[m] are finally de-mapped to get back the
Nb-bit word (Nb = 4 in the example) corresponding to the regenerated symbol. The
function of the cascade of complex slicer and demapper is represented in Fig. 2.31,
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Fig. 2.30 Scatter plot of noisy 16QAM samples at the matched filter output

where we directly indicate the estimated Nb-bit word after demapping. The labels of
the decision regions are directly the demapped bits.

When the noise component is large, y(mT ) may cross the boundaries of the de-
cision region pertaining to s[m], and a symbol error is produced: ŝ[m] 6= s[m]. The
computation of the SER for a generic complex constellation is simple but tedious, so
that we will not dwell here on such issue. A very tight bound, especially when the
SER is small, is

SER ≤ 4
(

1− 1√
M

)
Q

(√
3

2(M − 1)

√
2Es

N0

)
(M-QAM) (2.109)

2.7.4 Architecture of DSP-based Data Demodulators

How are the techniques for signal modulation and demodulation that were described
in the previous Sections actually implemented in practical realizations? The current
trend in modem design, both in a cheap Mobile Terminal (MT) of a cellular network
(UMTS, GSM) and/or in an expensive Radio Base Station, is to perform as much signal
processing in the digital domain as possible (modulation, demodulation, filtering etc.).
In the receiver section of the modem (the most challenging to implement) we have
basically two possible alternatives as far as the location of the ADC stage is concerned.
The first approach, sketched in Fig. 2.32, is mainly pursued in low-power MTs. The
RF received signal is converted to base-band using a conventional I/Q analog tuner
followed by twin I/Q ADCs with sampling frequency fs, and base-band digital signal
processing for data detection. In the lowest-cost, lowest-power implementations, the
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Fig. 2.32 I/Q Signal Demodulation with BaseBand sampling

first conversion stage to IF is absent, and the RF signal is directly brought to (I/Q)
baseband (so-called zero-IF architecture).

The critical points of this arrangement are the possible amplitude imbalance of the
two I and Q analog rails, as well as the imperfect quadrature between the two I/Q car-
riers used for IF to baseband conversion. A precision receiver with loose consumption
or cost constraint is implemented according to the IF-sampling architecture shown in
Fig. 2.33 (a), where the ADC stage is shifted towards the antenna. Incidentally, we
observe that this is just the general scheme of the so-called software-defined radios
(SDR), where all of the signal processing, apart from the initial RF-to-IF conversion
is performed in the digital domain, and the DSP components are reprogrammable
to a certain extent. With an SDR, changing the signal format to be handled just
amounts to changing the software that drives the (programmable) DSP components,
instead of changing a piece of dedicated hardware (a card, or the whole modem) as
in conventional equipment.
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Fig. 2.33 I/Q Signal Demodulation with IF sampling (a) or with RF sampling (b)

Coming back to Fig. 2.33 (a), the ADC operates directly on the IF signal, and the
relevant digital output is still a bandpass signal on a different, digital, intermediate
frequency fDIF = fIF ± k · fsa (k an integer). The analog front-end is simplified,
and the task of base-band conversion is deferred to the digital section (with no issues
of amplitude imbalance and imperfect quadrature). The main drawback of the IF-
sampling approach is the tighter requirements for the ADC which must now handle
faster, IF signals (instead of base-band signals as in Fig. 2.32). In particular, the
converter rise and fall times, i.e., the time needed to "open" and "close" the gate of
the sampling device shall be commensurate to the analog IF frequency, and turns out
to be much shorter than those of the converters operating on the base-band signal.
As a consequence, the IF-sampling ADC is in general more expensive and power-
consuming than the two baseband converters in Figure 2.32. The ”ultimate” version of
a software-defined radio is shown in Fig. 2.33 (b), and is called a direct-RF-conversion
receiver. The ADC is further moved towards the antenna, and the analog components
are reduced to the bare minimum, in particular no IF conversion is needed. Of course,
the issues related to the ADC cost and power consumption that were already mentioned
regarding the IF-sampling architecture are here further exacerbated. Nonetheless, this
kind of architecture is used in military equipment where special needs such as fast
signal acquisition and detection, as well as total terminal reconfigurability, are of
paramount relevance.


