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Binary Hypothesis Testing Problem

B The function of a surveillance radar is to ascertain whether targets are
present in the data. Given the observed vector z, the signal processor
must make a decision as to which of the two hypotheses is true:

z=d H,: Target absen
z=s +d H,:Target presel

B The test is implemented on-line for each range cell under test (CUT)

B The detection is a binary hypothesis problem whereby we decide
either hypothesis H, is true and only disturbance is present or hypothesis
H, is true and a target signal is present with disturbance.




Nevman-Pearson Criterion

B According to the Neyman-Pearson (NP) criterion (maximize P, while keeping
constant P.,), the optimal decision strategy is a likelihood ratio test (LRT):

z|IH)) & zIH) | &
A(2) = Pay, (2| >¢ = InA@)=1n Pay, (2] > 1
pz|H0(Z‘HO) Ho pz|H0(Z‘HO) Ho

pZ|H_ (Z|Hi) Is the probability density function (PDF) of the random vector z
under the hypothesis H;, i=0,1.

/] is the detection threshold (set according to the desired P.,).




The Optimal Detector

® The complex multidimensional PDF of Gaussian disturbance is given by:

P, (Z|Ho) = Py (2) = 77“1|R| exp(~z"R™z) z|H,Ocwv (O.R)

4

v
Nx1 data vector IR|=def{R} , R=R" - Hermitian matri

B The complex multidimensional PDF of target + disturbance: Py, (z|H) =7

B It depends on the target signal model: z=s +d

B If the target vector is deterministic: F)Z|H1 (Z|H1) — pZ|HO(Z —S |Ho)




The Optimal Detector

B If the target vector is random with known PDF:

e @H) = E, {25 H)} = [ 37“1|R| exp(- -5 Y'R™ -5 )b, 6 )X

/

pz|Ho(Z_st|H0)

B Under some assumptions, we have found for the target signal:

s =L8p(f,) [,8 IS the target complex amplitu}

Nx1
p(f,) SteeringVector
Nx1

Z\flTr Doppler frequency= target radial velot

f, =




Narrowband Slowly-Fluctuating Target Signal Model

ej 2ty
p(fy) =

Nx1

ai 277(N-D)f

B Temporal Steering Vector

It has the Vandermonde form because the
waveform PRF is uniform and target
velocity is constant during the CPI.

B The detection algorithm is optimized for a specific Doppler.

B Since the target velocity is unknown a-priori, p is a known function of
unknown parameters, so the radar receiver should implement multiple
detectors that form a filter bank to cover all potential target Doppler

frequencies.




Target Signal Models

s =Bp(f,)

Nx1

B Different models of s, have been investigated to take into account different

degrees of a priori knowledge on the target signal:

(1) s, perfectly known

(2) s,= Bp with BOCN(0,0;)i.e., Swerling | model, and p perfectly known;

(3) s;= Bp with |4 deterministic and LIS random, uniformly distributed in [0,2 73,

l.e. Swerling O (or Swerling V) model, and p perfectly known

(4) s, = Bp with funknown deterministic and p perfectly known;



Perfectly Known Target Signal - Case #1

B The optimal NP decision strategy is a LRT (or log-LRT):

z|H1(Z‘H1)

1(z) =In/A\(2) = Z\H

—zHR‘lz—(z-st)“R‘l(z-st)

z|H0

=s'R7z+z"R's -s'R’s :2De{stHR"]z} -S'R§ 27

B |tis the so-called coherent whitening matched filter (CWMF) detector:

StH R'z= S[H RY2R 1% = S[H (R 1 2) 12, — (R_/l §[ )H " :st
---------------

5 2R¥%5,iZ=R JZZZ { whitening transformation matched filtering
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Performance of the coherent WMF

Hy

() =20¢e{s'R™'Z} 2 77

Ho

z|H,Ocwv (OR), z|H,Ocwv(s,R) = | isareal Gaussian|

m, = E{I|Ho} = 20¢{s'R™E{z|H }} = 0
m =E{I[H,} =20¢{s'RE{z|H }} = 24'R s

m The fact that d is a complex circular Gaussian random vector implies that
[Ch.13, Kay98]:

E{dd“} =R=R" and E{ddT} =

[Kay98] S.M. Kay, Fundamentals of Statistical Signal Processing. Detection Theory. Prentice Hall, 1998.



a; =var{l|H,} = {‘I— {1]H, ‘ H }
= E[‘ZDe{stH RZ)[ 0} = E{\st“ Rz +2" R‘]st‘2|Ho}
E{(stHR‘ld +d"R7s ('R +dHR‘]s[)H}
E{s'"R™dd"R™s +§'R7ds'R™d+d"R™5d"R™5 +d"R"§'R"tl}
E{st ) s +25'R7dd"R7s +9 (R'l)Dd*dHR'ls[}
= E{zgH Rdd" (R‘l)Ds; + 25" R dd" R‘ls[}
=25'R™E{dd"} R7's + 28'R'E{dd"} R's
=25 R"RR7s =2'R'’5
o =var{l|H.} = {‘I ~E{I|H}[ |H} A'R™s
we used the fact tha’Rd =(§'R7'd) =d"R™"s =d" (R™) 5 and E{dd"}

HRdd" (R—l

0




Performance of the coherent WMF

B The probability of detection (Py) and probability of false alarm (Pg,)
can be calculated using the statistics we have just derived:

_ _(-my)°
P, =Pl >7[H,} jp,|HO(||H )l = JF 07 jdl

a1 n-m 7
= ”J%Eexp( jdx Q( o ) Q[\/Zs[R S[J

_ _T _A[n—m))_ Al n7-29"'Rs
PD—P I Hl— » Hldl— = | =
{1 >n|H,} £p|1a| ) Q[ . ) Q{ \/ZS[HR‘lstJ

What is the meaning of 25 R, ?




Performance of the coherent WMF

B The filter output can be written as : y:WHZ =w" (S[ +d) :WHSt +w"d (Hy)

B The Signal-to-Noise ratio (SNR) at the output is:

I

NR = E{‘WHS[‘Z} . E{WHStStHW} : W E{StStH}W _ WHStStHW _ ‘WHSI‘Z

_E{‘de‘z}_E{w“dd“w} w“E{dd“}w k“‘WHRW w"Rw

--------------------------------------

. : . — -1
B Let's apply this consideration to our case where W =R™"S,  and

De{s'Rz} =0e{s'R s} + De{s'Rd} =5"'R™% + Oe{s'R ™}




Performance of the coherent WMF

B Therefore, the SINR at the output of the coherent WMF (CWMF) is:

HR L 2 HR L 2
NRywe = (St S[_) 2 H (S_tl StH) 1 N\2
E{(De{stHR 1d}) } E{[S‘ Rd+d"R ]stj }
2
CASRYS)
RS =25'R™s,
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Performance of the coherent WMF

Receiver Operating Characteristic (ROC) curves:
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The ROC is a
function of only
the SNR and
the threshold.

Here, the
threshold is
varied to cover
the entire range
of interest and
the ROC curve
Is plotted for
four different
SNR values.




Swerling I Target Signal - Case #2

s = Bp(fy), ,BDCW(O,JSZ), p perfectly know

B=|Be’0cw(0,02) = |Bis Rayleigh distributecE{|,8|2} =o?
¢ usiformly distributed on [@7)

B Based on these assumptions:

z|H,0cwv (0.R), z|H,Ocw(00%pp* +R)

E{zz" |H,} = E{(ap +d)(op +d)"} = E{|5} pp" +R = o%pp" +R




Swerling I Target Signal - Case #2

1
P, (2Ho) =5 R]

exp(—zH R‘lz)

1
olpp" +R|

P, (2|H,) = exp(—zH @’pp" +R )‘12)

m

B The log-likelihood ratio (log-LR or LLR) is given by:

pz|H1 (Z‘ Hl)

In
pz|H0 (Z‘HO)

=In|R|=In

opp" + R‘ +z"R7z-z" (cpp" +R) 'z

B By making use of Woodbury’s identity:
oR7pp"R™
1+0p"R7p

(opp" +R) =R~




Swerling I Target Signal - Case #2

HR—lppH R—lz Hy
INA(Z) =In|R|=Inlo2ppt +R|+ 022 >
(2) =In|R|~In|aZpp o R <

B By incorporating the non-essential terms in the threshold, we derive that
In this case the optimal NP decision strategy is:

Hi
a2
‘pHR lz‘ > ,7
<
Ho

B Again, the optimal decision strategy requires calculation of the WMF output,
but instead of taking the real part of the output we calculate the modulo of

the output: this is due to the fact that the target phase in this case is
unknown.

B This is sometimes called the noncoherent WMF




Performance of the non-coherent WMF

B Performance of the non-coherent WMF: Signal-to-Noise power ratio
(SNR)

0

‘WHZ‘Z:‘pHR‘lz‘ZHi n i WKRp optimal weight:

o {{:Vv :% E{V‘VVHVR?V‘} = SR <E A 0"R

NRye =02p"R™p, BOCN(0,07)




Performance of the non-coherent WMF - SW1

Performance of the non-coherent WMF when the target complex amplitude
IS a zero-mean circular complex Gaussian r.v. (Swerling I).

z|H,0cv (OR), z|H,O0cn(002pp" +R)
= Y£p"R™zis a complex circular Gaussian r|k,
= Y|H, Ocn(m,o?),i=0,1

m, = E{Y|H,} =p"R™E{z|H} =p"RE{d} =0

r m =E{Y|H,} =p"R™E{z|H,} =p"R™pE{ B} +p"R'E{d} =0

X=[Y[=YZ+Y? = X[H,0Exp@?)i=01 =10 X<O
1 x=0

X

1 2
p)(||-|i (X‘Hi):?e Iu(x)




o =varivn = el = R g = et ol

= E{IOH R™'dd" R_]‘p} = pH R‘lp

o7 =va{Y|H} = E{|Y|2|H1} = E{‘pH R—12‘2|H1}
- E{‘,BPH R +pHR_1d‘2} = E{‘ﬁpHR_lp‘z +‘pHR_]d‘2}
_ Jsz(pH R‘lp)z +p"Rp = (pH R‘lp)(1+ op" R‘]p)

/a

Fea = j px|H0(X‘HO)dX = e_ag
7

/e
2
1

H,)dx=e “

Po = | Py, (X
ui




Performance of the non-coherent WMF - SW1

|
‘Q |

' = p=02In(yP,)

— A %
2

2

o o

_lz _a_(iln(]/PFA) —5 9o
P,=e”% =e" = (e-'n(ﬂPFA))al =(R.,)e
0.2
where =% =1+02p"R7p =1+ NR,,-

Oy

m Receiver Operating Characteristic (ROC) curves:

P, = (PFA)1+S\11PWF

B P, is a monotonic increasing function of SNR,e-




Swerling 0 Target Signal - Case #3

® If the amplitude is non fluctuating and the phase is uniformly distributed:

B=|Be? = |B is deterministic (nonfluctuating
@ is uniformlyistributed on [0,2r

2l H, 0 |Ble*p.R)

0. (zHy | P @#HIAP [ by, 2lgHOP,, @]H A0
A(2) = z|H, ) 2 e

pz|HO (Z‘HO) ) pz|HO (Z‘HO) ) pz|H0 (Z‘HO)

[P @R, @08 [, I

pz|H0 (Z‘HO) pZ|HO (Z‘Ho)




Swerling 0 Target Signal

1 2r
2= | Pug, (2]8, H,)dg
A2) = 2y

pz|H0 (Z‘HO)
L enf-e-lajepy R -lofe%p )y

exp(—zH R‘lz)

- L Fex fe 'R 2 +|le2"R b A p"R ) s
0
21T

L fexf 26lp"R 4 cost -, ¥l "R ) 0o

= L Texp( 28p"R 2| cosp -, Jap &,
0 where ¢, = Op"R ™'z




Swerling 0 Target Signal - Case #3

A@) == [ exp( 4B[p"R 7| cosp - 4, g

=1, (Z‘IBHPH R—lz‘) |}—|,3|2pHR'1IO Hzl 1

Ho

where |,(X) is the modified Bessel function of the 1st kind:

2 17
o(¥)2 5, | exvlx@ -4 ) d¢

m  Since |,(x) is monotonic in X, the LRT reduces to the noncoherent WMF:

‘pH R_lz‘ Hzl \//7 or equivalentely ‘pH R_lz‘z Z 1]




Performance of the non-coherent WMF - SW0

B Performance of the non-coherent WMF when the target amplitude |4 is
deterministic, i.e. nonfluctuating, and the target phase is uniformly distributed
over [0,2m) (Swerling 0).

z|H,0cw (O.R), z|g.H, O (|Blep R)

1 21T
o (2| M) = | Dy, (216, H.)d
0

B The probability of false alarm is the same as before, since it does not
depend on the target signal model:




Performance of the non-coherent WMF - SW0

B The decision rule can be put in the form:

X =¥ =Y +Y?=p "R Z 1

B We want to calculate:
Po = [ P, (XHDAX= [ Py (v[H )y
7 N/

4
PDF of |Y| under the hypothesis H;

B Let us calculate first the (conditional) PDF of the complex r.v. Y:

Y=Y, + Y, =p"Rz




Performance of the non-coherent WMF - SW0

= Y|¢,H, =p"R™z is a complex Gaussian

= Y|¢,H,0cN(m,o7)

E{Y|¢’ Hl} :pHR_lE{Z|¢,H1} =p"R™p |:|13|ej¢
{Y_ml|2|¢,H1} = E{‘DHR'lz—p”R‘lp [pﬁ|ej¢‘2|¢’|‘|1}
{ p" R—ld‘2|¢, H1} = E{‘pH R‘ld‘z}

=E{p"R7dd"R7p} =p"RE{dd"} R p=p"R "

m
o>

[
m

E

_ _ 1 21
pYR,Y||H1(yR’ yl ‘Hl) = p\(|H1 (y‘Hl) _ET'i p\(|¢,|-|1 (y‘¢’ Hl)d¢

~ 1 21T 1 __1 - i 22
_Zﬂj.smfexp[ af‘y |Ble al‘ jdgb




Performance of the non-coherent WMF - SW0

1% 1 “+1B 0t -2 2 cos — [
pY Y,|H1(yR Yi ‘Hl)— j > EX _‘Y‘ ‘IB‘ % hj_‘zﬁ‘al @ y)jd¢
1

—_ex M "B‘ o 1 Texp( 2y||B| cost -0y ))d¢
2710

+ 4\
exp[—‘y‘ Jff‘ %, (avle)
1 J

B Now, to derive the PDF of |Y|, we need to consider the following 2-D
transformation of r.v.’s (i.e. from Cartesian to polar coordinates):

R=|Y|= Y2 +Y?

§=0Y= arctar(Y, /Yg)




Performance of the non-coherent WMF - SW0

B From the well-known theorem of r.v. transformations:

Py, v i, (Yo ¥i [Ha)

“]‘ Yr=I cosd
y, =r sing

I%‘|’DY||"1( y"Dy‘Hl) = pR,z9|H1 (r ’ﬂ‘Hl) =

B Where J is the Jacobian of the transformation: ‘\]‘ :]/r

2 +| 6P o
pR"9|H1(r’Z9‘H1): rzex - ‘ﬂZ‘ -

s o JIO(Z\,B\), O<d< 2Ty

2
quHl(r\Hl):j Pe g, (1, 3|H, )
0

2 2 4
zz—rzexp£—r +"82‘ UlJlo(Zr\ﬁD’ r=0

0, 0,




Performance of the non-coherent WMF - SW0

B The PDF of the envelope R=|Y| under the hypothesis H, is a Rician function:

2 4181 o
pR|H1(r‘H1):_eXp ‘01_82‘ - IO(Z“IBD’

1 1

- =|B] o7 =B p"R

B Under the hypothesis H,, the PDF is a Rayleigh function; it can be obtained
from the Rice PDF by setting £=0:

_ 2 re 2 _~HD-
pRlHo(r\Ho)—?ex -— 1|, r=0, g7=p"R™p
1

0,




Performance of the non-coherent WMF - SW0

:ﬂ y2J2SNRyye . SNRy,e =|8 p"R™p
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Performance of the non-coherent WMF - SW0

2 r2+8 o
pRHl(r\Hl):?rzexp{— "82‘ 1j|0(2r\ﬁ\), r=(

1 Jl

i 2 r2+|8]° o
P = J' pRIHl(r‘Hl)dr = j—Zexp{— "6;‘ : ]IO( Z\,B\)dr
Jn

779 g,

2 2

::fzexpi—z ;y jlo(zy)dz=QM (v4)

where we definedz 2 \Er y2 |Blo, = zy= g A=\ nio?

1

Qy, (y,)l) Is the so-calletlarcum Q -function




Performance of the non-coherent WMF - SW0

Summarizing:

Fea = eXp(_ b p] Note that: NR,,,- = SI\IREV\MF




Performance of the non-coherent WMF - SW0
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Performance of the WMF

ROC: the noncoherent WMF (SW-0) vs. coherent WMF.

coherent WMF (blu)
noncoherent WMF (red)
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White Gaussian Noise

® The complex multidimensional PDF of Gaussian disturbance is given by:

H
P, (2[Ho) = Ps(2) = 12 N exr{—z fj z|[H, Ocv (0,031

¥

Nx1 data vector

7O

o _/

plel(Z|H1) = ES.{ pZ|H0(Z_St|H0)} :I 12)N eXp(_(Z_S[)UHj(Z_SI)JEpst & Ms;

pz|Ho(Z—5t|Ho)




Perfectly Known Target Signal - Case #1

B The optimal NP detection strategy is:

I(z):—zDe{stHz}Z n

_ 7] _ 1

) ,7 B S“R: v‘ '~.....““
PD - Q[ \/SI\IRCW\,/::F ] = P Q( ( ) \/S'\IRCV\/MF )

2
where  INRywe =—S'S
Ty




Swerling 0 Target Signal - Case #3

B If the amplitude is non fluctuating and the phase is uniformly distributed:

=|Ble” = || is deterministic (nonfluctuating
¢ is uniformiyistributed on [0,2Zr

2l H, Dcv (|Blep. 21

Iﬁl

A\(Z) ——J'”exp[zl’f“sz‘ cosf — @, 3d¢Eé %

ﬂ
[Z‘ﬁ“p z‘j@ % > A

Ho

where p"p=N




Swerling 0 Target Signal - Case #3

Since I,(x) is monotonic in X, the LRT reduces to:

Hy Hy

H_| > : Ho2 >
‘p Z‘< \//7 or equivalentely ‘p Z‘ < n

Ho Ho

ROC: Bea = exp(—”ﬁjj Ry =Qy (\/ 2R ’\/_ ZInPFA ))

N|A[

2
Ud

where: SNR - =

The integration in this case is said coherent, because all the pulse
samples are first weigthed by p and then coherently summed up. The
modulo is taken after summation. The gain in the SNR for coherent
integration is equal to N.




Probability of Detection, P,

Swerling 0 vs Swerling 1
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Figure 6.7 Performance difference between coherent and envelope de-

tectors for the Gaussian example. (a) Difference in P for x = 10 dB.
(b) Difference in Pp for Pps = 107%,




Incoherent pulse train - Incoherent integration

z(n)=d(n) H,: Target absen
z(n)=Ae" +d(n) H,:Target presel

Z]H (Z‘Hl) _J. p2,¢|H1(Z’¢‘H1)d¢

_P _
/\(Z) ) z|HO (Z‘HO) ) z|H0 (Z‘HO)

N—-1 too

m p(z(N)|#. H,) by, (B|H)S

A(z(n))

"
|] p(z(m)[Ho)

A(z(n)) = | LZA‘ZZ(H)‘j a_
g

d




Incoherent pulse train

N-1
Applying the logarithm:  In A(2) = Z In A ( z(n))
n=0

N-L 2A|z(n) |2
1(2)=YInl, LZ( ) o
n=0 d Ho

The calculation of 1, is not easy,

so we have to resort to some 8

approximation %

, s

X :

In1,(x) DZ for x<1 8-
Inly(x)Ox  for x>1 PO\ I S I I IO O O
=20 <15 -10 -5 0 5 i0 15 20 25 30

x (dB)

Figure 6.8 Approximation of the In[f,] detector characteristic by
the square law detector when its argument is small, and the linear
detector when its argument is large,



Incoherent pulse train

Then for x<1 (small SNR) the detector becomes:

N-1 2H>1
dlzn) Z 7
n=0 Ho

For x>>1 (large SNR) the detector becomes:
N-1 H1
>
2 |zZ)[2 77
n=0 Ho

Both detectors perform an incoherent integration, since they first
calculate the modulus of each sample, then sum up the results.

The linear approximation fits the In |, very well for x>10dB, the
square law detector is an excellent fit for x<5dB.




Incoherent pulse train

The integration gain for coherent processing is N

For the incoherent integration, the calculation is not so easy because
in general it depends on N, PD and PFA.

For very large values of N, the gain of the quadratic detector can be
approximated (in dB) with 10log,,+/ N — 5.5. As a rule of thumbs
we use /N.
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For the linear detector
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Albersheim’s equation is used.
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Figure 6.11 Noncoherentintegration gain Gy, for a nonfluctuating
target, as estimated using Albersheim's equation.




Binary integration

m Any coherent or incoherent detection is given by comparing the
detection statistic with a threshold, so the output of the detector is
binary in the sense that it takes one of only two possible outcomes.

m If the entire detection process is repeated N times for a given
range, Doppler, or angle cell, N binary detections will be available.

m Each decision of “target present” will have some probability P, of
being correct, and prob. P, of being incorrect. To improve the
reliability of the detection decision, the decision rule can require that
a target is detected on some number M out of N decisions before it is
finally accepted as a valid target detection.

m This process is called binary integration with a “M of N” rule.

= With the binary integration both overall P, and P, are given by

N N N—k
P(M,N) = Z[kjpk(l— p)




