Floating Point Formats for Machine Learning

IEEE Working Group P3109 interim report on 8-bit binary floating-point formats.

18 September 2023

Send questions and comments to the P3109 Secretary < jeffrey.sarnoff@ieee.org>.

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Incorporated
Three Park Avenue
New York, New York 10016-5997, USA
All rights reserved.
This document is an unapproved draft of a proposed IEEE Standard. As such, this document is subject to change. USE AT YOUR OWN RISK! IEEE copyright statements SHALL NOT BE REMOVED from draft or approved IEEE standards, or modified in any way. Because this is an unapproved draft, this document must not be utilized for any conformance/compliance purposes.

Table of Contents

1. Introduction 3
2. Typographical conventions and notation 3
3. Values 4
4. Subnormals 5
5. Not a number (NaN) 5
6. Zero 6
7. Infinities 6
8. Classification Operators 7
9. Comparison Operators 7
10. Extremal Values 9
Appendix A: Numerical Examples 10
Appendix B: Value Tables 11
Value table: binary8p3 12
Value table: binary8p4 13
Value table: binary8p5 14

1. Introduction

This document represents the results of discussions and decisions made by IEEE working group P3109, "Standard for Arithmetic Formats for Machine Learning". The Project Authorization Request (PAR) for P3109 defines the scope, need, and stakeholders as follows:

Scope of proposed standard: This standard defines a binary arithmetic and data format for machine learning-optimized domains. It also specifies the default handling of exceptions occurring in this arithmetic. This standard provides a consistent and flexible arithmetic framework optimized for Machine Learning Systems (MLS) in hardware and/or software implementations to minimize the work required to make MLS interoperable with each other as well as other dependent systems. This standard is aligned with the IEEE Std 754-2019 for Floating-Point Arithmetic.

Need for the Project: Machine Learning Systems have different arithmetic requirements from most other domains. Precisions tend to be lower, and accuracy is measured in dimensions other than just numerical (e.g. inference accuracy). Furthermore, Machine Learning Systems often are integrated into mission-critical and safety-critical systems. With no standards specifically addressing these needs, Machine Learning Systems are built with inconsistent expectations and assumptions that hinder the compatibility and reuse of machine learning hardware, software, and training data.

Stakeholders for the Standard: System developers, vendors, and users of machine learning applications across many industries and interests including but not limited to compute, storage, medical, telecommunications, e-commerce, fleet-management, automotive, robotics, and security.

The scope of this interim release is interchange formats only. The working group continues to deliberate on the specification of operations.

2. Typographical conventions and notation

Bold text describes the decisions and specifications of this document.

Non-bold text is non-normative background material, typically providing rationale and arguments representing the discussions of the WG leading to a decision and specification.

This document specifies 8-bit floating-point interchange formats (binary formats) and associated operations. Binary formats are parameterized by their width, the number of bits spanned in memory (here, 8); and their precision (p), the number of bits spanned by the true significand (one more than the number of explicit "mantissa" bits).

The formats defined herein shall be referred to as "binary8" formats, and further parametrized by precision p yielding names "binary8pp".

For example, "binary8p3" is a format with 3 bits of precision, hence a 2-bit mantissa and a 5-bit exponent field.

3. Values

This section describes the set of values that a binary8 format shall represent. The universe of values in existing floating point usage encompasses some finite real numerical values, the nonfinite numerical values positive and negative infinity ($-\operatorname{Inf}, \quad+\operatorname{Inf}$), the non-numeric not-a-number values ($N a N, N a N_{1}, \ldots$), and negative zero (-0). The value set for each binary 8 format specifies the set of values that are available in that format.

Each binary format shall be associated with a unique encoding. An 8-bit binary encoding is a mapping from 8-bit strings to values. Some of these mappings are included as an Appendix.

The four special values ($0,+\operatorname{lnf},-\operatorname{lnf}, \mathrm{NaN}$) have encodings that are shared by all binary8 formats.
Table 1 - Encoding Special Values

Value	Hexadecimal Encoding	Bit Sequence
Zero	0×00	00000000
Positive Infinity (+Inf)	$0 \times 7 F$	01111111
Negative Infinity (-Inf)	$0 \times F F$	11111111
Not a Number (NaN)	0×80	10000000

The set of finite floating-point numbers representable with a binary format is determined by two parameters:

- $\quad p=$ the number of digits in the significand (precision)
- emax = the maximum exponent

IEEE-754 2019 includes the radix b and emin in the list of format parameters. This document covers binary (radix 2) formats only. The parameter emin is determinable from other parameters, so is not a format-defining parameter.

The range of finite values represented by a given binary8 format is defined by the parameter emax. In IEEE-754, emax was consistently chosen across formats to be $2^{w-1}-1$, where w is the exponent field width in bits. P3109 formats shall follow this convention. This choice has the following consequences:

- The binary8pp value sets are subsets of the IEEE-754 binary16 value set for $p>2$.
- The finite values are symmetrically distributed about 1: there are 63 encodings in the range $(0,1)$, and 63 encodings in the range $[1, \infty)$.

Table 2 - Parameters for Binary Formats*

Parameter	binary8pp	binary8p5	binary8p4	binary8p3	binary16	binary32	binary64
k, storage width in bits	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{3 2}$	$\mathbf{6 4}$
p, precision in bits	\boldsymbol{p}	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{1 1}$	$\mathbf{2 4}$	$\mathbf{5 3}$
emax, max exponent	$\mathbf{2}^{8-\boldsymbol{p + 1}} \mathbf{- 1}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{1 2 7}$	$\mathbf{1 0 2 3}$
w, exponent field width	$8-p$	3	4	5	5	8	11
bias, $E-e$	$e m a x+1$	4	8	16	15	127	1023
sign bit	1	1	1	1	1	1	1
t, significand field width	$p-1$	4	3	2	10	23	52

* Adapted from table 3.5 of IEEE-754 (2019), and extended to include proposed binary8 formats.

4. Subnormals

Binary8 value sets shall include subnormals.

The IEEE-754 value sets include subnormals. A value with trailing significand field m and exponent e is interpreted as $1 . m \times 2^{e-b}$ except when all bits of the exponent bitfield are 0 , in which case, the value is $0 . m \times 2^{e-b+1}$.

When training models, it is common to represent near-zero values for gradients. Subnormal numbers induce equal quantization steps around zero; this expands the reach of binary8 trainable models. In statistical applications, the subnormal range is useful for uniform-like distributions, being uniform around zero. This also supports working with Gaussian-like distributions where numbers around zero are more probable.

5. Not a number (NaN)

Binary8 value sets shall include exactly one NaN, which shall not signal.

Other floating point formats define several NaN values, denoted ($\mathrm{NaN}, \mathrm{NaN}_{1}, \ldots$). NaNs are returned from operations with results outside the set of values. For example, $\operatorname{DIV}(0,0)$, or $\operatorname{ADD}(\operatorname{Inf},-\operatorname{Inf})$. Multiple NaN encodings are used in other formats to allow different exceptional conditions to be distinguished.

In the context of machine learning systems, uses of NaN include:

- Debugging of code running on the accelerator. In AI accelerators, exceptions may be difficult or expensive to convey back to user code, so it is common practice to allow NaN values to propagate through calculations in order to indicate that an error has occurred.
- Usage as a "notable value" indicator. In some datasets, for example tabular data, values may be missing. It is useful to use a value outside of the normal numeric range to indicate the position of these values. Particularly where memory usage is a concern, as may be expected in float8 applications, the use of a separate "mask" array, or a list of indices, imposes an extra memory overhead. In some cases, an Inf can be used as a missing value, but given the restricted range of float8, it is likely that infinity shall be used as a separate indicator of "larger/smaller than +/- MaxFloat".
- The use of multiple NaN payloads is not unknown in statistical code (e.g. the R system has NaN and N/A), but it is not widely used, and in the context of float8, multiple NaNs imposes either additional hardware complexity (using only a subset of the significand range), or a large reduction in encoding space (e.g. 8 codes for E5, 16 codes for E4, 32 codes for E3).

6. Zero

Binary8 formats shall have exactly one zero. This zero value is non-negative.

The inclusion of negative zero would incur the cost of an additional code point. Given the decision to encode only a single NaN , placing that NaN at the negative zero code point enables the strictly positive and strictly negative number ranges to be symmetric.

A key rationale for inclusion of - 0 in IEEE- 754 was the consistent implementation of branch cuts in the atan 2 function [Kahan 1987]. Although the atan function is common in deep learning, it is used as an activation function, rather than a trigonometric operation, and the atan2 function is not known in deep learning applications. Furthermore, it is not expected that this standard shall define either atan or atan2.

A secondary rationale for inclusion of -0 is the hardware simplification offered by its presence in the implementation of sign/magnitude arithmetic. However, the existence of in-market implementations is evidence that the small hardware simplification has not been sufficient to balance the loss of one code point.

It might be considered that the use of integer comparisons in sorting would argue against the placing of NaN at the negative zero code point. For example, the JAX machine learning framework is known to sort using integer comparison [link]. However such sorting still requires $O(n)$ preprocessing and postprocessing steps to enable the use of twos-complement integer comparison, and already has special treatment of NaN and -0 , so eliminating -0 and placing NaN in the -0 position imposes negligible additional burden. As an aside, it is noted that sorting using comparison operations, as typically defined, is undefined in presence of NaN , however the existing practice is to sort NaN (e.g. using totalOrder) to the end of the array, and this remains permitted, at no additional cost.

7. Infinities

Binary8 formats shall include positive and negative infinities.

This decision causes a reduction in dynamic range (252 values rather than 254), but offers improved numerical robustness in important machine learning use cases. Two generic classes of such usage are:

- mask values, for example, in Transformer models in machine learning, [ref].
- representation of overflow.

As illustrated in Appendix A, both usages are facilitated by the presence of infinity.

8. Classification Operators

Conforming implementations shall provide these classification predicates and the classifier function. The classification predicates and the classifier function shall not signal exceptions.

predicate	Definition	predicate	definition
isZero	Iff x is 0	isNaN	Iff x is NaN
isInfinite	iff x is infinite	isFinite	Iff x is zero, subnormal or normal
isNormal	Iff x is normal	isSubnormal	Iff x is subnormal
isSignMinus	Iff x has a negative sign 1		
isCanonical	True 2	isSignaling	False 3

Table 3: Classification Predicates
${ }^{1}$ isSignMinus(NaN) is True: all binary8 formats encode NaN as 0×80 (0b10000000).
${ }^{2}$ There are no non-canonical binary8 interchange formats.
${ }^{3}$ All binary 8 formats have one NaN ; it does not signal.

The Classifier function
enum class (x)
NaN
Zero
positiveInfinity
positiveNormal
positiveSubnormal
negativeInfinity
negativeNormal
negativeSubnormal
end

9. Comparison Operators

Conforming implementations shall provide these comparison operators and the total $\operatorname{Order}(x, y)$ function.

Comparison operators are two argument predicates and their negations that return \{ True, False \}. Comparisons shall not raise exceptions. Comparisons are either ordered or unordered. A comparison is unordered iff either argument is NaN . All other comparisons are ordered.

For $\{=,>, \geq,<, \leq, \lessgtr\}$, if any argument is NaN the result is False.
For $\{\neq, \ngtr, \not \geq, \not \subset, \nsubseteq, \nsubseteq\}$, if any argument is NaN the result is True.
Otherwise, the result of a comparison shall match the mathematical result.

Table 4: Comparison Predicates and Negations

math symbol	predicate true relations	math symbol	negation true relations
$=$	CompareEqual equal	\#, NOT =	CompareNotEqual less than, greater than, unordered
>	CompareGreater greater than	\ngtr, NOT >	CompareNotGreater less than, equal, unordered
\geq	CompareGreaterEqual equal, greater than	\geq, NOT \geq	CompareLessUnordered less than, unordered
<	CompareLess less than	*, NOT <	CompareNotLess greater than, equal, unordered
\leq	CompareLessEqual less than, equal	\$, NOT \leq	CompareGreaterUnordered greater than, unordered
\leqslant	CompareOrdered less than, equal, greater than	\$, NOT $\$$	CompareUnordered unordered

The totalOrder predicate

total $\operatorname{Order}(x, y)$ provides a total ordering over each binary8 format's value set. It shall not raise any exceptions. totalOrder (x, y) shall return $\{$ True, False $\}$ in accord with the logic given below.

```
boolean totalOrder( }x,y
    if ! ( isNaN(x) || isNaN(y) )
            return compareLessEqual( }x,y\mathrm{ )
    else
            return (! isNaN(x)) || isNaN(y)|| true
        end
end
```

Logical operations used within totalOrder()
! is the logical negation operator: !true == false, !false == true.
|| is the short-circuiting, left-associative logical OR.

- if a is true, $a \| b$ returns true without evaluating b.
- if a evaluates as false, $a|\mid b$ returns the evaluation of b.
- a || b || c evaluates as (a || b) || c.

10. Extremal Values

It is practical to offer extremal finite values for supported 8-bit binary interchange formats. Following IEEE 754-2019 naming patterns, we adopt: maxNormal(T), minNormal(T), minSubnormal(T) where T is a binary8 format. For example: maxNormal(binary8p4) $==7 / 4^{*}\left(2^{\wedge} 7\right)$, minNormal(binary8p5) $==1 /\left(2^{\wedge} 3\right)$.

	maxNormal	minNormal	minSubnormal
binary8p3	$3 / 2^{*}\left(2^{\wedge} 15\right)$	$1 /\left(2^{\wedge} 15\right)$	$1 /\left(2^{\wedge} 17\right)$
binary8p4	$7 / 4^{*}\left(2^{\wedge} 7\right)$	$1 /\left(2^{\wedge} 7\right)$	$1 /\left(2^{\wedge} 10\right)$
binary8p5	$15 / 8^{*}\left(2^{\wedge} 3\right)$	$1 /\left(2^{\wedge} 3\right)$	$1 /\left(2^{\wedge} 7\right)$
binary8p6	$31 / 16^{*}\left(2^{\wedge} 1\right)$	$1 /\left(2^{\wedge} 1\right)$	$1 /\left(2^{\wedge} 6\right)$

Table 5: Extremal Values

Appendix A: Numerical Examples

Mask Values

A common use for ∞ is to create masks, for example, in Transformer models in machine learning, [ref]. These values, assembled in mask matrix M with values $M_{i j} \in\{0,-\infty\}$ are typically be added to computed values A, in a computation such as:

$$
\log (\operatorname{sum}(\exp (\tau *(A+M))))
$$

where τ is a "temperature" or "base" parameter [ref]. This calculation depends on the property that $\exp \left(\tau * A_{i j}-\infty\right)=0$. It is clear that where $M_{i j}$ is a large float (e.g. 480), then $\exp (-480)$ is an extremely small number, clearly much closer to zero than to any other value. However, careful implementations do not execute the calculation as written, and instead fuse the $\log (\operatorname{sum}(\exp (\boldsymbol{v})))$ operation into a single operation $\operatorname{logsumexp}(\boldsymbol{v})$, whose implementation makes use of the identity

$$
\operatorname{logsumexp}(\boldsymbol{v})=\operatorname{logsumexp}(\boldsymbol{v}-\max (\boldsymbol{v}))+\max (\boldsymbol{v})
$$

Without the "sticky" properties of Inf, this would produce incorrect answers. For example, in a format where MaxFloat=224 without Inf, and MaxFloat=240 with Inf:

$$
\operatorname{logsumexp}(\tau *[-224,-\infty]) \rightarrow \operatorname{logsumexp}(\tau *[0,-\infty])
$$

while

$$
\operatorname{logsumexp}(\tau *[-224,-240]) \rightarrow \operatorname{logsumexp}(\tau *[0,-16])
$$

If $\tau=1$ and all calculations are done in 8 -bit floating point, then the answer will be the same, as $\exp (-16)=0$, but if τ is small, or calculations are done in mixed precision, as is common with 8-bit floating point, the loss of "stickiness" shall silently yield unexpected answers. It is not expected that the full calculation shall be done in 8-bit floating point, but the subtraction of the maximum value (and computation of the maximum) might reasonably be in 8-bit floating point.

Overflow to Infinity

A second use of infinity is to indicate overflow on conversion to the binary8 type. Existing implementations offer several behaviours on overflow: overflow to infinity, saturation to MaxFloat, and overflow to NaN. The existence of a code point for infinity allows any of these options to be implemented in a given instantiation, while removing the code point removes the possibility of implementing the first.

Appendix B: Value Tables

Value tables mapping 8-bit strings to value sets are provided in this section.
A typical entry is of the form:

```
HEX BINARY = BINARY_FLOAT = DECIMAL
0x01 0_00000_01 = +0.b0.01^*2^-15 = 7.62939453125e-06
```

Where the fields are interpreted as follows:

HEX	Hexadecimal encoding of the code point
BINARY	Binary expansion of the code point, with underscores separating sign_exponent_significand
BINARY_FLOAT	The precise float value as a binary fraction followed by $2^{\wedge} e$ with decimal exponent e
DECIMAL	The decimal expansion of the value

Value table: binary8p3

0x00 $=0$-00000_00			
$\begin{aligned} & 0 \times 02=0 _00000 _10 \\ & 0 \times 03=0 _00000 _11 \end{aligned}$			
$0 \times 04=0 _00001 _00$$0 \times 05=000001$			
$0 \times 05=0 _00001 _01$$0 \times 06=0 _00001 _10$			
$0 \times 07=0 _00001-11$$0 \times 08=000010-00$			
$0 \times 09=0{ }^{-} 000100^{-} 01$			
$\begin{aligned} & 0 \times 0 \mathrm{a}=0 _00010 _10 \\ & 0 \times 0 \mathrm{~b}=0 _00010 _11 \end{aligned}$			
$0 \times 0 b=0 _00010 _11$			
$0 \times 0 c=0 _00011 _00$			
$\begin{aligned} & 0 \times 0 \mathrm{~d}=0 _00011 _01 \\ & 0 \times 0 \mathrm{e}=0 _00011 _10 \end{aligned}$			
0x0f = 0_00011_ ${ }^{11}$			
$\begin{aligned} & 0 \times 10=0 _00100 _00 \\ & 0 \times 11=0 _00100 _01 \end{aligned}$			
$\begin{aligned} & 0 \times 11=0 _00100 _01 \\ & 0 \times 12=0 _00100 _10 \end{aligned}$			
$\begin{aligned} & 0 \times 12=0 _00100 _10 \\ & 0 \times 13=0 _00100 _11 \end{aligned}$			
$0 \times 15=0 _00101 _01$			
$\begin{aligned} & 0 \times 15=0 _00101 _01 \\ & 0 \times 16=0 _00101 _10 \end{aligned}$			
$0 \times 18 \text { = 0_00110_00 }$			
$0 \times 19 \text { = 0_00110_01 }$			
$0 \times 1 \mathrm{a}=0 _00110 _10$			
$0 \times 1 b=0 _00110 _11$			
$0 \times 1 d=0 _00111 _01$			
$0 \times 1 \mathrm{e}=0 _00111 _10$			
$0 \times 1 f=0 _00111 _11$			
$0 \times 21 \text { = 0_01000_01 }$			
$0 \times 22=0 _01000 _10$			
$\begin{aligned} & 0 \times 23=0 _01000 _11 \\ & 0 \times 24=0 _01001 _00 \end{aligned}$			
$0 \times 24=0 _01001 _00$$0 \times 25=0 _01001 _01$			
$0 \times 25=0 _01001 _01$$0 \times 26=0 _01001 _10$			
$0 \times 26=0 _01001 _10$$0 \times 27=0 _01001 _11$			
$0 \times 27=0 _01001 _11$$0 \times 28=0 _01010 _00$			
$0 \times 28=0 _01010 _00$$0 \times 29=0 _01010 _01$			
$0 \times 29=0 _01010 _01$$0 \times 2 a=0 _01010 _10$			
$0 \times 2 \mathrm{a}=0 _01010 _10$$0 \times 2 \mathrm{~b}=0 _01010 _11$			
$0 \times 2 \mathrm{~b}=0 _01010 _11$$0 \times 2 \mathrm{c}=00101100$			
$0 \times 2 \mathrm{c}=0 _01011 _00$$0 \times 2 \mathrm{~d}=001011{ }^{\text {a }} 01$			
$0 \times 2 \mathrm{~d}=0 _01011 _01$$0 \times 2 \mathrm{e}=0$-01011_10			
$0 \times 2 \mathrm{f}=0 _01011 _{ }^{11}$			
0x30 = 0_01100_00			
0x31 = 0_01100_01			
0x32 = 0_01100_10			
0x34 $=0$ - 01101 _00			
$0 \times 34=0 _01101 _00$$0 \times 35=0 _01101 _01$			
0x36 = 0_01101_10			
0x37 $=0$ 0_01101_11			
0x39 = 0_01110_01			
$0 \times 3 \mathrm{a}=0 _01110 _10$			
$0 \times 3 \mathrm{~b}=0 _01110 _11$			
0x3c $=0$-01111-00			
$0 \times 3 \mathrm{e}=0 _01111 _10$			

$0 \times 06=00000110=+0 \mathrm{~b} 1.10 * 2^{\wedge}-15=4.57764 \mathrm{e}-05$ $0 \times 07=0 _00001 _11=+0 b 1.11 * 2^{\wedge}-15=5.34058 \mathrm{e}-05$ $0 \times 08=0 _00010 _00=+0 b 1.00 * 2^{\wedge}-14=6.10352 \mathrm{e}-05$ $0 \times 09=0 _00010 _01=+0 b 1.01 * 2^{\wedge}-14=7.62939 \mathrm{e}-05$ $0 \times 0 \mathrm{a}=0 _00010 _10=+0 \mathrm{~b} 1.10 * 2^{\wedge}-14=9.15527 \mathrm{e}-05$ $0 \times 0 \mathrm{c}=\mathbf{0}^{-} 00011$ - $00=+0 \mathrm{~b} 1.00 * 2^{\wedge}-13=0.00012207$ $0 x 0 \mathrm{~d}=0 _00011 _01=+0 b 1.01 * 2^{\wedge}-13=0.000152588$ $0 \times 0 \mathrm{e}=0 _00011 _10=+0 \mathrm{~b} 1.10 * 2^{\wedge}-13=0.000183105$ $0 \times 10=0 _00100 _00=+0 b 1.00 * 2^{\wedge}-12=0.000244141$ $0 \times 11=0 _00100 _01=+0 b 1.01 * 2^{\wedge}-12=0.000305176$ $0 \times 13=0$ _00100_11 $=+0 \mathrm{~b} 1.11 * 2^{\wedge}-12=0.000427246$ $0 \times 14=0 _00101 _00=+0 b 1.00 * 2^{\wedge}-11=0.000488281$ $0 \times 15=0 _00101 _01=+0 b 1.01 * 2^{\wedge}-11=0.000610352$
$0 \times 16=0 _00101 _10=+0 b 1.10 * 2^{\wedge}-11=0.000732422$ $0 \times 17=0 _00101 _11=+0 b 1.11 * 2^{\wedge}-11=0.000854492$ $0 \times 18=0 _00110 _00=+0 b 1.00 * 2^{\wedge}-10=0.000976562$ $0 \times 19=0 _00110 _01=+0 b 1.01 * 2^{\wedge}-10=0.0012207$
$0 \times 1 a=0 _00110 _10=+0 b 1.10 * 2^{\wedge}-10=0.00146484$ $0 \times 1 \mathrm{~b}=0 _00110 _11=+0 \mathrm{~b} 1.11 * 2^{\wedge}-10=0.00170898$ $0 \times 1 \mathrm{c}=0 _00111 _00=+0 b 1.00 * 2^{\wedge}-9=0.00195312$ $0 \times 1 \mathrm{~d}=0 _00111 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge}-9=0.00244141$
$0 \times 1 \mathrm{e}=0 _00111 _10=+0 \mathrm{~b} 1.10 * 2^{\wedge}-9=0.00292969$ $0 \times 1 \mathrm{f}=0 _00111 _11=+0 \mathrm{~b} 1.11 \star 2^{\wedge}-9=0.00341797$
$0 \times 20=0.01000 _00=+0 b 1.00 * 2^{\wedge}-8=0.00390625$ $0 \times 21=0 _01000 _01=+0 b 1.01 * 2^{\wedge}-8=0.00488281$ $0 \times 23=0-01000-11=+0 b 1.11 * 2^{\wedge}-8=0.0068359$ $0 \times 24=0 _01001 _00=+0 b 1.00 * 2^{\wedge}-7=0.0078125$ $0 \times 25=0 _01001 _01=+0 b 1.01 * 2^{\wedge}-7=0.00976562$ $0 \times 26=0 _01001 _10=+0 b 1.10 * 2^{\wedge}-7=0.0117188$
$0 \times 27=0-0100111=+0 b 1.11 * 2^{\wedge-7}=0.0136719$ $0 \times 27=0 _01001 _11=+0 b 1.11 * 2^{\wedge}-7=0.0136719$ $0 \times 28=0 _01010 _00=+0 \mathrm{~b} 1.00 * 2^{\wedge}-6=0.015625$
$0 \times 29=0 _01010 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge}-6=0.0195312$ $0 \times 2 \mathrm{a}=0_{-}^{-} 01010 _10=+0 \mathrm{~b} 1.10 * 2^{\wedge}-6=0.0234375$ $0 \times 2 \mathrm{~b}=0 _01010 _11=+0 \mathrm{~b} 1.11 * 2^{\wedge}-6=0.0273438$ x2c = 0_01011_00 = +0b1.00*2^-5 = 0.03125 $0 \times 2 d=0 _01011 _01=+0 b 1.01 * 2^{\wedge}-5=0.0390625$
$0 \times 2 e=0 _01011 _10=+0 b 1.10 * 2^{\wedge}-5=0.046875$ $0 \times 2 \mathrm{f}=0 _01011 _11=+0 \mathrm{~b} 1.11 * 2^{\wedge}-5=0.0546875$
$0 \times 30=0 _01100 _00=+0 \mathrm{~b} 1.00 * 2 \wedge-4=0.0625$ x31 = 0_01100_01 = +0b1.01*2^-4 = 0.07812 $0 \times 33=0$ _01100_11 $=+0$ b1.11*2^-4 $=0.109375$ $\times 34=00110100=+0 b 1.00 * 2^{\wedge}-3=0.125$ $0 \times 35=0 _01101 _01=+0 b 1.01 * 2^{\wedge}-3=0.15625$ $0 \times 37=0_{-01101 _11}^{-}=+0 b 1.11 * 2^{\wedge}-3=0.21875$ $0 \times 38=0 _01110 _00=+0 b 1.00 * 2^{\wedge}-2=0.25$ $0 \times 39=0 _01110 _01=+0 b 1.01 * 2^{\wedge}-2=0.312$ $0 \times 3 \mathrm{~b}=0 _01110-11=+0 \mathrm{~b} 1.11 * 2^{\wedge}-2=0.4375$ $0 \times 3 \mathrm{c}=0 _01111 _00=+0 \mathrm{~b} 1.00 * 2^{\wedge}-1=0.5$ $0 \times 3 \mathrm{~d}=0 _01111 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge}-1=0.625$ $0 \times 3 f=0 _01111 _11=+0 b 1.11 * 2^{\wedge}-1=0.875$
$0 \times 40=0 _10000 _00=+0 \mathrm{~b} 1.00 * 2^{\wedge} 0=1$
$0 \times 41=0 _10000 _01=+0 \mathrm{bb} 1.01 * 2^{\wedge} 0=1.25$
$0 \times 42=0 _10000 _10=+0 b 1.10 * 2^{\wedge} 0=1.5$ $0 \times 42=0 _10000 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 0=1.5$ $0 \times 43=0 _10000 _11=+0 b 1.11 * 2 \wedge 0=1.75$ $0 \times 44=0 _10001 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 1=2$ $0 \times 45=0 _10001 _01=+0 \mathrm{~b} 1.01 * 2 \wedge 1=2.5$ $0 \times 46=0 _10001 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 1=3$ $0 \times 47=0 _10001 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 1=3.5$ $0 \times 48=0 _10010 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 2=4$ $0 \times 49=0 _10010 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge} 2=5$ $0 \times 4 \mathrm{a}=0 _10010 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 2=6$ $0 \times 4 \mathrm{~b}=0 _10010 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 2=7$ $0 \times 4 \mathrm{c}=0 _10011 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 3=8$ $0 \times 4 \mathrm{~d}=0 _10011 _01=+0 b 1.01 * 2 \wedge 3=10$ $0 \times 4 \mathrm{e}=0 _10011 _10=+0 \mathrm{~b} 1 \cdot 10 * 2 \wedge 3=12$ $0 \times 4 \mathrm{f}=0 _10011 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 3=14$
$0 \times 50=0 _10100 _00=+0 b 1.00 * 2 \wedge 4=16$ $0 \times 51=0 _10100 _01=+0 b 1.01 * 2 \wedge 4=20$ $0 \times 52=0 _10100 _10=+0 b 1 \cdot 10 * 2 \wedge 4=24$ $0 \times 53=0 _10100 _11=+0 b 1.11 * 2^{\wedge} 4=28$ $0 \times 54=0 _10101 _00=+0 b 1.00 * 2 \wedge 5=32$ $0 \times 55=0 _10101 _01=+0 b 1.01 * 2^{\wedge} 5=40$ $0 \times 56=0 _10101 _10=+0 b 1 \cdot 10 * 2^{\wedge} 5=48$ $0 \times 57=0 _10101 _11=+0 b 1.11 * 2 \wedge 5=56$ $0 \times 58=0 _10110 _00=+0 b 1.00 * 2 \wedge 6=64$ $0 \times 59=0 _10110 _01=+0 b 1.01 * 2 \wedge 6=80$ $0 \times 5 \mathrm{a}=0 _10110 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 6=96$ $0 \times 5 \mathrm{~b}=0 _10110 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 6=112$ $0 \times 5 \mathrm{c}=0$ _10111_00 = +0b1.00*2^7 $=128$ $0 \times 5 \mathrm{~d}=0 _10111 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge} 7=160$ $0 \times 5 \mathrm{e}=0 _10111 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 7=192$ $0 \times 5 \mathrm{f}=0 _10111 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 7=224$
$0 \times 60=0 _11000 _00=+0 b 1.00 * 2 \wedge 8=256$ $0 \times 61=0 _11000 _01=+0 \mathrm{~b} 1.01 * 2 \wedge 8=320$ $0 \times 62=0 _11000 _10=+0 \mathrm{~b} 1 \cdot 10 * 2 \wedge 8=384$ $0 \times 63=0 _11000 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 8=448$ $0 \times 64=0 _11001 _00=+0 b 1.00 * 2 \wedge 9=512$ $0 \times 65=0 _11001 _01=+0 b 1.01 * 2 \wedge 9=640$ $0 \times 66=0 _11001 _10=+0 \mathrm{~b} 1 \cdot 10 * 2 \wedge 9=768$ $0 \times 67=0 _11001 _11=+0 b 1.11 * 2 \wedge 9=896$ $0 \times 68=0 _11010 _00=+0 b 1.00 * 2 \wedge 10=1024$ $0 \times 69=0 _11010 _01=+0 b 1.01 * 2^{\wedge} 10=1280$ $0 \times 6 \mathrm{a}=0 _11010 _10=+0 \mathrm{~b} 1 \cdot 10 * 2 \wedge 10=1536$ $0 \mathrm{x} 6 \mathrm{~b}=0 _11010 _11=+0 \mathrm{~b} 1.11 * 2 \wedge 10=1792$ $0 \times 6 \mathrm{c}=0$ _ $11011 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 11=2048$ $0 \times 6 \mathrm{~d}=0 _11011 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge} 11=2560$ $0 \times 6 \mathrm{e}=0 _11011 _10=+0 \mathrm{~b} 1.10 * 2^{\wedge} 11=3072$ $0 \times 6 \mathrm{f}=0 _11011 _11=+0 \mathrm{~b} 1.11 * 2^{\wedge} 11=3584$
$0 \times 70=0 \quad 1110000=+0 b 1.00 * 2^{\wedge} 12=4096$ $0 \times 71=0 _11100 _01=+0 b 1.01 * 2^{\wedge} 12=5120$ $0 \times 72=0 _11100 _10=+0 b 1.10 * 2^{\wedge} 12=6144$ $0 \times 73=0 _11100 _11=+0 b 1.11 * 2 \wedge 12=7168$ $0 \times 74=0 _11101 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 13=8192$ $0 \times 75=0 _11101 _01=+0 b 1.01 * 2^{\wedge} 13=10240$ $0 \times 76=0 _11101 _10=+0$ b1.10*2^13 $=12288$ $0 \times 77=0 _11101 _11=+0 b 1.11 * 2^{\wedge} 13=14336$ $0 \times 78=0 _11110 _00=+0 b 1.00 * 2^{\wedge} 14=16384$ $0 \times 79=0 _11110 _01=+0 b 1.01 * 2^{\wedge} 14=20480$ $0 \times 7 \mathrm{a}=0 _11110 _10=+0 \mathrm{~b} 1.10 * 2 \wedge 14=24576$ $0 \times 7 \mathrm{~b}=0$ _ $11110 _11=+0 \mathrm{~b} 1.11 * 2^{\wedge} 14=28672$ $0 \times 7 \mathrm{c}=0 _11111 _00=+0 \mathrm{~b} 1.00 * 2 \wedge 15=32768$ $0 \times 7 \mathrm{~d}=0 _11111 _01=+0 \mathrm{~b} 1.01 * 2^{\wedge} 15=40960$ $0 x 7 \mathrm{e}=0$ _11111_10 $=+0 \mathrm{~b} 1.10 *$ 2^ $^{\wedge} 15=49152$ $0 \times 7 \mathrm{f}=0 _11111 _11=+\mathrm{Inf}$

$0 \mathrm{xc} 0=1 _10000 _00=-0 \mathrm{~b} 1.00 * 2^{\wedge} 0=-1$
$0 \times \mathrm{xc} 1=1 _10000 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 0=-1.25$
$0 x c 2=1 _10000 _10=-0 b 1.10 * 2 \wedge 0=-1.5$
$0 \mathrm{xc} 3=1 _10000 _11=-0 \mathrm{~b} 1.11 * 2 \wedge 0=-1.75$
$0 \mathrm{xc} 4=1 _10001 _00=-0 \mathrm{~b} 1.00 * 2^{\wedge} 1=-2$
$0 \mathrm{xc} 5=1 _10001 _01=-0 \mathrm{~b} 1.01 * 2 \wedge 1=-2.5$
$0 \mathrm{xc} 6=1 _10001 _10=-0 \mathrm{~b} 1.10 * 2 \wedge 1=-3$
$0 \mathrm{xc} 7=1 _10001 _11=-0 \mathrm{~b} 1.11 * 2^{\wedge} 1=-3.5$
$0 \mathrm{xc} 8=1 _10010 _00=-0 \mathrm{~b} 1.00 * 2 \wedge 2=-4$
$0 x c 9=1 _10010 _01=-0 b 1.01 * 2 \wedge 2=-5$
$0 x c a=1 _10010 _10=-0 b 1 \cdot 10 * 2^{\wedge} 2=-6$
$0 x \mathrm{cb}=1 _10010 _11=-0 b 1.11 * 2 \wedge 2=-7$
$0 \mathrm{xcc}=1 _10011 _00=-0 \mathrm{~b} 1.00 * 2 \wedge 3=-8$
$0 \mathrm{xcd}=1 _10011 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 3=-10$
$0 x c e=1 _10011 _10=-0 b 1 \cdot 10 * 2 \wedge 3=-12$
$0 x c f=1 _10011 _11=-0 b 1.11 * 2 \wedge 3=-14$
$0 \times d 0=1 _10100 _00=-0 b 1.00 * 2 \wedge 4=-16$
$0 \times \mathrm{d} 1=1 _10100 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 4=-20$
$0 x d 2=1 _10100 _10=-0 b 1 \cdot 10 * 2 \wedge 4=-24$
$0 \times d 3=1 _10100 _11=-0 b 1.11 * 2 \wedge 4=-28$
$0 \times \mathrm{xd} 4=1 _10101 _00=-0 \mathrm{~b} 1.00 * 2^{\wedge} 5=-32$
$0 \times \mathrm{xd} 5=1 _10101 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 5=-40$
$0 x d 6=1_{-} 10101 _10=-0 b 1 \cdot 10 * 2^{\wedge} 5=-48$
$0 \times d 7=1 _10101 _11=-0 b 1 \cdot 11 * 2^{\wedge} 5=-56$
$0 x d 8=1 _10110 _00=-0 \mathrm{~b} 1.00 * 2 \wedge 6=-64$
$0 x d 9=1 _10110 _01=-0 b 1.01 * 2^{\wedge} 6=-80$
$0 x d a=1 _10110 _10=-0 b 1 \cdot 10 * 2 \wedge 6=-96$ $0 \mathrm{xdb}=1 _10110 _11=-0 \mathrm{~b} 1.11 * 2^{\wedge} 6=-112$ $0 x d c=1 _10111 _00=-0 b 1.00 * 2^{\wedge} 7=-128$ $0 x d d=1 _10111 _01=-0 b 1.01 * 2^{\wedge} 7=-160$ $0 x d e=1 _10111 _10=-0 b 1 \cdot 10 * 2^{\wedge} 7=-192$ $0 x d f=1 _10111 _11=-0 b 1.11 * 2^{\wedge} 7=-224$
$0 x e 0=1 _11000 _00=-0 b 1.00 * 2 \wedge 8=-256$ $0 x e 1=1 _11000 _01=-0 b 1.01 * 2^{\wedge} 8=-320$ $0 x e 2=1 _11000 _10=-0 b 1 \cdot 10 * 2 \wedge 8=-384$ $0 x e 3=1 _11000 _11=-0 b 1.11 * 2^{\wedge} 8=-448$ $0 x e 4=1 _11001 _00=-0 b 1.00 * 2 \wedge 9=-512$ $0 x e 5=1 _11001 _01=-0 b 1.01 * 2^{\wedge} 9=-640$ $0 x e 6=1 _11001 _10=-0 b 1.10 * 2 \wedge 9=-768$ $0 x e 7=1 _11001 _11=-0 b 1.11 * 2^{\wedge} 9=-896$ $0 x \mathrm{xe} 8=1 _11010 _00=-0 \mathrm{~b} 1.00 * 2^{\wedge} 10=-1024$ $0 \times \mathrm{xe} 9=1 _11010 _01=-0 \mathrm{~b} 1.01 * 2 \wedge 10=-1280$ $0 x e a=1 _11010 _10=-0 b 1 \cdot 10 * 2^{\wedge} 10=-1536$ 0 xeb $=1 _11010 _11=-0 b 1.11 * 2^{\wedge} 10=-1792$ $0 \mathrm{xec}=1 _11011 _00=-0 \mathrm{~b} 1.00 * 2 \wedge 11=-2048$ $0 \times \mathrm{xed}=1 _11011 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 11=-2560$ 0 xee $=1 _11011 _10=-0 b 1 \cdot 10 * 2^{\wedge} 11=-3072$ 0 xef $=1 _11011 _11=-0 b 1 \cdot 11 * 2^{\wedge} 11=-3584$
$0 x f 0=1 _11100 _00=-0 b 1.00 * 2^{\wedge} 12=-4096$ $0 \times f 1=1 _11100 _01=-0 b 1.01 * 2^{\wedge} 12=-5120$ $0 x f 2=1 _11100 _10=-0 b 1 \cdot 10 * 2^{\wedge} 12=-6144$ $0 \times f 3=1 _11100 _11=-0 b 1.11 * 2^{\wedge} 12=-7168$ $0 \times f 4=1 _11101 _00=-0 b 1.00 * 2 \wedge 13=-8192$ $0 \times f 5=1 _11101 _01=-0 b 1.01 * 2 \wedge 13=-10240$ $0 \times f 6=1 _11101 _10=-0 b 1.10 * 2^{\wedge} 13=-12288$ $0 \times f 7=1 _11101 _11=-0 b 1.11 * 2^{\wedge} 13=-14336$ $0 \times f 8=1 _11110 _00=-0 \mathrm{~b} 1.00 * 2 \wedge 14=-16384$ $0 \times f 9=1 _11110 _01=-0 b 1.01 * 2 \wedge 14=-20480$ $0 \times \mathrm{xfa}=1 _11110 _10=-0 \mathrm{~b} 1.10 *$ 2^ $^{\wedge} 14=-24576$ $0 \times \mathrm{fb}=1_{-11110 _11}=-0 \mathrm{~b} 1.11 *$ 2^14 $^{\wedge}=-28672$ $0 \times f \mathrm{c}=1 _11111 _00=-0 \mathrm{~b} 1.00 * 2^{\wedge} 15=-32768$ $0 \times f d=1 _11111 _01=-0 \mathrm{~b} 1.01 * 2^{\wedge} 15=-40960$ $0 \times f e=1 _11111 _10=-0 b 1 \cdot 10 * 2^{\wedge} 15=-49152$ $0 \times \mathrm{xff}=1 _11111 _11=-\operatorname{Inf}$

Value table: binary8p4

$0 \times 00=0.0000 _000=+0 \mathrm{bO} 0.000 * 2^{\wedge}-7$	$0 \times 40=0 _1000 _000=+0 b 1.000 * 2^{\wedge} 0=1$	0x80 $=1 _0000$ _000 $=$ NaN	$0 \times 00=1 _1000 _000=-0 b 1.000 * 2 \wedge 00-1$
0x01 = 0_0000_001 $=+0 \mathrm{~b} 0.001 * 2^{\wedge}-7=0.000976562$	$0 \times 41=0 _1000 _001=+0 \mathrm{bl} 1.001 * 2 \wedge 0=1.125$	$0 \times 81=1 _0000 _001=-0 b 0.001 * 2 \wedge-7=-0.000976562$	$0 \mathrm{xc} 1=1 _1000 _001=-0 \mathrm{bl} 1.001 * 2 \wedge 0=-1.125$
$0 \times 02=0 _0000 _010=+$ bbo. $010 * 2 \wedge-7=0.00195312$	$0 \times 42=0 _1000 _010=+0 \mathrm{bl}$. $010 * 2 \wedge 0=1.25$	$0 \times 82=1 _0000 _010=-0 \mathrm{bb} .010 * 2 \wedge-7=-0.00195312$	$0 \mathrm{xc} 2=1 _1000 _010=-0 \mathrm{~b} 1.010 \times 2 \wedge 0=-1.25$
$0 \times 03=0 _0000 _011=+0 \mathrm{bo} 0011 * 2^{\wedge}-7=0.00292969$	$0 \times 43=0{ }^{1000 _011}=+0 \mathrm{bl} 1.011 * 2 \wedge 0=1.375$	$0 \times 83=1 _0000 _011=-0 \mathrm{bo} 0.011 * 2^{\wedge}-7=-0.00292969$	$0 \mathrm{xc} 3=111000 _011=-0 \mathrm{bl} 1.011 * 2 \wedge 0=-1.375$
0x04 $=0$ _0000_100 $=+0 \mathrm{bo} .100 * 2^{\wedge}-7=0.00390625$	$0 \times 44=0 _1000 _100=+0 b 1.100 * 2 \wedge 0=1.5$	$0 \times 84=1 _0000 _100=-0 \mathrm{bo.100*2} \mathrm{\wedge}-7=-0.00390625$	0xc4 $=1$ 1 ${ }^{1000}{ }^{100}=-0 \mathrm{bl} 1.100 * 2 \wedge 0=-1.5$
Ox05 = 0_0000_101 = +0bo.101*2^-7 = 0.00488281	$0 \times 45=0{ }^{1000 _101}=+0 \mathrm{bl} 1.101 * 2 \wedge 0=1.625$	0x85 = 1_0000_101 = -0bo.101*2^-7 =-0.00488281	0xc5 = 1_1000_101 $=-0 \mathrm{bl} 1.101 * 2^{\wedge} 0=-1.625$
$0 \times 06=0 _0000 _110=+0 \mathrm{bO} .110 * 2 \wedge-7=0.00585938$	0x46 $=0$ _ 1000 _ $110=+0 \mathrm{bl} 1110 * 2 \wedge 00=1.75$	$0 \times 86=1 _0000 _110=-0 \mathrm{bo} 0.110 * 2^{\wedge}-7=-0.00585938$	$0 \mathrm{xc} 6=1 _1000 _110=-0 \mathrm{bl} 1.110 * 2 \wedge 0=-1.75$
$0 \times 07=0 _0000 _111=+0 \mathrm{bo} .111 * 2 \wedge-7=0.00683594$	$0 \times 47=0 _1000 _111=+0 b 1.111 * 2 \wedge 0=1.875$	$0 \times 87=1 _0000 _111=-0 \mathrm{bb} .111 * 2^{\wedge}-7=-0.00683594$	Oxc7 $=1 _1000 _111=-0 b 1.111 * 2 \wedge 0=-1.875$
0x08 $=0$ _0001_000 $=+0 b 1.000 * 2^{\wedge}-7=0.0078125$	0x48 $=0$ _1001_000 $=+0 \mathrm{bl} 1.000 \times 2 \wedge 1$	$0 \times 88=1 _0001 _000=-0 b 1.000 * 2 \wedge-7=-0.0078125$	0xc8 $=1$ 1 1001 -000 $=-0 b 1.000 * 2 \wedge 1=-2$
0x09 = 0_0001_001 $=+0 \mathrm{bl} 1.001 * 2 \wedge-7=0.00878906$	$0 \times 49=0 _1001 _001=+0 b 1.001 * 2 \wedge 1=2.25$	0x89 = 1_0001_001 $=-0 \mathrm{bl} 1.001 * 2^{\wedge}-7=-0.00878906$	0xc9 = 1_1001_001 $=-0 \mathrm{bl} .001 * 2 \wedge 1=-2.25$
0x0a $=0$ _0001_010 $=+0 \mathrm{bl} 1.010 * 2 \wedge-7=0.00976562$	$0 \times 4 \mathrm{a}=0 _1001 _010=+0 \mathrm{bl} .010 * 2 \wedge 1=2.5$	$0 \times 8 \mathrm{a}=1 _0001 _010=-0 \mathrm{bl} 1.010 * 2^{\wedge}-7=-0.00976562$	Oxca $=1$ 1 ${ }^{1001}$-010 $=-0 \mathrm{bl} 1.010 * 2 \wedge 11=-2.5$
Ox0b $=0$ _0001_011 $=+0 b 1.011 * 2 \wedge-7=0.0107422$	$0 \times 4 \mathrm{~b}=0$-1001_011 $=+0 \mathrm{bl} 1.011 * 2 \wedge 11=2.75$	$0 \times 8 \mathrm{~b}=1 _0001 _011=-0 \mathrm{bl} .011 * 2 \wedge-7=-0.0107422$	$0 \mathrm{xcb}=1 _1001$ - $011=-0 \mathrm{bl} 1.011 * 2 \wedge 1=-2.75$
Ox0c $=0$ _0001_100 $=+0 b 1.100 * 2 \wedge-7=0.0117188$	0x4c $=0{ }^{1001}{ }^{100}=+0 b 1.100 * 2 \wedge 1$	$0 \times 8 \mathrm{c}=1$ 1_0001_100 $=-0 \mathrm{bl} 1.100 * 2 \wedge-7=-0.0117188$	
Ox0d $=0 _0001$ _101 $=+0 \mathrm{b1.101*2} \mathrm{\wedge-7}=0.0126953$	x4d $=0$ _1001_101 $=+0{ }^{\text {d }} 1.101 * 2 \wedge 1=3.25$	$0 \times 8 \mathrm{~d}=1$-0001_101 $=-0 \mathrm{bl} 1.101 * 2 \wedge-7=-0.0126953$	Oxcd $=1$ 1 1001 _101 $=-0 \mathrm{bb1.101*2} \mathrm{\wedge 1}=-3.25$
Ox0e $=0 _0001 _110=+0 b 1.110 * 2 \wedge-7=0.0136719$	$0 \times 4 \mathrm{e}=0 _1001 _110=+0 \mathrm{bl} 1.110 * 2 \wedge 1=3.5$	$0 \times 8 \mathrm{e}=1 _0001 _110=-0 \mathrm{bl} 1.110 * 2^{\wedge}-7=-0.0136719$	
Ox0f $=0 _0001 _111=+0 b 1.111 * 2^{\wedge}-7=0.0146484$	$0 \times 4 \mathrm{f}=0{ }^{1001 _111}=+0 \mathrm{~b} 1.111 * 2 \wedge 1=3.75$	$0 \times 8 \mathrm{f}=1 _0001 _111=-0 \mathrm{bl} 1111 * 2^{\wedge}-7=-0.0146484$	$0 \mathrm{xcf}=1 _1001 _111=-0 \mathrm{bl} 1.111 * \wedge^{\wedge} 1=-3.75$
$0 \times 10=0 _0010 _000=+0 \mathrm{bl} 1.000 * 2^{\wedge}-6=0.015625$	*50 $=0$ _ ${ }^{1010 _000}=+0 \mathrm{bl} 1.000 \times 2 \wedge 2$	$0 \times 90=1 _0010 _000=-0 b 1.000 * 2^{\wedge}-6=-0.015625$	$0 \times \mathrm{xdO}=1 _1010 _000=-0 \mathrm{bl} 1.000 \times 2 \wedge 2=-4$
$0 \times 11=0 _0010 _001=+0 b 1.001 * 2^{\wedge}-6=0.0175781$	$0 \times 51=0 _1010 _001=+0 \mathrm{bl} 1.001 * 2 \wedge 2=4.5$	$0 \times 91=1 _0010 _001=-0 b 1.001 * 2 \wedge-6=-0.0175781$	$0 \mathrm{xd1}=1 _{ }^{1010}$ _001 $=-0 \mathrm{bl} 1.001 * 2 \wedge 2=-4.5$
$0 \times 12=0 _0010 _010=+0 b 1.010 * 2 \wedge-6=0.0195312$	52 $=0$ _1010_010 $=+0 \mathrm{bl} 1.010 * 2 \wedge 2$	$0 \times 92=1 _0010 _010=-0 b 1.010 * 2 \wedge-6=-0.0195312$	$0 \times \mathrm{xd2}=1 _1010 _010=-0 b 1.010 \times 2 \wedge 2=-5$
$0 \times 13=0 _0010 _011=+0 b 1.011 * 2^{\wedge}-6=0.0214844$	$0 \times 53=0 _1010 _011=+0 \mathrm{bl} 1.011 * 2 \wedge 2=5.5$	$0 \times 93=1 _0010 _011=-0 b 1.011 * 2 \wedge-6=-0.0214844$	$0 \mathrm{xd3}=1 _{ }^{1010}{ }^{0} 011=-0 \mathrm{bl} 1.011 * 2 \wedge 2=-5.5$
$0 \times 14=0 _0010{ }^{100}=+0 b 1.100 * 2^{\wedge}-6=0.0234375$	$0 \times 54=0{ }^{1010 _100}=+0 \mathrm{bl} 1.100 * 2^{\wedge} 2$	$0 \times 94=1 _0010 _100=-0 b 1.100 * 2 \wedge-6=-0.0234375$	
$0 \times 15=0 _0010$ _101 $=+0$ b1.101*2^-6 $=0.0253906$	$5=0{ }^{1010}{ }^{101}=+0 \mathrm{bl} 1.101 * 2 \wedge 2=6.5$	$0 \times 95=1 _0010{ }^{101}=-0 \mathrm{bl} 1.101 * 2^{\wedge}-6=-0.0253906$	Oxd5 $=1 _1010{ }_{-} 101=-0 \mathrm{bb} 1.101 * 2 \wedge 2=-6.5$
$0 \times 16=0 _0010{ }^{110}=+0 b 1.110 * 2^{\wedge}-6=0.0273438$	$0 \times 56=0{ }^{1010 _110}=+0$ b1.110*2^2	$0 \times 96=1 _0010{ }^{110}=-0 \mathrm{bl} 1.110 * 2 \wedge-6=-0.0273438$	$0 \times \mathrm{d} 6=1{ }^{1010} \mathbf{l}^{110}=-0 \mathrm{bl} 1.110 \times 2 \wedge 2=-7$
$0 \times 17=0 _0010{ }^{111}=+0 b 1.111 * 2 \wedge-6=0.0292969$	$0 \times 57=0 _1010 _111=+0 \mathrm{bl} 1.111 * 2 \wedge 2=7.5$	$0 \times 97=1 _0010 _111=-0 b 1.111 * 2 \wedge-6=-0.0292969$	$0 \mathrm{xd7}=1$ 1010_111 $=-0 \mathrm{bl} 1111 * 2 \wedge 2=-7.5$
$0 \times 18=0 _0011 _000=+0 b 1.000 * 2^{\wedge}-5=0.03125$	$0 \times 58=0{ }^{1011}$ - $000=+0 \mathrm{bl} 1.000 * 2^{\wedge} 3=8$	0x98 = 1_0011_000 $=-0 \mathrm{bl} 1.000 * 2^{\wedge}-5=-0.03125$	$0 \times \mathrm{xd8}=1 _1011 _000=-0 \mathrm{bl} 1.000 \times 2 \wedge 3=-8$
$0 \times 19=0 _0011 _001=+0 b 1.001 * 2^{\wedge}-5=0.0351562$	0x59 = 0_1011 ${ }^{\text {a }} 001=+0 \mathrm{bl}$. 001 *	$0 \times 99=1 _0011$ _001 $=-0 \mathrm{bl} 1.001 * 2 \wedge-5=-0.0351562$	$0 \times \mathrm{xd} 9=1 _1011$-001 $=-0 \mathrm{bl} 1.001 \times 2 \wedge 3=-9$
$0 \times 1 \mathrm{la}=0 _0011 _010=+0 b 1.010 * 2 \wedge-5=0.0390625$	$0 \times 5 \mathrm{a}=0 _1011 _010=+0 \mathrm{bl} 1.010 \times 2 \wedge 3=10$	$0 \times 9 \mathrm{a}=1 _0011$-010 $=-0 \mathrm{bl} 1.010 * 2 \wedge-5=-0.0390625$	0xda $=1 _1011 _010=-0 b 1.010 * 2 \wedge 3=-10$
$0 \times 1 \mathrm{~b}=0 _0011 _011=+0 b 1.011 * 2 \wedge-5=0.0429688$	$0 \times 5 \mathrm{~b}=0{ }^{1011} \mathbf{0}^{011}=+0 \mathrm{~b} 1.011 * 2 \wedge 3=11$	0x9b $=1$ 1_0011_011 $=-0 \mathrm{bl} 1.011 * 2 \wedge-5=-0.0429688$	$0 \mathrm{xdb}=1 _1011 _011=-0 \mathrm{bl} .011 * 2 \wedge 3=-11$
Ox1c $=0 _0011 _100=+0 \mathrm{bb} 1.100 * 2^{\wedge}-5=0.046875$	$0 \times 5 \mathrm{c}=0 _1011 _100=+0 \mathrm{bl} 100 \times 2 \wedge 3=12$	0x9c $=1 _0011$ - $100=-0 b 1.100 * 2 \wedge-5=-0.046875$	Oxdc = 1_1011_100 = -0b1.100*2^3 $=-12$
0x1d $=0$ _0011_101 $=+0 b 1.101 * 2 \wedge-5=0.0507812$	$0 \times 5 \mathrm{~d}=0{ }^{1011} \mathbf{l}^{101}=+0 \mathrm{bl} 101 * \wedge^{\wedge} 3=13$	$0 \times 9 \mathrm{~d}=1 _0011{ }^{101}=-0 \mathrm{bl} 1.101 * 2^{\wedge}-5=-0.0507812$	Oxdd $=1 _1011$ - $101=-0 b 1.101 * 2 \wedge 3=-13$
0x1e $=0 _0011 _110=+0 b 1.110 * 2 \wedge-5=0.0546875$	$0 \times 5 \mathrm{e}=0{ }^{1011 _110}=+0 \mathrm{~b} 1.110{ }^{2}$ ^3 $=14$	$0 \times 9 \mathrm{e}=1 _0011$ 110 $=-0 \mathrm{bl} 1.110 * 2 \wedge-5=-0.0546875$	0xde $=1 _1011 _110=-0 b 1.110 * 2 \wedge 3=-14$
$0 \times 1 \mathrm{f}=0 _0011 _111=+0 b 1.111 * 2 \wedge-5=0.0585938$	$0 \times 5 \mathrm{f}=0{ }^{1011} \mathbf{l}^{111}=+0 \mathrm{b1} .111 * 2 \wedge 3$	$0 \times 9 \mathrm{f}=1 _0011 _111=-0 \mathrm{bl} 1111 * 2 \wedge-5=-0.0585938$	Oxdf = 1_1011_111 = -0b1.111*2^3 = -15
$0 \times 20=0 _0100 _000=+0 b 1.000 * 2^{\wedge}-4=0.0625$	$60=0 _1100 _000=+0 b 1.000 * 2 \wedge 4=16$	0xa0 $=1 _0100 _000=-0 b 1.000 * 2^{\wedge}-4=-0.0625$	Oxee $=1 _1100 _000=-0 b 1.000 * 2 \wedge 4=-16$
$0 \times 21=0 _0100 _001=+0 b 1.001 * 2^{\wedge}-4=0.0703125$	$0 \times 61=0 _1100 _001=+0 b 1.001 * 2 \wedge 4=18$	$0 \times \mathrm{a} 1=1 _0100 _001=-0 b 1.001 * 2^{\wedge}-4=-0.0703125$	$0 \mathrm{xe} 1=1 _1100 _001=-0 \mathrm{bl} 1.001 * 2 \wedge 4=-18$
$0 \times 22=0 _0100 _010=+0 \mathrm{~b} 1.010 * 2^{\wedge}-4=0.078125$	$0 \times 62=0 _1100 _010=+0 b 1.010 \times 2 \wedge 4=20$	0xa2 $=1 _0100 _010=-0 b 1.010 * 2 \wedge-4=-0.078125$	$0 \mathrm{xe2}=1 _1100 _010=-0 \mathrm{bl} 1.010 * 2 \wedge 4=-20$
$0 \times 23=0 _0100 _011=+0 b 1.011 * 2 \wedge-4=0.0859375$	$0 \times 63=0 _1100 _011=+0 b 1.011 * 2 \wedge 4=22$	$0 \times$ a3 $=1 _0100 _011=-0 b 1.011 * 2^{\wedge}-4=-0.0859375$	0xe3 $=1 _1100 _011=-0 b 1.011 * 2 \wedge 4=-22$
$0 \times 24=0 _0100 _100=+0 \mathrm{bl} 1.100 * 2^{\wedge}-4=0.09375$	$0 \times 64=0 _1100 _100=+0 b 1.100 * 2 \wedge 4=24$	$0 \times \mathrm{xa} 4=1 _0100 _100=-0 \mathrm{bl} 1.100 * 2 \wedge-4=-0.09375$	$0 \mathrm{xe} 4=1 _1100 _100=-0 \mathrm{bl} \cdot 100 * 2 \wedge 4=-24$
0x25 $=0$ _0100_101 $=+0 \mathrm{~b} 1.101 * 2^{\wedge}-4=0.101562$	0_1100_101 = +0b1.101*2^4 $=26$	0xa5 $=1$-0100_101 $=-0 \mathrm{bl} 1.101 * 2 \wedge-4=-0.101562$	0xe5 = 1_1100_101 = -0b1.101*2^4 $=-26$
$0 \times 26=0 _0100 _110=+0 \mathrm{bb} 1.110 * 2 \wedge-4=0.109375$	$\times 66=0 _1100 _110=+0 b 1.110 * 2$	0xa6 $=1$ _ 0100 _ $110=-0 b 1.110 * 2 \wedge-4=-0.109375$	0xe6 $=1 _1100 _110=-0 b 1.110 * 2^{\wedge} 4=-28$
$0 \times 27=0 _0100 _111=+0 b 1.111 * 2^{\wedge}-4=0.117188$	$0 \times 67=0 _1100 _111=+0 b 1.111 * 2 \wedge 4=30$	0xa7 $=1$ _0100_111 $=-0 \mathrm{bl} 1111 * 2 \wedge-4=-0.117188$	$0 \mathrm{xe7}=1 _1100 _111=-0 \mathrm{bl} 1111 * 2 \wedge 4=-30$
$0 \times 28=0 _0101 _000=+0 b_{1} .000 * 2^{\wedge}-3=0.125$	$0 \times 68=0 _1101 _000=+0 b 1.000 * 2 \wedge 5=32$	0xa8 $=1 _0101 _000=-0 b 1.000 * 2 \wedge-3=-0.125$	0xe8 $=1 _1101 _000=-0 b 1.000 * 2^{\wedge} 5=-32$
$0 \times 29=0 _0101 _001=+0 \mathrm{bl} 1.001 * 2 \wedge-3=0.140625$	0x69 = 0_1101_001 = +0b1.001*2^	0xa9 = 1_0101_001 = -0b1.001*2^-3 $=-0.140625$	0xe9 = 1_1101_001 $=-0 \mathrm{bl} 1.001 * 2 \wedge 5=-36$
$0 \times 2 \mathrm{a}=0$-0101_010 $=+0 \mathrm{bl} 1.010 * 2 \wedge-3=0.15625$	0x6a $=0 _1101 _010=+0 b 1.010 \times 2 \wedge 5=40$	(xaa $=1 _0101 _010=-0 b 1.010 * 2 \wedge-3=-0.15625$	Oxea $=1 _1101 _010=-0 b 1.010 * 2 \wedge 5=-40$
$0 \times 2 \mathrm{~b}=0 _0101 _011=+0 \mathrm{~b} 1.011 * 2^{\wedge}-3=0.171875$	$0 \times 6 \mathrm{~b}=0 _1101 _011=+0 \mathrm{bl} .011 * 2 \wedge 5=44$	$0 \mathrm{xab}=1 _0101 _011=-0 \mathrm{bl} 1.011 * 2 \wedge-3=-0.171875$	$0 \mathrm{xeb}=1 _1101 _011=-0 \mathrm{bl} .011 * 2 \wedge 5=-44$
0x2c $=0$ _0101_100 $=+0$ b1.100*2^-3 $=0.1875$	$0 \times 6 \mathrm{c}=0$-1101_100 $=+0 \mathrm{bl} 1.100 * 2$	Oxac $=1 _0101$ - $100=-0 b 1.100 * 2 \wedge-3=-0.1875$	Oxec $=1 _1101 _100=-0 b 1.100 * 2^{\wedge} 5=-48$
0x2d $=0$ _0101_101 $=+0 \mathrm{bl} 1.101 * 2^{\wedge}-3=0.203125$	0x6d = 0_1101_101 = +0b1.101*2	0xad $=1$-0101_101 $=-0 \mathrm{bl} 1.101 * 2$ ^-3 $=-0.203125$	0xed = 1_1101_101 $=-0 \mathrm{bl} 1.101 * 2 \wedge 5=-52$
$0 \times 2 \mathrm{e}=0 _0101 _110=+0 \mathrm{bl} 1.110 * 2 \wedge-3=0.21875$	$0 \times 6 \mathrm{e}=0 _1101 _110=+0 \mathrm{bl} 1110 \times 2 \wedge 5=56$	Oxae $=1 _0101 _110=-0 b 1.110 * 2 \wedge-3=-0.21875$	Oxee $=1 _1101 _110=-0 b 1.110 * 2 \wedge 5=-56$
$0 \times 2 \mathrm{f}=0 _0101 _111=+0 \mathrm{~b} 1.111 * 2^{\wedge}-3=0.234375$	$0 \times 6 \mathrm{f}=0{ }^{1101 _} \mathbf{l}^{111}=+0 \mathrm{bl} 1111 \times 2 \wedge 5=60$	Oxaf $=1 _0101 _111=-0 b 1.111 * 2 \wedge-3=-0.234375$	Oxef $=1 _1101 _111=-0 b 1.111 * 2 \wedge 5=-60$
$0 \times 30=0 _0110 _000=+0 b 1.000 * 2^{\wedge}-2=0.25$	0x70 $=0$ _1110_000 $=+0 \mathrm{bl} 1.000 \times 2 \wedge 6=64$	$0 \times x \mathrm{~b} 0=1 _0110 _000=-0 b 1.000 * 2^{\wedge}-2=-0.25$	Oxf0 $=1 _1110 _000=-0 b 1.000 * 2 \wedge 6=-64$
$0 \times 31=0 _0110 _001=+0 b 1.001 * 2^{\wedge}-2=0.28125$	$0 \times 71=0 _1110 _001=+0 b 1.001 * 2 \wedge 6=72$	$0 \times \mathrm{xb1}=1$ _0110_001 $=-0 \mathrm{bl} 1.001 * 2 \wedge-2=-0.28125$	Oxf1 $=1 _1110 _001=-0 b 1.001 * 2 \wedge 6=-72$
$0 \times 32=0 _0110 _010=+0 b 1.010 * 2 \wedge-2=0.3125$	0_1110_010 = +0b1.010*2^6	Oxb2 $=1$ _0110_010 $=-0 \mathrm{bl} 1.010 \times \wedge^{\wedge}-2=-0.3125$	Oxf2 $=1 _1110 _010=-0 b 1.010 * 2 \wedge 6=-80$
$0 \times 33=0 _0110 _011=+0 b 1.011 * 2 \wedge-2=0.34375$	$0 \times 73=0 _1110 _011=+0 b 1.011 * 2 \wedge 6=88$	0xb3 $=1 _0110 _011=-0 \mathrm{bl} 1.011 * 2 \wedge-2=-0.34375$	$0 \mathrm{Off3}=1 _1110 _011=-0 \mathrm{bl} .011 * 2 \wedge 6=-88$
0x34 $=000110 _100=+0 b 1.100 * 2 \wedge-2=0.375$	$0 \times 74=0 _1110 _100=+0 b 1.100 * 2 \wedge 6=96$	$0 \mathrm{xb4}=1 _0110 _100=-0 \mathrm{bb} 1.100 * 2 \wedge-2=-0.375$	$0 \times \mathrm{xf4}=1 _1110 _100=-0 \mathrm{bl} 1.100 * 2^{\wedge} 6=-96$
$0 \times 35=0 _0110 _101=+0 b 1.101 * 2 \wedge-2=0.40625$	$0 \times 75=0 _1110 _^{101}=+0 \mathrm{bl} 1.101 * 2 \wedge 6=104$	Oxb5 $=1$ _0110_101 $=-0 \mathrm{bl} 1.101 * 2 \wedge-2=-0.40625$	Oxf5 $=$ 1_1110_101 $=-0 \mathrm{bb} 1.101 * 2 \wedge 6=-104$
$0 \times 36=0 _0110{ }^{110}=+0 b 1.110 * 2 \wedge-2=0.4375$	+0b1.	0xb6 $=1$ _0110_110 $=-0 b 1.110 * 2^{\wedge}-2=-0.4375$	$0 \times \mathrm{xf6}=1$ 1 ${ }^{1110} \mathbf{-}^{110}=-0 \mathrm{bl} 1110 * 2 \wedge 6=-112$
$0 \times 37=0 _0110 _111=+0 \mathrm{~b} 1.111 * 2^{\wedge}-2=0.46875$	$0 \times 77=0 _1110 _111=+0 b 1.111 * 2 \wedge 6=120$	Oxb7 = 1_0110_111 $=-0 \mathrm{bl} 1.111 * 2 \wedge-2=-0.46875$	$0 \times \mathrm{ff7}=1$ - ${ }^{1110} \mathrm{C}^{111}=-0 \mathrm{bl} 1.111 * 2 \wedge 6=-120$
$0 \times 38=0 _0111 _000=+0 \mathrm{bl} 1.000 * 2 \wedge-1=0.5$	$0 \times 78=0 _1111 _000=+0 b 1.000 * 2 \wedge 7=128$	0xb8 $=1 _0111$ _000 $=-0 \mathrm{bl} 1.000 \times 2 \wedge-1=-0.5$	
$0 \times 39=0 _0111 _001=+0 b 1.001 * 2 \wedge-1=0.5625$	$0 \times 79=0 _1111 \mathbf{C l}^{001}=+0 b 1.001 * 2 \wedge 7=$	Oxb9 $=1 _0111 _001=-0 b 1.001 * 2^{\wedge}-1=-0.5625$	0xf9 = 1_ ${ }^{1111}$-001 $=-0 \mathrm{bl} 1.001 * 2 \wedge 7=-144$
0x3a $=0 _0111 _010=+0 b_{1} .010 * 2^{\wedge}-1=0.625$	$0 \times 7 \mathrm{a}=0 _1111 _010=+0 \mathrm{bl}$. $010 * 2 \wedge 7=160$	0xba $=1 _0111 _010=-0 b 1.010 * 2 \wedge-1=-0.625$	$0 \times \mathrm{xfa}=1 _{ }^{1111} \mathrm{C}^{010}=-0 \mathrm{bl} 1.010 \times 2 \wedge 7=-160$
$0 \times 3 \mathrm{~b}=0 _0111 _011=+0 b 1.011 * 2^{\wedge}-1=0.6875$	$0 \mathrm{x} 7 \mathrm{~b}=0 _1111 _011=+0 \mathrm{bl} .011 * 2 \wedge 7=176$	Oxbb $=1 _0111 _011=-0 b 1.011 * 2^{\wedge}-1=-0.6875$	$0 \times \mathrm{fb}=1 _{ }^{1111} \mathrm{C}^{011}=-0 \mathrm{bl} 1.011 * 2 \wedge 7=-176$
$0 \times 3 \mathrm{c}=0$-0111_100 $=+0 \mathrm{~b} 1.100 * 2^{\wedge}-1=0.75$	$0 \mathrm{x} 7 \mathrm{c}=0 _1111 \mathrm{l} 100=+0 \mathrm{bl} 1.100 * 2^{\wedge} 7=192$	$\mathrm{oxbc}=1 _0111 _100=-0 \mathrm{bl} 1.100 * 2^{\wedge}-1=-0.75$	$0 \times \mathrm{xfc}=$ 1- $^{1111} \mathrm{l}^{100}=-0 \mathrm{bb} 1.100 * 2 \wedge 7=-192$
	0_1111_101 $=+0 \mathrm{bl} 1.101 \times \wedge^{\wedge} 7=208$	Oxbd $=1 _0111101=-0 b 1.101 * 2^{\wedge}-1=-0.8125$	$0 \times \mathrm{fd}=$ 1_ $^{1111} \mathrm{l}^{101}=-0 \mathrm{bl} 1.101 * 2^{\wedge} 7=-208$
$0 \times 3 \mathrm{e}=0 _0111 \mathrm{l}^{110}=+0 \mathrm{bl} 1.110 * 2^{\wedge}-1=0.875$	$0 \times 7 \mathrm{l}=0{ }^{1111}{ }^{110}=+0 \mathrm{bl} 1.110 * 2 \wedge 7=224$	Oxbe $=1 _0111 _110=-0 \mathrm{bl} 1.110 * 2^{\wedge}-1=-0.875$	$0 \times \mathrm{xfe}=1_{-}^{1111} \mathrm{l}^{110}=-0 \mathrm{bl} 1.110 * 2 \wedge 7=-224$
$0 \times 3 \mathrm{f}=0 _0111 _111=+0 b 1.111 * 2^{\wedge}-1=0.9375$	$0 \times 7 \mathrm{f}=0 _1111{ }^{111}=+$ Inf	$0 \times \mathrm{xbf}=1 _0111 _111=-0 \mathrm{bl} 1111 * 2^{\wedge}-1=-0.9375$	$0 \times \mathrm{fff}=1 _1111{ }^{111}=-\mathrm{Inf}$

Copyright © 2023 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft section, subject to change.

Value table: binary8p5

$\times 41=0^{-} 100 _0001=+0 b 1.0001 * 2^{\wedge} 0=1.0625$
$0 \times 42=0 _100 _0010=+0 b 1.0010 * 2 \wedge 0=1.125$
x43 $=0 _100 _0011=+0 b 1.0011 * 2 \wedge 0=1.1875$
$0 \times 44=0 _100 _0100=+0 b 1.0100 * 2^{\wedge} 0=1.25$
$0 \times 45=0 _100 _0101=+0 \mathrm{~b} 1.0101 * 2 \wedge 0=1.3125$
$0 \times 46=0 _100 _0110=+0 \mathrm{~b} 1.0110 * 2 \wedge 0=1.375$
$0 \times 47=0 _100 _0111=+0 b 1.0111 * 2^{\wedge} 0=1.4375$
$0 \times 48=0 _100 _1000=+0 \mathrm{~b} 1.1000 * 2 \wedge 0=1.5$
$0 \times 49=0^{-} 100 _1001=+0 \mathrm{~b} 1.1001 * 2^{\wedge} 0=1.5625$
$0 \times 4 \mathrm{a}=0 _100 _1010=+0 \mathrm{~b} 1.1010 * 2 \wedge 0=1.625$
$0 \times 4 b=01001011=+0 b 1.1011 * 2^{\wedge} 0=1.6875$
$0 \times 4 \mathrm{c}=0 _100 _1100=+0 \mathrm{~b} 1.1100 * 2^{\wedge} 0=1.75$
$0 \times 4 \mathrm{~d}=0 _100 _1101=+0 \mathrm{~b} 1.1101 * 2^{\wedge} 0=1.8125$
$0 \times 4 \mathrm{e}=0 _100 _1110=+0 \mathrm{~b} 1.1110 * 2 \wedge 0=1.875$
$0 \times 50=0 _101 _0000=+0 b 1.0000 * 2 \wedge 1=2$
$0 \times 51=0_{-}^{-} 101 _0001=+0 b 1.0001 * 2^{\wedge} 1=2.125$
$0 \times 52=0 _101 _0010=+0$ b1. $0010 * 2 \wedge 1=2.25$
$0 \times 53=0 _101 _0011=+0 b 1.0011 * 2^{\wedge} 1=2.375$
$0 \times 54=0 _101 _0100=+0 \mathrm{~b} 1.0100 * 2 \wedge 1=2.5$
$0 \times 55=0 _101 _0101=+0$ b1 $1.0101 * 2^{\wedge} 1=2.625$
$0 \times 56=0 _101 _0110=+0$ b1 $.0110 * 2 \wedge 1=2.75$
$\mathbf{x} 57=0 _101 _0111=+0 b 1.0111 * 2 \wedge 1=2.875$
$0 \times 58=0 _101 _1000=+0 \mathrm{~b} 1.1000 * 2 \wedge 1=3$
$0 \times 59=0 _101 _1001=+$ bb1.1001*2^1 $=3.125$
$0 \times 5 \mathrm{a}=0 _101 _1010=+0 \mathrm{~b} 1.1010 * 2 \wedge 1=3.25$
$0 \times 5 \mathrm{~b}=0 _101 _1011=+0 \mathrm{~b} 1.1011 * 2 \wedge 1=3.375$
$0 \times 5 \mathrm{c}=0 _101 _1100=+0 \mathrm{~b} 1.1100 * 2 \wedge 1=3.5$
$0 \times 5 \mathrm{~d}=0_{-101 _1101}^{-1}=+0 \mathrm{~b} 1.1101 * 2^{\wedge} 1=3.625$
$0 \times 5 \mathrm{e}=0 _101 _1110=+0 \mathrm{~b} 1.1110 * 2 \wedge 1=3.75$
$0 \times 5 f=0 _101 _1111=+0 b 1.1111 * 2 \wedge 1=3.875$
$0 \times 60=0 _110 _0000=+0 b 1.0000 * 2 \wedge 2=4$
$0 \times 61=0 _110 _0001=+0 b 1.0001 * 2^{\wedge} 2=4.25$
$0 \times 62=0 _110 _0010=+0 \mathrm{~b} 1.0010 * 2 \wedge 2=4.5$
$0 \times 63=0 _110 _0011=+0 \mathrm{~b} 1.0011 * 2^{\wedge} 2=4.75$
$0 \times 64=0 _110 _0100=+0 b 1.0100 * 2 \wedge 2=5$
$0 \times 65=0 _110 _0101=+0 \mathrm{~b} 1.0101 * 2^{\wedge} 2=5.25$
$0 \times 66=0 _110 _0110=+0 \mathrm{~b} 1.0110 * 2 \wedge 2=5.5$
$0 \times 67=0 _110 _0111=+0 \mathrm{~b} 1.0111 * 2^{\wedge} 2=5.75$
$0 \times 68=0 _110 _1000=+0 \mathrm{~b} 1.1000 * 2 \wedge 2=6$
$0 \times 69=0 _110 _1001=+0 b 1.1001 * 2^{\wedge} 2=6.25$
$0 \times 6 \mathrm{a}=0_{-}^{-110 _} 1010=+0 \mathrm{~b} 1.1010 * 2 \wedge 2=6.5$
$0 \mathrm{x} 6 \mathrm{~b}=0 _110 _1011=+0 \mathrm{~b} 1.1011 * 2 \wedge 2=6.75$
$0 \times 6 \mathrm{c}=0 _110 _1100=+0 \mathrm{~b} 1.1100 * 2 \wedge 2=7$
$0 \times 6 \mathrm{~d}=\mathbf{0}_{-110 _1101}=+0 \mathrm{~b} 1.1101 * 2 \wedge 2=7.25$
$0 \times 6 \mathrm{e}=0 _110 _1110=+0 \mathrm{~b} 1.1110 * 2 \wedge 2=7.5$
$0 \times 70=0 _111 _0000=+0 b 1.0000 * 2 \wedge 3=8$
$0 \times 71=0 _111 _0001=+0 \mathrm{~b} 1.0001 * 2^{\wedge} 3=8.5$
$0 \times 72=00^{-111}-0010=+0 b 1.0010 * 2^{\wedge} 3=9$
$0 \times 73=0 _111 _0011=+0 \mathrm{~b} 1.0011 * 2 \wedge 3=9.5$
$0 \times 74=0 _111 _0100=+0 b 1.0100 * 2 \wedge 3=10$
$0 \times 75=0 _111 _0101=+0 b 1.0101 * 2 \wedge 3=10.5$
$0 \times 76=0 _111 _0110=+0$ b1.0110*2^3 $=11$
$0 \times 77=0 _111 _0111=+0 \mathrm{~b} 1.0111 * 2^{\wedge} 3=11.5$
$0 \times 78=0 _111 _1000=+0$ b $1.1000 * 2^{\wedge} 3=12$
$0 \times 79=0 _111 _1001=+0$ b1.1001*2^3 $=12.5$
$0 \times 7 \mathrm{a}=0 _111 _1010=+0 b 1.1010 * 2^{\wedge} 3=13$
$0 \times 7 \mathrm{~b}=0 _111 _1011=+0 \mathrm{~b} 1.1011 * 2^{\wedge} 3=13.5$
x7c $=0 _111 _1100=+0 \mathrm{~b} 1.1100 * 2 \wedge 3=14$
$0 \times 7 \mathrm{~d}=0 _111 _1101=+0 \mathrm{~b} 1.1101 * 2^{\wedge} 3=14.5$
$0 \times 7 \mathrm{e}=0 _111 _1110=+0 \mathrm{~b} 1.1110 * 2^{\wedge} 3=15$
$0 \times 7 \mathrm{f}=0 _111 _1111=+$ Inf
$0 \times 80=1 _0000000=\mathrm{NaN}$
$0 \times 80=1 _000 _0000=\mathrm{NaN}$
$0 \times 81=1 _000 _0001=-0 \mathrm{bb} 0.0001 * 2^{\wedge}-3=-0.0078125$
$0 \times 82=1 _000 _0010=-0 \mathrm{bo} .0010 * 2^{\wedge}-3=-0.015625$
$0 \times 82=1 _000 _0010=-0 \mathrm{~b} 0.0010 * 2^{\wedge}-3=-0.015625$
$0 \times 83=100000011=-0 \mathrm{~b} 0.0011 * 2^{\wedge}-3=-0.0234375$ $0 \times 84=10000100=-0 \mathrm{~b} 0.0100 * 2^{\wedge}-3=-0.03125$ $0 \times 85=1 _000 _0101=-0 b 0.0101 * 2^{\wedge}-3=-0.0390625$ $0 \times 86=1 _000 _0110=-0 b 0.0110 * 2^{\wedge}-3=-0.046875$ $0 \times 87=1 _000 _0111=-0 b 0.0111 * 2^{\wedge}-3=-0.0546875$ $0 \times 88=1 _000 _1000=-0 b 0.1000 * 2^{\wedge}-3=-0.0625$ $0 \times 89=1$ _ 000 _ $1001=-0 b 0.1001 * 2^{\wedge}-3=-0.0703125$ $0 \times 8 \mathrm{a}=1 _000 _1010=-0 \mathrm{~b} 0.1010 * 2^{\wedge}-3=-0.078125$ $0 \times 8 \mathrm{~b}=1 _000 _1011=-0 b 0.1011 * 2^{\wedge}-3=-0.0859375$ $0 \times 8 \mathrm{c}=1$ _-000_1100 $=-0 \mathrm{~b} 0.1100 * 2^{\wedge}-3=-0.09375$ $0 \times 8 \mathrm{~d}=1$ _ $000 _1101=-0 b 0.1101 * 2^{\wedge}-3=-0.101562$ $0 \times 8 \mathrm{e}=\mathbf{1}_{-} 000$ _-1110 $=-0 b 0.1110 * 2^{\wedge}-3=-0.109375$
$0 \times 8 f=1 _000 _1111=-0 b 0.1111 * 2^{\wedge}-3=-0.117188$
$0 \times 90=1 _001 _0000=-0 b 1.0000 \star 2^{\wedge}-3=-0.125 \quad 0 \times \mathrm{xd} 0=1 _101 _0000=-0 \mathrm{~b} 1.0000 * 2 \wedge 1=-2$
$0 \times 91=1 _001 _0001=-0 b 1.0001 * 2^{\wedge}-3=-0.132812$
$0 \times 92=1 _001 _0010=-0 b 1.0010 * 2^{\wedge}-3=-0.140625$
$0 \times 93=1 _001 _0011=-0 b 1.0011 * 2^{\wedge}-3=-0.148438$
$0 \times 94=1 _001 _0100=-0 b 1.0100 * 2^{\wedge}-3=-0.15625$
$0 \times 94=1 _001 _0100=-0 b 1.0100 * 2^{\wedge}-3=-0.15625$
$0 \times 95=1 _001 _0101=-0 b 1.0101 * 2^{\wedge}-3=-0.164062$
$0 \times 96=1 _001 _0110=-0 b 1.0110 * 2^{\wedge}-3=-0.171875$
$0 \times 97=1 _001 _0111=-0 b 1.0111 * 2^{\wedge}-3=-0.179688$
$0 \times 98=1$ 001 $1000=-0 b 1.1000 * 2^{\wedge}-3=-0.1875$
$\left\lvert\, \begin{aligned} & 0 \times 98=1 _001 _1000=-0 b 1.1000 * 2^{\wedge}-3=-0.1875 \\ & 0 \times 99=1 _001 _1001=-0 b 1.1001 * 2^{\wedge}-3=-0.195312\end{aligned}\right.$
$0 \times 9 \mathrm{a}=1 _001 _1010=-0 b 1.1010 * 2^{\wedge}-3=-0.203125$
$0 \times 9 b=10011011=-0 b 1.1011 * 2^{\wedge}-3=-0.210938$
$0 \times 9 \mathrm{c}=1 _001 _1100=-0 \mathrm{~b} 1.1100 * 2^{\wedge}-3=-0.21875$
$0 \times 9 \mathrm{c}=1 _001 _1100=-0 \mathrm{~b} 1.1100^{\wedge} 2^{\wedge}-3=-0.21875$
$0 \times 9 \mathrm{~d}=1 _001 _1101=-0 b 1.1101 * 2^{\wedge}-3=-0.226562$
$0 \times 9 \mathrm{e}=$ 1_-001_1 $^{-} 1110=-0 \mathrm{~b} 1.1110 * 2^{\wedge}-3=-0.234375$
$0 \times 9 f=1$ _-001_-1111 $=-0 b 1.1111 * 2^{\wedge}-3=-0.242188$
$0 \times \mathrm{xaO}=1 _010 _0000=-0 \mathrm{~b} 1.0000 * 2^{\wedge}-2=-0.25$
$0 \times a 1=1 _010 _0001=-0 b 1.0001 * 2^{\wedge}-2=-0.265625$
$0 \times a 2=1 _010 _0010=-0 b 1.0010 * 2^{\wedge}-2=-0.28125$
$0 \times a 3=1 _010 _0011=-0 b 1.0011 * 2^{\wedge}-2=-0.296875$
$0 \times \mathrm{xa} 4=10100100=-0 \mathrm{~b} 1.0100 * 2^{\wedge}-2=-0.3125$
$0 \times a 5=1 _010 _0101=-0 b 1.0101 * 2^{\wedge}-2=-0.328125$
$0 \times a 6=1 _010 _0110=-0 b 1.0110 * 2^{\wedge}-2=-0.34375$
$0 \times \mathrm{xa7}=1 _010 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge}-2=-0.359375$
$0 \times x$ 8 $=1 _010 _1000=-0 b 1.1000 * 2^{\wedge}-2=-0.375$
$0 \times \mathrm{xa9}=1$ _010_1001 $=-0 \mathrm{~b} 1.1001 * 2^{\wedge}-2=-0.390625$
$0 \times \mathrm{xaa}=1$ _010_1010 $=-0 \mathrm{~b} 1.1010 * 2^{\wedge}-2=-0.40625$
$0_{x a b}=1 _010 _1011=-0 b 1.1011 * 2^{\wedge}-2=-0.421875$
$0 \times \mathrm{xac}=1 _010 _1100=-0 \mathrm{~b} 1.1100 * 2^{\wedge}-2=-0.4375$
$0 \times \mathrm{xad}=1 _010 _1101=-0 \mathrm{~b} 1.1101 * 2^{\wedge}-2=-0.453125$
0 xae $=1$ _010_1110 $=-0 b 1.1110 * 2^{\wedge}-2=-0.46875$
0 xaf $=$ 1_010_- $1111=-0 b 1.1111 * 2^{\wedge}-2=-0.484375$
$0 \times \mathrm{xb} 0=1 _011 _0000=-0 \mathrm{~b} 1.0000 * 2^{\wedge}-1=-0.5$
$0 \times \mathrm{xb} 1=1 _011 _0001=-0 b 1.0001 * 2^{\wedge}-1=-0.53125$
$0 \times \mathrm{xb} 1=1 _011 _0001=-0 \mathrm{~b} 1.0001 * 2^{\wedge}-1=-0.53125$
$0 \times \mathrm{xb} 2=1 _011 _0010=-0 \mathrm{~b} 1.0010 * 2^{\wedge}-1=-0.5625$
$0 \times b 2=1 _011 _0010=-0 b 1.0010 * 2^{\wedge}-1=-0.5625$
$0 \times \mathrm{xb} 3=1 _011 _0011=-0 \mathrm{~b} 1.0011 * 2^{\wedge}-1=-0.59375$
$0 \times b 3=1 _011 _0011=-0 b 1.0011 * 2^{\wedge}-1=-0.5937$
$0 \times b 4=10110100=-0 b 1.0100 * 2^{\wedge}-1=-0.625$
$0 \times \mathrm{xb5}=1$ _011_0101 $=-0 \mathrm{~b} 1.0101 * 2^{\wedge}-1=-0.65625$
$0 \times b 5=1 _011 _0101=-0 b 1.0101 * 2^{\wedge}-1=-0.65625$
$0 \times b 6=1 _011 _0110=-0 b 1.0110 * 2^{\wedge}-1=-0.6875$
$0 \times \mathrm{xb} 6=1 _011 _0110=-0 \mathrm{~b} 1.0110 * 2^{\wedge}-1=-0.6875$
$0 \times \mathrm{xb} 7=1 _011 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge}-1=-0.71875$
$0 \times \mathrm{xb} 7=1 _011 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge}-1=-0.7187$
$0 \times \mathrm{b} 9=1 _011 _1001=-0 \mathrm{~b} 1.1001 * 2^{\wedge}-1=-0.78125$
$0 \times \mathrm{xba}=$ 1_011_ $^{-} 010=-0 \mathrm{~b} 1.1010 *$ 2^ $^{\wedge}-1=-0.8125$
$0 \times \mathrm{xbb}=1 _011 _1011=-0 b 1.1011 * 2^{\wedge}-1=-0.84375$
$0 \times \mathrm{xbc}=10111100=-0 \mathrm{~b} 1.1100 * 2^{\wedge}-1=-0.875$
$0 \times \mathrm{xbd}=1$ _011_1101 $=-0 \mathrm{~b} 1.1101 * 2^{\wedge}-1=-0.90625$
$0 x b d=1 _011 _1101=-0 b 1.1101 * 2^{\wedge}-1=-0.90625$
$0 x b e=1 _011 _1110=-0 b 1.1110 * 2^{\wedge}-1=-0.9375$
$0 \times \mathrm{xbe}=1 _011 _1110=-0 \mathrm{~b} 1.1110 * 2^{\wedge}-1=-0.9375$
$0 \mathrm{xbf}=1 _011 _1111=-0 \mathrm{~b} 1.1111 * 2^{\wedge}-1=-0.96875$
$0 \times \mathrm{xc} 0=1 _100 _0000=-0 \mathrm{~b} 1.0000 * 2^{\wedge} 0=-1$
$0 \mathrm{xc} 1=1 _100 _0001=-0 \mathrm{~b} 1.0001 * 2^{\wedge} 0=-1.0625$ $0 \times \mathrm{xc} 1=1-100 _0001=-0 \mathrm{~b} 1.0001 * 2 \wedge 0=-1.0625$
$0 \mathrm{xc} 2=11000010=-0 \mathrm{~b} 1.0010 * 2 \wedge 0=-1.125$ $0 \times \mathrm{xc} 2=1 _100 _0010=-0 \mathrm{~b} 1.0010 * 2^{\wedge} 0=-1.125$
$0 \mathrm{xc} 3=11000011=-0 \mathrm{~b} 1.0011 * 2^{\wedge} 0=-1.1875$ xc3 $=1 _100 _0011=-0 b 1.0011 * 2^{\wedge} 0=-1.1875$
$0 \mathrm{xc} 4=1 _100 _0100=-0 \mathrm{~b} 1.0100 * 2^{\wedge} 0=-1.25$
$0 x c 4=1 _100 _0100=-0 b 1.0100 * 2^{\wedge} 0=-1.25$
$0 x c 5=1 _100 _0101=-0 b 1.0101 * 2^{\wedge} 0=-1.3125$
$0 x c 6=1 _100 _0110=-0 b 1.0110 * 2^{\wedge} 0=-1.375$
$0 \times \mathrm{c} 6=1 _100 _0110=-0 \mathrm{~b} 1.0110 * 2 \wedge 0=-1.375$
$0 \times \mathrm{xc} 7=1 _100 _0111=-0 \mathrm{~b} 1.0111 * 2 \wedge 0=-1.4375$
$0 \times \mathrm{xc} 7=1 _100 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge} 0=-1.43$
$0 \times \mathrm{xc} 8=1 _100 _1000=-0 \mathrm{~b} 1.1000 * 2^{\wedge} 0=-1.5$
$0 \times \mathrm{xc} 9=1 _100 _1001=-0 \mathrm{~b} 1.1001 \star 2 \wedge 0=-1.5625$
$\begin{aligned} 0 \times 1 _ & =1 _100 _1010=-0 b 1.1010 * 2^{\wedge} 0=-1.625\end{aligned}$
$0 \times \mathrm{ca}=1 _100 _1010=-0 \mathrm{~b} 1.1010 * 2^{\wedge} 0=-1.625$
$0 \times \mathrm{cb}=1 _100 _1011=-0 \mathrm{~b} 1.1011 * 2^{\wedge} 0=-1.6875$
$0 \times \mathrm{xcc}=1 _100 _1100=-0 \mathrm{~b} 1.1100 * 2^{\wedge} 0=-1.75$

$0 \mathrm{xcd}=1 _100 _1101=-0 \mathrm{~b} 1.1101 * 2^{\wedge} 0=-1.8125$
$0 \mathrm{xce}=1 _100 _1110=-0 \mathrm{~b} 1.1110 * 2^{\wedge} 0=-1.875$
$0 x c e=1 _100 _1110=-0 b 1.1110 * 2^{\wedge} 0=-1.875$
$0 x c f=11001111=-0 b 1.1111 * 2^{\wedge} 0=-1.937$
$0 \times \mathrm{xd0}=11010000=-0 \mathrm{~b} 1.0000 * 2 \wedge 1=-2$
$0 \times \mathrm{xd0}=1 _101 _0000=-0 \mathrm{~b} 1.0000 * 2^{\wedge} 1=-2$
$0 \times \mathrm{xd} 1=1 _{ }^{101 _} \mathbf{-} 0001=-0 \mathrm{~b} 1.0001 * 2 \wedge 1=-2.125$
$\left\{\begin{array}{l}0 x d 1=1 _101 _0001=-0 b 1.0001 * 2 \wedge 1=-2.125 \\ 0 \times d 2=1 _101 _0010=-0 b 1.0010 * 2 \wedge 1=-2.25 \\ 0 x d 3=1 _101 _0011=-0 b 1.0011 * 2 \wedge 1=-2.375\end{array}\right.$
$0 \times \mathrm{xd} 3=1 _101 _0011=-0 \mathrm{~b} 1.0011 * 2^{\wedge} 1=-2.375$
$0 x d 3=1 _101 _0011=-0 b 1.0011 * 2^{\wedge} 1=-2.375$
$0 x d 4=1 _101 _0100=-0 b 1.0100 * 2^{\wedge} 1=-2.5$
$0 \times d 4=1 _101 _0100=-0 b 1.0100 * 2^{\wedge} 1=-2.5$
$0 \times d 5=1 _101 _0101=-0 b 1.0101 * 2^{\wedge} 1=-2.625$

$0 \times \mathrm{xd7}=1_{-} 101 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge} 1=-2.875$
$0 \times d 7=1 _1-10110$
$0 \times d 8=1000=-0 b 1.1000 * 2^{\wedge} 1=-3$
$\left\{\begin{array}{l}0 x d 8=1 _101 _1000=-0 b 1.1000 * 2^{\wedge} 1=-3 \\ 0 x d 9=1 _101 _1001=-0 b 1.1001 * 2^{\wedge} 1=-3.125 \\ 0 x d a=1 _101 _1010=-0 b 1.1010 * 2^{\wedge} 1=-3.25\end{array}\right.$
$0 x d a=1 _101 _1010=-0 b 1.1010 * 2 \wedge 1=-3.25$
$0 x d b=1 _101 _1011=-0 b 1.1011 * 2 \wedge 1=-3.375$
$0 \times \mathrm{db}=1 _101 _1011=-0 \mathrm{~b} 1.1011 * 2^{\wedge} 1=-3.375$
$0 \times d c=1 _101 _1100=-0 \mathrm{~b} 1.1100 * 2^{\wedge} 1=-3.5$

$0 \times x d e=1 _101 _1110=-0 b 1.1110 * 2^{\wedge} 1=-3.75$
$\left\{\begin{array}{l}0 x d e=1 _101 _1110=-0 b 1.1110 * 2 \wedge 1=-3.75 \\ 0 x d f=1 _101 _1111=-0 b 1.1111 * 2 \wedge 1=-3.875\end{array}\right.$
$0 x d f=1 _{ }^{101}{ }_{-} 1111=-0 b 1.1111 * 2^{\wedge} 1=-3.875$
$0 \times \mathrm{xe} 0=1 _110 _0000=-0 \mathrm{~b} 1.0000 * 2 \wedge 2=-4$
$0 \times 1=1 _110 _0001=-0 b 1.0001 * 2 \wedge 2=-4.25$
$0 \mathrm{xe} 1=1 _110 _0001=-0 \mathrm{~b} 1.0001 * 2^{\wedge} 2=-4.25$
$0 \mathrm{xe} 2=1 _110 _0010=-0 \mathrm{~b} 1.0010 * 2^{\wedge} 2=-4.5$
$0 \mathrm{xe} 2=1 _110 _0010=-0 \mathrm{~b} 1.0010 * 2^{\wedge} 2=-4.5$
$0 \mathrm{xe} 3=1 _110 _0011=-0 \mathrm{~b} 1.0011 * 2^{\wedge} 2=-4.75$
$0 x$ x $4=1 _110 _0100=-0 b 1.0100 * 2 \wedge 2=-5$
$\left\{\begin{array}{l}0 \text { xe4 }=1 _110 _0100=-0 \mathrm{~b} 1.0100 * 2 \wedge 2=-5 \\ 0 \times 5=5=1 _110 _0101=-0 \mathrm{~b} 1.0101 * 2 \wedge 2=-5.25 \\ 0 \text { xe6 }=110=0110=-0 b 1.0110 * 2 \wedge 2=-5.5\end{array}\right.$
0 ore6 $=1 _110 _0110=-0 \mathrm{~b} 1.0110 * 2 \wedge 2=-5.5$
$0 x e 6=1 _110 _0110=-0 b 1.0110 * 2^{\wedge} 2=-5.5$
$0 x e 7=1 _110 _0111=-0 b 1.0111 * 2^{\wedge} 2=-5.75$
$0 \mathrm{xe} 7=1 _110 _0111=-0 \mathrm{~b} 1.0111 * 2^{\wedge} 2=-5.75$
$0 \mathrm{xe} 8=1 _110 _1000=-0 \mathrm{~b} 1.1000 * 2^{\wedge} 2=-6$
$0 \mathrm{xe} 8=1 _110 _1000=-0 \mathrm{bb} 1.1000 * 2^{\wedge} 2=-6$
$0 \mathrm{xe} 9=1 _110 _1001=-0 \mathrm{~b} 1.1001 * 2^{\wedge} 2=-6.25$
0 xe9 $=1 _110 _1001=-0 b 1.1001 * 2^{\wedge} 2=-6.25$
0 xea $=1 _110 _1010=-0 b 1.1010 * 2^{\wedge} 2=-6.5$
0 xea $=1 _110 _1010=-0 b 1.1010 * 2^{\wedge} 2=-6.5$
0 xeb $=1 _110 _1011=-0 b 1.1011 * 2^{\wedge} 2=-6.75$
$\left\{\begin{array}{l}0 \times \mathrm{xeb}=1 _110 _1011=-0 \mathrm{~b} 1.1011 * 2^{\wedge} 2=-6.75 \\ 0 \times \mathrm{xec}=1 _110 _1100=-0 b 1.1100 * 2^{\wedge} 2=-7\end{array}\right.$
0 xec $=1 _110 _1100=-0 \mathrm{~b} 1.1100 * 2 \wedge 2=-7$
0 xed $=1 _110 _1101=-0 \mathrm{~b} 1.1101 * 2 \wedge 2=-7.25$
0 xee $=11101110=-0 \mathrm{~b} 1.1110 * 2 \wedge 2=-7.5$
oxae $=10^{-1101}=-0 b 1.1101 * 2^{\wedge}-2=-0$.
0 xed $=1 _110 _1101=-0 b 1.1101 * 2^{\wedge} 2=-7.25$
0 xee $=1 _110 _1110=-0 b 1.1110 * 2^{\wedge} 2=-7.5$
0 xee $=1 _110-1110=-0 b 1.1110 * 2^{\wedge} 2=-7.5$
0 xef $=1 _110 _1111=-0 b 1.1111 * 2^{\wedge} 2=-7.75$
$0 \times f 0=1 _111 _0000=-0 b 1.0000 * 2 \wedge 3=-8$
$0 \times f 1=1 _111 _0001=-0 b 1.0001 * 2 \wedge 3=-8.5$
$0 \times f 1=1 _111 _0001=-0 b 1.0001 * 2 \wedge 3=-8.5$
$0 \times f 2=1 _111-0010=-0 b 1.0010 * 2^{\wedge} 3=-9$
$0 \times f 3=1 _111 _0011=-0 b 1.0011 * 2 \wedge 3=-9.5$
$\left\{\begin{array}{l}0 \times f 2=1 _111-0010=-0 b 1.0010 * 2^{\wedge} 3=-9 \\ 0 \times f 3=1 _111 _0011=-0 b 1.0011 * 2^{\wedge} 3=-9.5\end{array}\right.$
$0 \times f 3=1 _111 _0011=-0 b 1.0011 * 2 \wedge 3=-9.5$
$0 \times f 4=1 _111 _0100=-0 b 1.0100 * 2 \wedge 3=-10$
$\left\{\begin{array}{l}0 \times f 4=1 _111 _0100=-0 \mathrm{~b} 1.0100 * 2 \wedge 3=-10 \\ 0 \times f 5=1 _111 _0101=-0 \mathrm{~b} 1.0101 * 2 \wedge 3=-10.5 \\ 0 \times f 6=11110=-0 b 1.0110 * 2 \wedge 3=-11\end{array}\right.$
$0 \times f 6=1 _111 _0110=-0$ b1.0110*2^3 $=-11$
$0 \times f 6=1 _111 _0110=-0 b 1.0110 * 2^{\wedge} 3=-11$
$0 \times f 7=1 _111-0111=-0 b 1.0111 * 2^{\wedge} 3=-11.5$
$0 \times f 7=1 _111 _0111=-0 b 1.0111 * 2 \wedge 3=-11$.
$0 \times f 8=1 _111 _1000=-0 b 1.1000 * 2 \wedge 3=-12$
$\left\{\begin{array}{l}0 \times f 8=1 _111-1000=-0 b 1 \cdot 1000 * 2^{\wedge} 3=-12 \\ 0 \times f 9=1-111 _1001=-0 b 1 \cdot 1001 * 2^{\wedge} 3=-12.5 \\ 0 x f a=11111010=-0 b 1.1010 * 2^{\wedge} 3=-13\end{array}\right.$
$0 \times 1 \times 1{ }^{2}$
$0 \times f a=1 _111 _1010=-0 b 1 \cdot 1010 * 2 \wedge 3=-13$
$0 \times f b=1 _111 _1011=-0 b 1 \cdot 1011 * 2^{\wedge} 3=-13.5$
$0 \times f b=1 _111 _1011=-0 \mathrm{~b} 1.1011 * 2 \wedge 3=-13$.
$0 \times f \mathrm{fc}=1 _111 _1100=-0 \mathrm{~b} 1.1100 * 2 \wedge 3=-14$
$0 \times f \mathrm{fc}=1 _111 _1100=-0 \mathrm{~b} 1.1100 * 2^{\wedge} 3=-14$
$0 \times f \mathrm{fd}=1-111-1101=-0 \mathrm{~b} 1.1101 * 2^{\wedge} 3=-14.5$
$0 \times \mathrm{xfe}=1_{-}{ }^{111 _} \mathrm{l}^{1110}=-0 \mathrm{~b} 1.1110 * 2^{\wedge} 3=-15$
$0 \times f e=1 _111 _1110=-0 b 1$.
$0 \times f f=1 _{ }^{111 _1111}=-\operatorname{Inf}$

