
Mario G.C.A. Cimino

Department of Information Engineering

Process-driven
Information Systems

University of Pisa

MSc in Computer Engineering

http://www.iet.unipi.it/m.cimino/wdis/

BUSINESS PROCESS MANAGEMENT SYSTEMS

852 ofA scenario with workflow and business rules 

A business collaboration on the order planning of a machinery

Pilot scenario. The participants involved in the business are (on the left in figure):

the client, the mechanical and the electrical firms. Both design and development

activities (in the middle), are made of two main tasks: a mechanical task and an

electrical task, carried out by the two respective firms. Finally, the management

activity (on the right) consists in the coordination of the participants and in the

orders planning tasks. With regard to the orders planning, each company

schedules tasks on the basis of its own private business rules.schedules tasks on the basis of its own private business rules.

2



853 ofA scenario with workflow and business rules 

A) BPMN process diagram of the collaborative planning of an order

A new order is created in a user task of the Client. A message with the order is sent

from the client to the Shared Order Planning System. The Planning System splits

the order into two parts, i.e. a mechanical and an electrical part, and sends them

to the mechanical and electrical firms, respectively. Then, each firm performs its

planning, represented as a business rule task. In a business rule task, one or more

business rules are applied in order to produce a result or to make a decision, by

means of a Business Rule Management System (BRMS) which is called by the

process engine.

Management System (BRMS) which is called by the

The BRMS then evaluates

the rules that apply to the

current situation. Each

pool of a firm is supposed

to be executed in a firm’s

private server, whereas the

Planning System and the

Client pools are supposed

to be executed in a shared

server. This way, the

business rules of each firm

are completely hidden to

the Community.
3

854 ofA scenario with workflow and business rules 

The decision of each firm is then sent to the Planning System, which carries out a

logical combination via another business rule task, i.e., Order Planning, providing

the Client with the overall planning of the order. Subsequently, the Client receives

the planning and performs an assessment of it. The planning can either be revised,

by creating a new order, or accepted, which causes the end of the workflow.

B) Business rules

An order type can be either standard or innovative, i.e., an order very similar or

completely different with respect to the past orders, respectively. An order can be

performed either in the short or in the long period, depending on the following of

factors: the order type, the number of “in progress” orders, the payment time,

and the residual production capacity. The coordination task consists in conducting

an iterative communication between the client and the firms, whose result is the

order’s planning or its rejection.

An ontological view of the collaborative planning of an order is represented in the

next slide, where base concepts, enclosed in gray ovals, are connected by

properties, represented by black directed edges. More formally, a Client creates a

New Order, which is characterized by a type (which can assume the value

“standard” or “innovative”), a term (which can assume the value “short” or

“long”) and a payment (which can assume the value “fast” or “slow”).
4



855 ofA scenario with workflow and business rules 

Ontological view

5

856 ofA scenario with workflow and business rules 

The new order is made of Work Modules. Work module is a generalized and

abstract concept, i.e., it cannot be instantiated. In figure, the name of abstract

concepts is represented with italic style. Mechanical Module and Electrical Module

are work modules specialized from Work Module. In figure, specialized concepts

are shown with white ovals and are connected by white directed edges to the

generalized concept. Each module is characterized by a term (which can assume

the value “short” or “long”), and is implemented by a Mechanical or Electrical

Firm, respectively. Each firm inherits two properties from the generalized concept

Firm. A firm has an in progress orders and retains a Residual Production Capacity.

Both properties can assume the value “true” or “false”.

For the sake of brevity, in the scenario the ontology is globally shared between

participants and the business rules are different for each participant. However, the

ontology can be also modularized, to avoid sharing private concepts.

C) Natural-language business rules

q a mechanical firm places a new order in the short term if its type is standard and there

are no in-progress orders; otherwise the order is placed in the long term;

q an electrical firm places a new order in the short time if there is a residual production

capacity and the payment is fast or if the payment is slow and its type is standard;

q the planning system places a new order in the short term only if both modules have been

placed in the short term.
6



857 ofA scenario with workflow and business rules 

D) Formal IF-THEN rules

7

858 ofA scenario with workflow and business rules 

E) Collaborative Analytics

q Business rules are usually designed according to goals which are measurable

via related Key Performance Indicators (KPIs), for each company and for the

community itself.

q For this reason, the usability of the data flow connected to the workflow is a

fundamental requirement.

q In a collaborative network the computation of KPIs must preserve the

marketing value of data source to be aggregated, avoiding industrial espionage

between competitors.

q The focus here is not on specific KPIs: the technique is suitable for any

business measurements that need to be aggregated handling company’s data.

q The problem in general can be brought back to comparing providers’

performance. In practice, a collective comparison is related to the “to share

or not to share” dilemma, an important reason for the failure of data sharing

in collaborative networks.

8



859 ofA scenario with workflow and business rules 

In the dilemma, a typical buyer does not

like to share the performance of his good

providers (keeping a competitive

advantage over its rivals) and like to

share the performance of a bad provider

(showing his collaborative spirit).

However, each buyer knows a

subset of the providers

available on the market.

The fundamental question of a buyer is:

how much are my providers good/bad?

To solve this question, providers’

performance should be shared. This way,

buyers with good providers would lose

the competitive advantage.

Given that nobody knows the absolute

ranking of his providers, to share this

knowledge is risky and then usually it

does not happen.

does

hi

mpe

li

pr

.

buy

ood

rov

Thi

ould

ab

har

sua

oes not

is good

etitive

like to

rovider

uyer is:

d/bad?

viders’

is way,

ld lose

bsolute

re this

ually it

9

8510 ofA scenario with workflow and business rules 

Let us consider an extension of the pilot scenario, with a new behavior in the

workflow: when the mechanical or the electrical planning does not satisfy the

client requirements, the Planning System must be able to select an alternative

partner.

To achieve this extension, an Order Planning Assessment activity should be carried

out by the Planning System too. Then, another activity, called Select Alternative

Partner, should compare partners’ performance to carry out a selection. Such

performance must be made available by a collaborative analytics process.

The next slide shows an example of data flow designed to implement a privacy-

preserving collaborative analytics process. The Collaborative Analytics System

(called hereafter “System” for the sake of brevity) is the main pool located on a

shared server and coordinating pools of registered buyers. Each buyer’s pool is

located on a private server.

The main goal of the data flow is to create a public collective data by aggregating

buyers’ private data. For instance, let us consider a community of N buyers B1, B2,

… BN, and a community of M vendors V1, V2, … VM, each buyer being supplied by a

small subset of the vendors. The average delivery time of the vendors of a buyer is

an example of private datum, whereas the average delivery time of the vendors of

all buyers is an example of collective datum.
10



8511 ofA scenario with workflow and business rules 

The problem: how to calculate the average without sending each term tk to the server?

The solution: each buyer receives a partial summation, adds its own term and sends the

next partial summation to the next buyer. The server orchestrates step-by-step a random

sequence of buyers. At each step, the next buyer is asked to the server, which does not

manage partial summations. The messaging is trusted but anonymous and the server can act

as a fictitious buyer at the begin and at the end of the protocol

ge partial summations. The messaging is trusted but anonymous and the server can act

ctitious buyer at the begin and at the end of the protocol

BUYER 1

BUYER 2

BUYER N

SERVER

t0

t0 +t1

t0 +t1 +t2

t0 +t1 + … +tN

(t0 +t1 + … +tN - t0 )/N
11

8512 ofA scenario with workflow and business rules 

In general the aggregation process protects buyers’ datum from being publicized.

More specifically, at the beginning the System randomly extracts a buyer and

generates a fictitious collective datum. A fictitious datum is an artificial creation

that mimics real-world datum, and then cannot be distinguished from actual datum

in terms of features.erms of features.

12



8513 ofA scenario with workflow and business rules 

q Collective datum is then anonymously sent to the extracted buyer, who adds his

private datum to it and ask the System for the next buyer.

q The system will answer with a randomly extract next buyer. Then, the buyer

sends anonymously collective datum. This way, collective datum is

incrementally built and transferred from a buyer to another one, under

orchestration of the System.

q Each buyer is not aware of his position in the sequence. This is because the first

extracted buyer receives a fictitious collective datum, and because the sender

is always anonymous.

q The last extracted buyer will be provided with a fictitious buyer by the system.

Such fictitious buyer actually corresponds to the System itself. After receiving

the collective datum, the System subtracts the initial fictitious datum, thus

obtaining the actual collective datum, which is then processed (so as to extract

some common features) and sent to all buyers.

q By comparing the collective datum with his private datum, each buyer will be

able to assess his position with respect to the collective performance. The

results of this process can be used by to select a partner whose performance is

higher than the collective performance.
13

14 ofBusiness Process Management System

ü Bonita BPM 7 is a powerful application platform for building

personalized, process-based business applications that adapt to your

business changes in real time.

ü Bonita BPM has two parts: the development environment, Bonita BPM 

Studio, and the runtime environment, Bonita BPM Platform.

ü Bonita BPM adopts the model-driven approach, a software design

methodology for the development of software systems, launched by

the Object Management Group (OMG) in 2001.

ü With model-driven engineering, specifications are expressed as

models. Models can be expressed with standards, such as the

executable Unified Modeling Language (UML), and the BPMN.

ü Models are then processed to automatically generate software. Code

generation means that an automated tool derives from the models

parts or all of the source code for the software system.

85



Business Process Management System 15 of 85

Business Process Management System

ü Our first model, edited with Signavio

ü Class diagram (data model)

ü Business Process diagram (workflow model + data objects)ss diagram

16 of 85



BP Modeling: Web purchase model with Signavio

1. Download the Bonita BPMS from

http://www.iet.unipi.it/m.cimino/wdis/ 

“Process Management suite: Bonita BPM 7.x [local]”

http://www.iet.unipi.it/m.cimino/wdis/res/BonitaBPMCommunity-7.5.4.zip

2. Extract it to c:\wdis

3. If needed, change the JDK: create a batch file (go.bat)

set JAVA_HOME=C:\wdis\jdk8

set PATH=C:\wdis\jdk8\bin;%PATH%

java -version (1.8)

BonitaBPMCommunity64.exe

17 of 85

BP Management: Web purchase example with Bonita BPM18 of 85

1. Select New from the Cool bar to create a new diagram



Bonita BPM: Diagram and Pool Name 19 of 85

2. Click outside the pool, click on Edit, Enter Diagram and Pool Name2. Click outside the ppool,, click on Edit,, Enter Diaggram and Pool Name

Bonita BPM: Draw the BPMN model and set names 20 of 85

3. Create the diagram using the toolkit, configure the selected element  



Bonita BPM: Connect a sub-process to a pool 21 of 85

4. Select the 

Deliver task, 

choose the task 

type

Call Activity, 

and choose 

Delivery as a 

target name

D

t

Bonita BPM: Add Process variables 22 of 85

5. Select the Web Purchase Pool, go to Data Pane, on Process variable 

click Add



Bonita BPM: Add enumeration process variables 23 of 85

Process variables: can be used in a process and until the process instance is completed.

6. Enter customerName, leave Data type Text, and press Finish&Add
enter customerEmail, leave Data type Text, and press Finish&Add
enter creditCardNumber, Data type Integer, press Finish&Add
enter expirationDate, Data type Date, press Finish&Add
enter confirmation, Data type Boolean, press Finish&Add
enter products, click on List of options, Name: PromotionalProducts, 

Options: TV, Mobile phone e laptop.

, llllllleeeeeeeeaaave Data type Text, and press Finish
mberrr, DDDDDDDDaata type rrr Integer, press Finish&Ad

Data ttttttyyyyyyyyppppppppeeeeeeee Date, press Finish&Add
Data type BBBBBBBBoooooooooooooooollllean, press Finish&Add

on List of optttiiiiiiioooooooonnnnnnnnnssssss, Name: PromotionalP
Mobile phonobile phonnnnnnnnneeeeeeee ennneeeeeeee     eeeee e lappppttttttttoooooooopppe lapttttooooooooopppppppp.

ss,,,,,,   

Bonita BPM: set expressions for the exclusive transitions 24 of 85

Transitions: 

Select the branch “YES”, 

enter the expression 

“confirmation == true”

Select the branch “NO”, 

anter the expression

“confirmation == false”.

n 

ee”””””””

NO”, 

n

se”.

,, ,,   



Bonita BPM: configure a message connector for a task 25 of 85

Connector: 

Select the Send 
notification task,

Select Execution tab

Select Connectors out
Ø Add

In the popup windows

Select 

Categories Messaging
Ø Email (SMTP)

Name: Send notification
Ø Next 

Ø enter gmail account

Ø Next

Ø enter from, to
Ø Next
Ø enter

Subject: Order refused, 

Message: We are unable 
to fill your order at this time
Ø Click on test, ignore the 

popup warning, check 

your email, > Finish.

ws

ing
TP)

n tab

ors o

bbb

outttttt

on

t

g
)

- Select the tab Actors
- Click on Add
- Name:

customer
- Set as

initiator
Check

set as 
initiator

- Select the 

Lane Sales
Employee
- Add
- Name:

employee
- Finish 

dd

Bonita BPM: create actors for lanes with human tasks 26 of 85

Connector: 

A plug icon appears on the 

task, and the connector in 

the tab on the bottom

e 

Actors: 

- Select the lane Customer

dddd

r

r



Bonita BPM: Map actors to people, forms for human tasks  27 of 85

Mapping Actors –people

- Click on Configure on the cool bar.

- Select customer in Actor mapping > Users > anthony.nichols (pwd bpm)

Similarliy

- Click on Configure on the cool bar.

- Select employee in Actor mapping > Users > april.sanchez (pwd bpm)

Forms and Data Objects

- Select the Web Purchase
Pool > Tab Execution 

> Tab Instantiation Form
Ø 6.x

Ø 6.x Application

Ø Add

Ø …

rs > april.sssssssssaaaaan

Bonita BPM: forms for human tasks 28 of 85

Forms and Data Objects

- Select the Process Variables 

customerName, customerEmail, products.
- A default form is created 

Activity Sales review
- Tab Execution > Tab Form >

6.x Application > Add Select 

customerName, customerEmail,
and products as read only; 

finally add confirmation
Activity Pay 
- Tab General > task type: Human
- Tab Execution > Tab Form >

6.x Application > Add > Select

creditCardNumber, and  expiration Date.



Bonita BPM: use case 29 of 85

- Click the Run button in the Cool bar

- Open two different browsers and point to http://localhost:8080/bonita/login.jsp

- First browser > customer login >  username: anthony.nichols password: bpm
- Second browser > employee login > username: april.sanchez password: bpm

- as a customer, on the tab 

processes click on start

- fill the Web Purchase form and 

click on submit

- In the second browser, as an employee, on the tab 

tasks there is a task to do

Bonita BPM: use case 30 of 85

- Select the task and press take      - first case: press on SUBMIT (without confirmation)

> you will receive an emailllll

- As a customer, start a new process in the first browser

- Fill again the customer form and submit

- As an employee, check the confirmation flag and submit

stttt   bbrowstttt bbbbrow

g aaaaaaaand s



Bonita BPM: use case 31 of 85

- As a customer, select the task PAY and press take

- Fill the PAY form on the right and submit

- As an employee, you can now see in done tasks the task history

the PAY form on the right and subbbmmmmmmmmiiiiiiitttttthe PAY form on the right and subbbbbbbbmmmmmmmi

an employee you can now see in donnnneeee
iiiiitttttttittttttt

Bonita BPM: Database and Web Service connectors 32 of 85

1. Create the diagram above (for detailed steps see the first tutorial):

2. New Diagram > complete the flow with the toolkit leaving the default task types.

3. Select Step1 > General Tab > Task type: Service.

4. Select Step2 > General Tab > Task type: Human.

5. Click on Save in the cool bar.
6. Create the process variables:

7. Select Pool > Data Tab > Process Variables: Add > Name: customer > Finish &
Add > Name: deposit > Finish

8. Create the pool form

9. Select Pool > Tab Execution > Instantiation form > 6.x

10.Tab 6.x Application > Add > Select Tab Process variables > Select deposit, and

mandatory > Finish
11.Create the Step2 form

12.Select Step2 > Tab Execution > form > 6.x

13.Tab 6.x Application > Add > Select Tab Process variables > Select customer, and

read only > Finish



Bonita BPM: Database connector 33 of 85

14.Create the MySQL Database:

15.1st method: import the file bank-dump.sql into a MySQL server.

16.2nd method: download the file www.iet.unipi.it/m.cimino/wdis/res/dbms.zip and

extract it on C:\wdis. Finally, click on C:\wdis\mysqlStart

17.Access the Database with MySQL client:

18.Click on C:\wdis\mysqlClient6.1 > Click on the “+” icon close to MySQL

connections > enter a name and click OK.ick OK.

19.Select the bank schema > Tables >

account > right click > Select rows.

20.Create the DB Connector:

21.On Bonita, select Step1 > Tab

Execution > Connectors out (*) >

Add > Categories: Database >
Others > Connector definition >
MySQL 5.5 JDBC 4… > Next

22.Name: dbconn1 > Next. Enter

URL: jdbc:mysql://localhost:3306/bank
Username: root Password:

Next
__________
(*) Connectors out are carried out at the end of

the step, whereas Connectors in at the begin

of the step.

>> TTTTabb

t (***********))))))))))) >>

ase >>>>>>>>>>>>>>>>>>>>>>>
ition >>
t

Bonita BPM: Database connector 34 of 85

23.Enter the query

24.SELECT * FROM account WHERE deposit > ${deposit};
(for autocompletion of variables press CTRL + SPACE)

23.Select Next > Scripting Mode > Next > Select target: customer
24.Click on the pencil icon to open the Groovy editor.

RE deposit > ${dddddddddddeeeeeeeeeeepppppp
ess CTRL

eeeppp
+ SPPPAAAAAAAAAAA

t S l t t

ddeposit > ${{{{{{{{{{ddddddddddddddeeeeddeep sit}tt ;
E)

et: cccccccccccuuuuuuuuuuuussssssssssstttomer

sit}t ;pos
AAAAAAAAAAACCCCCCCCCCCCCE

t

pos



Bonita BPM: Database connector 35 of 85

28.Expression type: Script
29. In the text area enter

if (resultset.next())

return resultset.getString("customer");

else

return "none";

28.Click on OK > Finish.

29.Click on Start button in the coolbar
30.The Bonita launches the browser

31.Enter a deposit and SUBMIT

32.At Step 2, a customer with more 

than the deposit will be shown

ctor 35 of 85

ttt

g("customer");

nnn ttttttttttttthhhhhhhhhhhhheee coolbar
the bbbbbbbbbbbbrrrrrrrrrrrrrooooooooooooowwwser

UBMITTTTTTTTTT

with moreeeeeeeeeee 

e shown

rrrrrr

epppppoo

 aaaaaaaaaaaa  c

deeeeppppppppppppo



Bonita BPM: Database and Web Service connectors 1 of 24

1. Create the diagram above (for detailed steps see the first tutorial):

2. New Diagram > complete the flow with the toolkit leaving the default task types.

3. Select Step1 > General Tab > Task type: Service.

4. Select Step2 > General Tab > Task type: Human.

5. Click on Save in the cool bar.
6. Create the process variables:

7. Select Pool > Data Tab > Process Variables: Add > Name: customer > Finish &
Add > Name: deposit > Finish

8. Create the pool form

9. Select Pool > Tab Execution > Instantiation form > 6.x

10.Tab 6.x Application > Add > Select Tab Process variables > Select deposit, and

mandatory > Finish
11.Create the Step2 form

12.Select Step2 > Tab Execution > form > 6.x

13.Tab 6.x Application > Add > Select Tab Process variables > Select customer, and

read only > Finish

Bonita BPM: Database connector 2 of 24

14.Create the MySQL Database:

15.1st method: import the file bank-dump.sql into a MySQL server.

16.2nd method: download the file www.iet.unipi.it/m.cimino/wdis/res/dbms.zip and

extract it on C:\wdis. Finally, click on C:\wdis\mysqlStart

17.Access the Database with MySQL client:

18.Click on C:\wdis\mysqlClient6.1 > Click on the “+” icon close to MySQL

connections > enter a name and click OK.ick OK.

19.Select the bank schema > Tables >

account > right click > Select rows.

20.Create the DB Connector:

21.On Bonita, select Step1 > Tab

Execution > Connectors out (*) >

Add > Categories: Database >
Others > Connector definition >
MySQL 5.5 JDBC 4… > Next

22.Name: dbconn1 > Next. Enter

URL: jdbc:mysql://localhost:3306/bank
Username: root Password:

Next
__________
(*) Connectors out are carried out at the end of

the step, whereas Connectors in at the begin

of the process.

> TTTabb

t (********)))))))) >>

base >>>>>>>>>>>>>>
ition >>
t



Bonita BPM: Database connector 3 of 24

23.Enter the query

24.SELECT * FROM account WHERE deposit > ${deposit};
(for autocompletion of variables press CTRL + SPACE)

23.Select Next > Scripting Mode > Next > Select target: customer
24.Click on the pencil icon to open the Groovy editor.

RE deposit > ${ddddddddeeeeeeppppp
ess CTRL + SPAAAAAAA

xt > Select targe

deposit > ${{{{{{{dddddddddeeeep sit}tt ;
E)

et: cccccccuuuuuuuusssssssstomer

sit}t ;pos
AAAAAAACCCCCCCE

et c

pos

Bonita BPM: Database connector 4 of 24

28.Expression type: Script
29. In the text area enter

if (resultset.next())

return resultset.getString("customer");

else

return "none";

28.Click on OK > Finish.

29.Click on Start button in the coolbar
30.The Bonita launches the browser

31.Enter a deposit and SUBMIT

32.At Step 2, a customer with more 

than the deposit will be shown

ctor 4 of 24

pt

g("customer");

n tttttttthhhhhhhhe coolbar
the bbbbbbbrrrrrrrroooooooowser

UBMITTTTTTT

r with moreeeeeeee 

e shown

rrrrrrr

eppo

 aaaaaaaa   c

eepppppppp



Bonita BPM: Web Service connector 5 of 24

Example of Web service:

http://www.thomas-bayer.com/axis2/services/BLZService?wsdl

1. Install the SOAP UI tool:

2. WIN64: http://www.iet.unipi.it/m.cimino/sse/res/SoapUI-x64-5.2.1.exe

WIN32: http://www.iet.unipi.it/m.cimino/sse/res/SoapUI-x32-5.2.1.exe

MACOS: http://www.iet.unipi.it/m.cimino/sse/res/SoapUI-5.2.1.dmg

LINUX: http://www.iet.unipi.it/m.cimino/sse/res/SoapUI-x64-5.2.1.sh

3. Right click on Projects

> New SOAP Project
> Initial WSDL:

(enter the URL)
> OK

4. Expand > dbl click

t

L)))))

ck4. Expand > dbl clicck

Bonita BPM: Web Service connector 6 of 24

- The service takes the BLZ bank code (used in Germany/Austria, ABI+CAB in Italy,

incorporated into the IBAN as part of SEPA standardization) as an input

- Example:

54030011 the BLZ of the Bank Service Credit Union Overseas Headquarters
https://bank-code.net/blz-sort-codes/54030011-service-credit-union-overseas-

headquarters-051749adquarters-051749



Bonita BPM: Web Service connector 7 of 24

Enter the code and click the play icon ( )

The service provides the following details: bank name (ns1:bezeichnung), BIC code

(ns1:bic), place (ns1:ort), and postal code (ns1:plz)

Bonita BPM: Web Service connector 8 of 24

1. Remove the DB connector

2. Select Step1 > Tab Execution > Connectors out > Remove
3. Remove the Process Variables

4. Select Pool > Tab Data > Process variables > select customer > Remove > OK,

select deposit > Remove > OK.

5. Add the process variables bankCode (blz), bankName (bezeichnung)

6. Add > Name: bankCode > Finish&Add > Name: bankName > Finish
7. Update the Pool form

8. Select Pool > 6.x Application > Pageflow > Select Pool > Remove. Add > Process
variables > Select bankCode. Press Finish.

9. Update the Step2 form

10.Select Step2 > 6.x Application
> Pageflow > Select Step2 >
Remove. Add > Process
variables > Select bankName >
Finish

11.Add the WS connector

12.Select Step1 > Execution >
Connectors out > Add.

13.Categories: SOAP WebService
> Web Service Soap1.2 >
Choose the NAME > conn2 >
Next



Bonita BPM: Web Service connector 9 of 24

45.Name: wsconn2 > Next > Enter parameters *

Service NS: http://thomas-bayer.com/blz/
Name: BLZService
Press Next
Port Name: BLZServiceSOAP12Binding
EndPoint: http://www.thomas-bayer.com/axis2/services/BLZService
Binding: http://www.w3.org/2003/05/soap/bindings/HTTP/
Envelope:
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"

xmlns:blz="http://thomas-bayer.com/blz/">
<soap:Header/>
<soap:Body>

<blz:getBank>
<blz:blz>${bankCode}</blz:blz>

</blz:getBank>
</soap:Body>

</soap:Envelope>

46.Next > Next > Returns body > Next > Output operations:

(Ctrl + space to find parameters values)

___
(*) Parameters are extracted by WSDL document

http://www.thomas-bayer.com/axis2/services/BLZService?wsdl

and by using a SOAP client software such as SoapUI.

47.Next > Next > Returns body > Next > Output operations:

48.Select bankName on the left. Click on the pencil icon on the right. Edit Expression:

Script.

49.In the text area (Ctrl + space to select parameters values if needed):

import org.w3c.dom.*;

responseDocumentBody.normalizeDocument();

NodeList nl = responseDocumentBody.getElementsByTagName("ns1:bezeichnung");

Element el = (Element) nl.item(0);

return el.getTextContent();

bankName on the left. Click on the pencil icon on the right. Edit Expressio

ext area ((CCttrll ++ space tto sellectt parametters vallues iiff needdedd)):

Bonita BPM: Web Service connector 10 of 24

encil icon on the right. E

extContent();



Bonita BPM: Web Service connector 11 of 24

49.Click on Start button in the coolbar

50.The Bonita launches the browser

51.Enter Bank Code and SUBMIT

52.At Step 2, the Bank Name is shown

53.Note: The WS may reply with  “-1” 

when the WS is not available (this my 

occur for free WS)



40 ofEvolution of Enterprise System Architectures 85

ü A business process is a collection of related, structured activities/tasks

producing a specific service/product for a particular kind of customer

(customer-centric perspective).

ü An Enterprise Information System (EIS) is an IS which supports

enterprise business processes.

i

ü A computer Information System (IS) is a system, composed of people

and computers systems, that processes or interprets information.

oooooooonnnn
sss th



41 ofEvolution of Enterprise System Architectures 85

· 1st era: mainframes host monolithic

applications, developed in assembler,

managing all tasks in a single huge program

with textual user interface, application

logic, and data files (accessed via OS)

es host monolithic

ed

sin

ter

ces

host monolithic

d in assembler,

ngle huge program

rface, application

essed via OS)

· With the advent of

DBMS and GUI, lowering

cost of computers, it is

typical for an enterprise

to have different

applications: for HR,

PO, and for Production

Planning; each with its

own DBMS.

· In large enterprises with different departments, different application

systems are used for the same issue.

eppppppppaaaaaartments

· Dependencies between data stored in multiple systems are represented by

identifiers (e.g. contract id, employee id). However, changes (e.g. a

customer address) are hard to propagate without inconsistency.

42 ofEvolution of Enterprise System Architectures 85

· In this context the first

Enterprise Resource Planning

systems (ERP) are developed:

to host disparate enterprise

applications over an

centralized DBMS.

m Architectures

· An ERP is accessed by client

applications, which access an

application server issuing

requests to a DBMS.

· With the growth of enterprises and new market requirements, driven by

new customer needs around the year 2000, new software systems enter

in the market:

· Supply Chain Management (SCM) systems, Customer Relationship

Management (CRM) systems, with the purpose of supporting the planning,

operation, and control of supply chains, including inventory management,

warehouse management, management of suppliers (and distributors)

relationships (SRM), and demand planning.



43 ofEvolution of Enterprise System Architectures 85

· New types of ISs enter the market, often developed by different

vendors, hosting their own DBMS. System architects face again the

problem of heterogeneous enterprise applications: for instance, call

centers are not able to know the complete status of the customer.

· This unsatisfactory situation is called "siloed applications": while

application systems can be physically connected by a local network, they

are not logically integrated; manual integration made by the user

consumes considerable resources and is error-prone.

44 ofEvolution of Enterprise System Architectures 85

· Unfortunately, due to the large complexity of the systems at hand, the

same approach used with ERPs, i.e., to re-implement systems functionality

in an integrated way, is not feasible in the new context.

· This leads to new middleware systems: EAI (Enterprise Application

Integration) systems; in EAI, a system performs certain steps and transfers

control to another system, which takes results and continues operation.

· EAI technology can be used to cope with syntactic and semantic

differences between data (data integration): e.g. the customer address is

represented in one system by the attribute "CAddr" and in the other

system by the attribute "StreetAdrC"; e.g. in one system the attribute

"Price" includes value-added tax, in the other system it is excluded.

· In enterprise computing changes are abundant, and a system

architecture should support changes in an efficient and effective manner.

· Early inventions in the EAI architecture are: (i) message oriented

middleware; (i) application adapters; (iii) message broker with

declarative rules.



45 ofEvolution of Enterprise System Architectures 85

46 ofEvolution of Enterprise System Architectures 85

· Guarantee of message delivery. But the problem of point-to-point communication still

exists (response to change is not improved): each sender of a message needs to encode the

receiver in the integration application.



47 ofEvolution of Enterprise System Architectures 85p y

● The sender of a message does not encode the receiver, since the message structure and

content is used to automatically detect the receiver or receivers of a message (content-based

routing). No N x N connections. Each application requires the development of a dedicated

adapter.

● Adapters of application systems are used to perform message transformations (data mapping

between the applications), and to handle data heterogeneity issues

48 ofEvolution of Enterprise System Architectures 8548 ofSystem Architectures 85

· Drawback: the message broker contains considerable application logic in rules. This

approach requires a global data model hosted by the message broker via programming

and low-level configuration of adapters.

· Data integration is typically performed using data mapping tools allowing the mapping of

data structures of the application to data structures of the message broker.

● Message brokers are used

to define rules for

communication between

applications, in a

declarative way, in the

central hub.

● Applications can link to

message brokers via

publish/subscribe

mechanism: applications

can subscribe to certain

types of messages and can

publish messages, the

enterprise application

integration hub uses realize

the relaying of messages.



49 ofEvolution of Enterprise System Architectures 85

From Application Integration to Process Orientation
· In typical enterprise application integration scenarios, the functionality of the

integrated applications is organized by a sequence or partial order of steps,
realizing a process. This process consists of activities that are executed, under

business constraints, to achieve an overall business goal.

· While in enterprise application integration discussed so far these process

structures are embedded in rules hosted by the message broker, an explicit

representation of processes is more appropriate. Workflow management is the

fundamental invention in the evolution of information systems.

· In parallel, another factor emerges from business administration rather than

from software technology: process orientation (PO)

· PO is based on a critical analysis of Taylorism (small-grained activities

conducted by highly specialized personnel), which was good until 80s, when

products were typically assembled in a few steps of a simple nature (Þ

transfer of work between companies does not introduce delays, no

information on previous steps is required)

· In modern business organizations, that mainly process information, the steps

during a business process are often related to each other, context information

on the complete case is required during the process, and the transfer of work

between companies causes a major problem.

50 ofEvolution of Enterprise System Architectures 85p y



51 ofEvolution of Enterprise System Architectures 85

· The important achievement of workflow management is the explicit

representation of process structures in process models and the controlled

enactment of business processes according to these models.

· The model-driven approach facilitates a high degree of flexibility,

because process models can be adapted to fulfill new requirements, and the

modified process models can immediately be used to enact business

processes.

· A workflow management system (WfMS) is a

software system that defines, creates, and

manages the execution of workflows through the

use of software, running on one or more workflow

engines, which is able to interpret the process

definition, interact with workflow participants,

and, where required, invoke the use of IT tools

and applications.

· Today, most enterprise application systems, such as ERP, embed a

workflow engine (called workflow component) to facilitate the flexible

customization of business processes within these systems.

d

e

w

ss

s,

ls

such a

52 ofEvolution of Enterprise System Architectures 85

· In the case of multiple-application workflows, a dedicated workflow

management system makes sure that the application systems are invoked as

specified in the process model.

· In addition, data transfer between application systems is also handled by

the workflow management system, by using adapters.

application sysssssssstttttttte

using adapters.



53 ofEvolution of Enterprise System Architectures 85

· 1st type of Wf: Systems Workflow, which consists of activities implemented

entirely by software systems without any user involvement

54 ofEvolution of Enterprise System Architectures 85

· 2nd type of Wf: human interaction workflow, in which humans are actively

involved and interact with information systems.



55 ofEvolution of Enterprise System Architectures 85

Process Support Without Workflow Systems

· Not all environments ask for a WfMS. In cases where no changes to

the process structure are envisioned, a coding of the process flow

can be an attractive and adequate choice: e.g. store procedures in

database administration, print workflow in publishing environments.

· Business processes are also realized in online shops, such as train

reservation systems, where steps of an interaction process are

graphically represented to guide the user interaction. Since this type

of interaction process can be realized using Web page design, a WfMS

is not required.

· ERPs realize literally thousands of BPs, which can be customized to

fit particular needs. In most cases, the BPs are realized within the

system, without integration issues. In some cases, if the predefined

BPs cannot be tailored to fits the needs, integrated process modeling

can be used for new processes.

56 ofEvolution of Enterprise System Architectures 85

· One of the major trend both in business engineering and software

technology is Service-Oriented Architecture (SOA) implemented by Web
Services (WS).

· A WS is a software whose operations are provided, in a platform

independent format (XML), by a host to any another host of the WWW. In

a WS, web technology such as the HTTP protocol, originally designed for

human-to-machine communication, is utilized for machine-to-machine

communication, to invoke software operations and transfer machine

readable data (XML).

· The functionalities of an enterprise

application system can be provided

through services (depicted by

semicircles in figure) via XML-based

standardized interfaces.

Thus, complex applications can be

dynamically built on top of existing

functionalities.



57 ofEvolution of Enterprise System Architectures 85

· Composite applications invoke enterprise services that provide the

functionality of the underlying back-end systems. User interaction is

realized by dedicated graphical user interfaces that sit on top of

composite applications.e applications

58 ofEvolution of Enterprise System Architectures 85

· Modern EAI middleware provides Web Services interfaces to the

enterprise applications.

· The term Enterprise Service Bus (ESB) means that each enterprise

application is attached to the bus, which acts as an application

independent integration middleware.



59 ofEvolution of Enterprise System Architectures 85

· The structure of composite applications can in many cases be expressed

as a business process.

· The activities of these processes are implemented by invoking

enterprise services. Additional execution constraints like conditional

execution can be represented by business process modelsnted by business process models

· Enterprise services can

also be used to realize

business interactions of

multiple enterprises

(multiple pools).

60 ofEvolution of Enterprise System Architectures 85Evolution of Enterprise System Archi

· The business process management

(BPM) architecture is shown. At the

lowest level, heterogeneous

applications, such as ERP and CRM,

but also tailor-made applications.

· Integration issues are covered by

an EAI middleware, via adapters for

heterogeneous applications.

· The functionalities of enterprise

applications are provided through

services to the system workflow

(service tasks)

· The activities of human interaction

workflows can be then associated

(user tasks)

(

lo

a

b

·

a

h

·

a

s

(

·

w

(

· Finally, activities in human

interaction workflows can also be

part of a business-to-business

process interaction.



BP Management: Introduction to Web Service 61 of 85

• A Web Service (WS) is a software system designed to support

interoperable machine-to-machine interaction over a network.

• Many companies today offer software on the Web as a service: Google,

Yahoo, Amazon, eBay.

• Governments collect a lot of data opening up access to data via Web

Services (WS). WS technology represents an important way for businesses

to communicate with each other and with clients as well.

• http://www.webservicex.net/

BP Management: Introduction to Web Service 62 of 85

• E.g. a purchase-and-ordering WS communicates to an inventory WS that

specific items need to be reordered. Many WS can be chained to

implement complicated workflows.

• W3C-XML protocols are used to interact with a WS.

• SOAP (Simple Object Access Protocol) over HTTP is used to exchange

XML messages between the Requester and the Provider of the service.

• REST (REpresentational State Transfer) is a

lightweight method to transfer data (e.g.

between simple devices/client applications

and a WS provider). IT is based on a HTTP

request-response message, in JSON or XML.

• WSDL (Web Services Description Language)

specifies the WS interface (operations,

input/outputs, types, endpoints, ecc.)

• UDDI (Universal Description,

Discovery and Integration) provides

information to search and access the

WS via a Registry

der). IT is based on a HTTP

e message, in JSON or XML.

ces Description Languaage)

interface (operationss,

ypes, endpoints, ecc.))

)

rsal Descriptiooooonnnnnnnn,,,,,

ntegration) pppppppprrrrrrrroooooooovvvvvvvviiiiiiiddddes

earch aaannnnnnnndddddddd aaaaaaacccess the



BP Management: Introduction to Web Service 63 of 85

· The WS provider is responsible for preparing a WSDL file of the serviceder iiss respponsible for pprepparingg a WSDL file of the service

· The WS 

requestor need 

access to the 

WSDL file

· The 

requestor 

sends a SOAP 

message to the 

service 

endpoint using 

information in 

the WSDL

· The provider 

invokes the 

software and 

returns a SOAP 

message

BP Management: Introduction to Web Service 64 of 85g

See the demo on youtube



BP Management: Introduction to Web Service 65 of 85

• The Service-Oriented Architecture (SOA) is one of the enablers of Cloud

Computing: Internet-based computing providing on demand resources

Þ +Agility, -Cost, -Maintenance, +Performance, +Productivity, +Reliability

BP Management: Introduction to Web Service 66 of 85

• Example of a high-

level purchase 

order composition 

showing the 

communication 

with each WS.

• WS composition: 

describes how a set 

of services are 

related to each other. 

It is an 

implementation of 

system workflows. 

• WS-BPEL: Business 

Process Execution 

Language for WS, is a 

related XML standard



BP Management: Introduction to Web Service 67 of 85duction to Web Service 67 of 85

• BPEL can be generated

from BPMN, under some

limitation

• BPMN is a graph-

oriented language in

which control and action

noted can be connected

almost arbitrarily

• BPEL is a mainly block-

structured language, an

extension of imperative

programming languages

• Since BPEL offers loops,

if-then-else, XML data

types, it is Turing

complete

BP Management: Introduction to Web Service 68 of 85gement: Introduction to Web Service

• Examples of BPMN-to-BPEL 

transformations made by the 

Visual Paradigm modeler suite

• In the BPEL, the flow modeled in 

cub-process is merged to the 

ordinary flow: the activities STask1

and STask2 are modeled in the sub-

process diagram, following Task



BP Management: Introduction to Web Service 69 of 85

• Example 2: the BPMN XOR gateway is translated into a BPEL switch p g y

BP Management: Introduction to Web Service 70 of 85

• Example 3: the BPMN event-driven XOR gateway becomes a BPEL pick, 

which provides two branches, each one with a condition. The branch that 

has its condition satisfied first is executed.



BP Management: Introduction to Web Service 71 of 85

• Example 4: in BPMN having a sequence flow back into a gateway, forming a 

loop, means in BPEL to repeat the flow while a condition is satisfied.

BP Management: Introduction to Web Service 72 of 85

· Let us consider an example of a travel application, allowing customers

to select trips, make reservations, and confirm reservations by

providing credit card information.

· To allow this composition of services, the travel application invokes a

credit card withdrawal service provided by a bank. In static binding the

two services are bound at development time. However, this is not

effective in environments with dynamic service landscape

· In dynamic binding, service implementations can be discovered at

runtime: the application (or a supporting middleware) asks the service

registry for a list of suitable services, selects and binds to one of them.

· Service matchmaking: 

the process of selecting 

a set of services that fit 

a service request. It is 

made by the service 

broker.

· It depends on rich 

semantic annotation of 

services



BP Management: Introduction to Web Service 73 of 85

• Services can be composed in a correct way if they operate on the same

domain concepts. The simplest case occurs when consequent services

operate on the same domain concept: e.g. a service returning customer

data can be combined with a service taking customer data as an input.

• Since web services are usually developed independently of each other, the

WSDL data types in most cases do not match.

• Typically syntactic differences are solved by system architects and

software developers, using data mapping techniques. With compositions of

many services this approach introduces a considerable overhead due to

heterogeneous data types.

• Even with similar parameter names like europrice and price, the user of

the service cannot be sure that the price is really the euros currency. For

example there might be semantic differences: one service returns 120 and

the other 118. Since the concept of price is not agreed upon the providers,

the price 120 includes value-added tax (VAT), while the price 118 does not.

• To solve this problem, data should be semantically annotated by using

Semantic Web standard, to be automatically compared and integrated.

(RDF, resource Description Framework, OWL: ontology Web langauge)

BP Management: Ontologies and Data Mapping 74 of 85

· A domain ontology is associated with a set of stakeholders, who need to

agree on the domain ontology. In an ontology, concepts are represented

by ellipses, and the relationships are represented by directed arcs.

· Example of simple domain ontology for contacts (XML standards: RDF,

OWL)

p p gy (

L)



BP Management: Ontologies and Data Mapping 75 of 85

· The Contact domain ontology can be used to integrate a Customer

Relationship Management (CRM) and an Enterprise Resource Planning

(ERP) with different data structures.

· E.g. the full_name field of the CRM is mapped to the Name concept in

the domain ontology. The field Strasse (ERP) is mapped to StName.

· If each data

field is

mapped to the

domain

ontology, the

mapping of the

data between

two system

can be

achieved

automatically

at runtime.

BP Management: Ontologies and Data Mapping 76 of 85tologies and Data Mapping

· A service of the 

CRM returning a 

parameter of data 

type Cont_234 can 

be fed into a 

service taking a 

parameter of data 

type Adr32 if the 

appropriate 

ontology is 

provided.



BP Management: Advanced Service Composition 77 of 85

· Let us consider a call center domain, where phone calls by customers

come in and call center agents serve these calls using an ERP and a CRM

software systems.

· In a call center environment, a customer calls to request certain

information. Using the phone number of the incoming call, the CRM

gets hold of the customer address, which is, in turn, fed to the ERP to

provide information on the customer.atioonn oonn tthhee ccuussttoommeerr.rr

· Another 

service may 

take a phone 

number as 

input and 

provide the 

address of 

the phone 

provider as 

output.

Making processes executable on BPMS: Process variable 78 of 85

Summary of aspects to make a process executable

· Process variables are managed by the BPMS engine to allow data

exchange between process elements. E.g. the purchase order in the

order fulfillment process, represents a process variable.

· The lifetime of a process variable is confined to the life of the

process instance in which the variable is created, and is only visible

to the process level in which it is defined and to all its sub-processes.

This means that a variable defined in a sub-process is not visible in

the parent process.

· We need to assign a data type to each process variable to allow BPMS

to interpret and manipulate these variables. In BPMN, the type of

each process variable can be specified as an XSD (XML Schema

definition) type.

· The type of a variable can be simple or complex. Simple types are

strings, integers, doubles (numbers containing decimals), Booleans,

dates, times, etc. E.g. The object Stock availability can be

represented as a process variable of type integer (representing the

number of available units of a product).



Making processes executable on BPMS: Process variable 79 of 85

· Complex types 

are hierarchical 

compositions of 

other types. A 

complex type 

can be used for 

example to 

represent a 

business 

document, such 

as a purchase 

order or an 

invoice. 

Making processes executable on BPMS: Task variable 80 of 85

· Internal variables of each task, called data inputs and data outputs in

BPMN, need to refer to an XSD type defining their structure. Differently

from process variables, they are only visible within the task (or sub-

process) in which they are defined.

· E.g. a data input for task “Check stock availability” in order to store the 

content of the purchase order.

· The association between data objects and task data inputs/outputs is

defined via a data mapping. In most cases, the BPMS will automatically

create all the tedious data mappings between data objects and tasks.

· BPMN relies on XPATH as the default language for expressing data 

assignments, other languages can be used like Java Universal Expression 

Language (UEL) or Groovy. 

· E.g. Activiti BPM supports UEL, Bonita Open Solution and Camunda Fox

support Groovy while BizAgi’s BPM Suite supports its own expression 

language.



Making processes executable on BPMS: Service Task 81 of 85

· A service task specifies how to communicate with the external

application that will execute the task. It is required is that the external

application provides a service interface that the service task can use.

· A service interface contains one or more service operations, each

describing a particular way of interacting with a given service. For

example, a service for retrieving inventory information provides two

operations: one to check the current stock levels and one to check the

stock forecast for a given product.

· An operation can either be in-out or in-only, thus expecting a

request/response message or request only. Each message of a service

operation needs to reference a message in the BPMN model, so that it

can be assigned an XSD data type.

· For each interface, a concrete implementation is defined: which

communication protocols are used b the service and where the service is

located in the network. By default, BPMN uses Web service technology

to implement service interfaces, and relies on SOAP/REST and WSDL to

specify this information.

Making …: Send/Receive Tasks, Message/Signal Events 82 of 85

· A send task is a special case of the service task: it sends a message to an

external service using its data input, but there is no response. A receive

task waits for an incoming message and uses its data output to store the

message content.

· A receive task can be used to receive the response of an asynchronous

service which has previously been invoked with a send task. The

asynchronous service is provided by the consumer.

· Accordingly, in the send task the producer process acts as the service

requester sending a request message to the consumer. In the receive

task the roles get swapped: the producer acts as the service provider to

receive the response message from the consumer.

· This pattern is used for long-running interactions, where the response

may arrive after a while. The drawback of using a synchronous service

task in place of a send-receive is that this task would block the process

to wait for the response message.

· Message and signal events work exactly like send and receive tasks



Making …: Script task and User task   83 of 85

· For script task, provide the snippet of code that will be executed by the

BPMS, in a programming language such as JavaScript or Groovy.

· The task data inputs store the parameters for invoking the script while

the data outputs store the results of script execution.

· For user task, specify the rules for assigning work items of this task to

process participants at runtime, the technology to communicate with

participants and the details of the user interface to use.

· Also, define data inputs to pass information to the participant, and data

outputs to receive the results. Process participants are members of a

resource class, sharing certain characteristics, holding the same role or

belonging to the same department or unit.

· Specify the implementation technology used to offer the work item to

the selected participant(s): (i) how to reach the participant (e.g. via

email or worklist notification), (ii) how to render the content of the task

data inputs on screen (e.g. via web forms organized through

screenflows), (iii) the strategy to assign the work item to a single

participant out of the assignment expression (e.g. assign it to the order

clerk with the shortest queue or randomly).

Making …: Task, Event and Sequence Flow Expressions 84 of 85

· To write expressions for the attributes of tasks and events, and for the

sequence flows including conditions. E.g. in a loop task we need to

write a boolean expression implementing the condition “until response

approved”. For timer events, e.g. “Friday afternoon”, it can be

provided a temporal expression in the form of a precise date or time, a

relative duration, or a repeating interval.

· These expressions can be linked to data elements and instance

properties so as to be resolved dynamically at execution. For example,

we can set an order confirmation timeout based on the number of line

items in an order.

· To write a Boolean expression to capture the condition attached to each

sequence flow following an (X)OR-split. For example, the condition

“product in stock” after the first XOR-split in the order fulfillment

example can be implemented as an XPATH expression.

· There is no need to assign an expression to a default sequence flow,

since this arc will be taken by the BPMS engine if the expressions

assigned to all other arcs emanating of the same (X)OR-split are false.



Making processes executable on BPMS: system binding 85 of 85

· The most BPMS-specific properties to configure in order to make a

process model executable are those of user tasks and those to link the

executable process with the enterprise systems (system binding).

· BPMSs offer a range of predefined service task extensions, called service

adapters or connectors: performing a database lookup, sending an email

notification, posting a message to Twitter or setting an event in Google

Calendar, reading or writing a file and adding a customer in a CRM

system.

· Each adapter comes with a list of parameters that we need to configure.

BPMSs provide wizards with capabilities to auto-discover some of the

parameter values. For instance, to use a database lookup we need to

provide the type of the database server (e.g. MySQL, Oracle DB) and the

server’s URL, the schema to be accessed, the SQL query to run and the

credentials of the user authorized to run the query.

· E.g. instead of implementing “Check stock availability” as a service

task, generic database lookup adapter can be used if available. The task

“Notify unavailability to customer” and “Request shipping address” can

be implemented via email adapters, without dedicated email services.




