
An efficient model-based methodology for developing device-independent
mobile applications

Mario G.C.A. Cimino ⇑, Francesco Marcelloni
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy

a r t i c l e i n f o

Article history:
Received 3 June 2011
Received in revised form 19 April 2012
Accepted 1 June 2012
Available online 13 June 2012

Keywords:
Mobile user-interface modeling
Delivery-context aware user interface
User interface markup language (UIML)
Composite capabilities/preference profiles
(CC/PP)
Model driven architecture

a b s t r a c t

Current methodologies for developing mobile applications are mostly based on the application program-
ming interfaces (APIs) offered by the native platform. Hence, most solutions are characterized by a low
portability and/or reusability. In this paper, we propose a novel methodology based on a declarative
and device-independent approach for developing event-driven mobile applications. The methodology
relies on: (i) an abstract mobile device based on the user interface markup language; (ii) a content adap-
tation mechanism based on user preferences; (iii) a context adaptation mechanism based on a standard-
ized context of delivery; (iv) a uniform set of client-side APIs based on an interface object model; (v) an
efficient transformational model.

More specifically, in the design phase, the application is modeled as platform-independent on the
abstract mobile device. In the execution phase, the application is automatically tailored to the specific
platform on the basis of the content and context adaptation mechanisms. We describe the analysis,
design and implementation of a framework, called MODIF, which supports the proposed methodology,
and show its application to the development of both business and consumer real-world applications
on Apple iPhone™ and Google Android™ mobile devices. Finally, we discuss how the experience of using
MODIF highlights the quality of the methodology in terms of automation of the lifecycle, expressiveness
and readability of the representation, efficiency of the compilation/interpretation, fast learning curve and
predictability.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The number and variety of handheld devices (HDs) connected to
the Internet is rapidly growing. As a consequence, there is an emer-
gent need for sustainable design methodologies able to generate
services automatically tailored to the features of these different
HDs [37]. In particular, the market of HDs, consisting of smart
phones and personal digital assistants, raises a basic challenge in
the design and implementation of user interfaces: the aim is to
make a platform-neutral description of a service efficiently exe-
cuted and consistently represented on the most popular mobile de-
vices [3,16,22,29,41]. In the industry, current methodologies are
based on the development of ad hoc solutions, which are charac-
terized by a low portability and/or reusability [30]. In contrast, in
the literature, several methodologies have been proposed for mul-
ti-platform design. The most promising paradigm is the model-
based user interface (UI) development, which is aimed at providing
a systematic approach for specifying the UI by means of models.

These models are then translated into a final code executed on
the target device. In this approach, a proper specification language
and related transformation engines are required, in order to gener-
ate the final code for the UI, adapted to a supported target [18]. In-
deed, the final code for a target device cannot be generally
generated a priori during the design stage, but it should be dynam-
ically provided by an adaptation engine, since target devices evolve
over time, according to a number of non functional requirements.

In most of the industrial systems, the adaptation procedure is
defined in ad-hoc manner [18]. Thus, most of these systems are
using hard-coded adaptation techniques, in which the adaptation
code is mixed with the rest of the code of the application, making
the reuse of the designed adaptation procedures almost impossi-
ble. Hence, a more engineered process is possible only raising the
level of abstraction in adaptation design, going towards a model-
based paradigm [1,17,45]. For instance, in [36], the proposed mod-
el-based approach for UIs is aimed at defining a general abstract
structure based on the notion of task. A task is a structured sets
of activities that a user has to perform to attain goals, interacting
with a system influenced by its contextual environment (e.g., to
read reviews with a PDA, to order books via a phone). Here, the ba-
sic idea is to capture all the relevant requirements at the task level,

1383-7621/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2012.06.001

⇑ Corresponding author. Tel.: +39 050 2217455; fax: +39 050 2217600.
E-mail addresses: m.cimino@iet.unipi.it (M.G.C.A. Cimino), f.marcelloni@iet.

unipi.it (F. Marcelloni).

Journal of Systems Architecture 58 (2012) 286–304

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc



and then to use such information to generate effective UIs tailored
to each type of platform considered, such as desktop, handheld,
phone, and so on [23,35]. This design cycle requires a number of
transformations in order to obtain final applications for supporting
the users’ activities, through various devices accessed in different
contexts (nomadic applications) [24,38]. In [39,40], a task model-
ing process captures the business that the UI should guarantee,
providing support across the entire lifecycle of a multi-platform
interface: design, development, operation, management, organiza-
tion and evaluation.

The mentioned approaches are mostly aimed at capturing gen-
eral requirements of universal usability for a broad class of target
devices. The large extent of the class, however, limits the degree
of automation/efficiency of the entire process. Indeed, any adapta-
tion pattern can be automated only under particular constraints
imposed on the target devices. For instance, in terms of design,
an abstract view of a mobile application can be entirely trans-
formed into a concrete executable application by software agents
only if a limited variety of these devices is considered. To this
aim, in order to foster automation and efficiency, we focus only
on the HD class of devices with the intent of generating mobile
applications that are both responsive to the events generated by
the users and characterized by a model-level specification. Thus,
we do not consider, for instance, client devices such as notebook,
tablet, desktop, projector, web tv, and wap which are excluded
from the HD class.

HD features determine some constraints that force specific de-
sign choices. Such choices can concern the representation lan-
guage, the communication and the synchronization between
targets and controllers, the distribution of the controllers, and so
on [44]. For instance, the set of delivery contexts includes remote
controllers and therefore usability might be affected by response
latency. A solution for reducing this problem is to allow some local
computation on the controller. This choice leads to support the rich
internet application (RIA) paradigm on the client-side. Currently, in
the case of HD the only acceptable solution to this problem is based
on the native GUI toolkit. Indeed, the document-centric interface of
web browsers does not supply rich controls. Also, the extensive use
of JavaScript, plug-ins, or java virtual machines brings serious com-
patibility and inefficiency issues.

We propose a novel methodology based on a declarative and
device-independent approach to develop event-driven mobile
applications for HDs. Thus, neither document-centric (i.e., brow-
ser-based) applications nor the directions of research and develop-
ment conducted in the literature to address the problem of making
a web site accessible in multiple environments [46] are considered
in this paper. The methodology relies on: (i) an abstract mobile de-
vice based on the user interface markup language; (ii) a content
adaptation mechanism based on user preferences; (iii) a context
adaptation mechanism based on a standardized context of deliv-
ery; (iv) a uniform set of client-side APIs based on an interface ob-
ject model; (v) an efficient transformational model. Further, in our
methodology, the mobile applications are supposed to be devel-
oped from scratch, so as to take a complete life cycle into account,
considering the large number of different HDs today available and
the variety of purposes for which HDs can be used. More specifi-
cally, in the design phase of our methodology, the application is
modeled as platform-independent on the abstract mobile device.
In the execution phase, the application is automatically tailored
to the specific HD on the basis of the content and context adapta-
tion mechanisms. We describe in detail a framework to support the
methodology, called mobile device independence framework
(MODIF). Further, we show the use of the framework to develop
two applications on Apple iPhone™ and Google Android™ (iPhone
and Android for short) mobile devices. Finally, we discuss how the

experience of using MODIF highlights the advantages of exploiting
the methodology in the development of mobile applications.

The paper is organized as follows: the next section is devoted to
related work. In Section 3, languages for multi-platform modeling
are analyzed and compared. Section 4 discusses our model-based
methodology to develop multi-platform UIs. Here, the lifecycle of
an application is organized as a series of model-to-model transfor-
mations, structured into an architectural framework of layers. This
architectural view is detailed in Section 5. Section 6 describes the
content and context adaptation layers, providing a more detailed
design of the server side. The client side view is studied in Section
7, pointing out how the adapted application description can be effi-
ciently transformed into native code, keeping a uniform set of
Application Programming Interfaces (APIs) between platforms.
Section 8 provides some implementation details of the architec-
tural framework. Finally, Section 9 comprises case studies over
iPhone and Android OSs and for two different mobile applications,
as well as a discussion on the experience of using MODIF.

2. Designing device-independent user interfaces: related work

In this section, we analyze the related work in the field of de-
vice-independent UI design, highlighting the most relevant differ-
ences with respect to our methodology. In the literature, a number
of approaches have been introduced for designing browser-based
applications. For instance, in [6] the authors propose a develop-
ment framework for form-based web applications on heteroge-
neous devices. Here, a semiautomatic process allows the
customization of a generic application for specific target devices
as well as the transformation of existing HTML pages into generic
application artifacts. The main reason for using HTML as a specifi-
cation of UIs is to take advantage of the fact that there exist web
browsers for virtually every platform. However, HTML is not ade-
quate to describe a mobile application that is not document-cen-
tric. Further, web browsers are not appropriate for implementing
many interaction patterns available on smart phones.

A growing number of papers are using the user interface mark-
up language (UIML) [32], i.e., an XML-based language aimed at
expressing UIs for multiple software platforms on different devices
and for multiple applications. A UIML rendering engine capable of
generating platform-specific UIs from a high-level UI description is
presented in [19]. Here, a tree representation of the UIML docu-
ment is built, inclusive of style and behavior. The engine is sepa-
rated into a rendering core and multiple rendering backends,
each for a corresponding specific vocabulary. The UIML document
is first transformed into a general purpose document object model
(DOM) representation by the rendering core. Then, the rendering
backend loads dynamically the mapping to concrete widgets and
builds the interface. Thanks to the reflection mechanisms, the ren-
dering core is also able to realize a dynamic mapping to a specific
widget. Although the approach is flexible both in terms of device
types and interface adaptation, it does not focus on efficiency
and HDs. In contrast, our methodology does not require a dynamic
mapping to a specific widget. Indeed, the designer takes into ac-
count an abstract toolkit that is platform independent and func-
tionally complete in terms of patterns. Such patterns are
dynamically configured and adapted in terms of context of delivery
(e.g., screen size of the HD), and the transformation of the abstract
toolkit to a concrete one is based on an efficient static mapping on
the client side. This allows the UIML rendering format to be pur-
posely designed for an efficient rendering process.

In [21], a generic multi-platform UI builder based on UIML is
presented: the builder exploits a design approach aimed at incre-
mentally generating UIs. The designer works with the concrete
graphical representations, and the tool maintains a synchronized

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 287



platform-independent UIML representation. The approach relies on
a transformation engine, and multiple UIML rendering engines. The
use of UIML is quite atypical. Indeed, the designer works in a
concrete toolkit, and UIML is employed only as an abstract repre-
sentation. Further, the transformation engine is used to generate
initial designs for new platforms based on the previously designed
interfaces. Thus, the work mainly focuses on proposing an intuitive
multi-platform user interface design approach, which is flexible
and usable. However, as declared by the authors themselves, the
rule-based transformation engine, exploited in the approach, is af-
fected by some limitations caused by the difficulty of manipulating
the transformation rules. Indeed, this work does not consider effi-
ciency aspects since it does not take the development of an
efficient runtime engine into account. In contrast, by limiting the
target devices to only HDs, we avoid using rules, thus increasing
efficiency and adaptivity.

In [2], UIML is enriched by adding alternate vocabularies and
transformation algorithms, thus allowing the developer to build a
single specification for a family of devices. The approach focuses
on adaptability, i.e., it can be customized by the designer creating
a new family of devices. However, unlike our methodology, it does
not take into account efficiency and adaptivity requirements. Fur-
ther, it does not propose the design of an architectural framework
supporting the entire life cycle of an application.

The use of a markup language designed for developing device-
independent applications is crucial to describe the several facets
of UIs at a higher abstraction level. If these descriptions are com-
plete, it is possible to automate the construction of different plat-
form dependent descriptions. There is a large body of research on
abstract user interface descriptions and user interface generation.
The approaches differ from each other in transformational model,
workflow, automation degree, target applications, category of de-
vice, etc. Thus, to compare our methodology with these approaches
is not significant, due to their heterogeneity. However, for the sake
of completeness, in the following we will summarize the most rel-
evant approaches proposed in the literature.

In [10] a method that supports adaptation in UI design is pre-
sented, automating particular features of the design process. In par-
ticular, here, interface design is viewed theoretically as a process of
creating mappings between various formal elements at different
levels of abstraction. A decision tree is used to perform such auto-
matic mappings. In [13], interface adaptation is treated as an opti-
mization problem, i.e., the rendering of an interface on a specific
device is made so as to meet the constraints of the device and to
minimize the estimated effort for the user’s expected interface ac-
tions. In [14], the authors provide an evaluation of two different
systems, which, given a model of the user, automatically generate
personalized interfaces. More specifically, the systems use a model
of the user’s motor capabilities and a model of the user’s prefer-
ences, respectively. Results show that the automatic generation of
capability-based interfaces improves both performance and satis-
faction of users. A system for automatically generating remote
control interfaces is discussed in [26]. In particular, the system re-
lies on a communication protocol, adaptors for translating from
proprietary appliance protocols to the proposed protocol, and a
specification language for describing the functions of an appliance,
as well as generators that build interfaces from specifications. In
[27], the interface generation is improved using a technique that
uses parameterized templates in the appliance model, to specify
when design conventions might be automatically applied in the
UI. In [28], remote control interfaces are automatically generated
by identifying similarities between different devices and users so
as to optimize the generation process. In [31] a method for design-
ing and developing services that are accessed by using many differ-
ent devices is considered. This method is based on a separation of
the user–service interaction and presentation. More specifically,

the system is made of three main parts: the interaction specifica-
tion language, customization forms, and the interaction engines.

3. A comparison of languages for multi-platform modeling of
content and services

In this section, we first introduce the declarative and imperative
languages to support multi-platform modeling, and then we focus
on UIML as a powerful abstraction of a UI in terms of structure,
content, style and behavior.

HDs can be thought of as miniaturized computers. They provide
a small display for output, a small alphanumeric or touch key-
board, a stylus and voice capabilities for input, limited memory,
processing power and bandwidth. Thus, metaphors used for desk-
top devices do not scale down and fail to provide a good foundation
for building user interfaces (UIs) for HDs. For instance, the windows
metaphor cannot be implemented, because small screens can only
display one window at a time effectively. The card metaphor ad-
dresses this problem, considering the interface as a stack (deck)
of cards with only one card being visible at any time.

Markup languages for HD have tried to overcome these limits.
C-HTML [47], for instance, is a subset of HTML for HD. WML [34]
is another XML language for narrow-band devices. V-XML [49] is
a standard for conversational interfaces. These declarative lan-
guages hide implementation details, reducing the amount of
expertise and time needed to develop the software. However, the
implementation of an engine for these standards requires a corre-
sponding mapping to platform-dependent programming lan-
guages. To map interface elements at platform level is very
expensive since a deep knowledge of underlying APIs is required.
Thus, the use of the above XML standards is not convenient, if it
is not supported by a proper level of abstraction that helps to hide
the differences between classes of HDs. Abstraction helps portabil-
ity across different mobile devices and mobile operating systems,
and various human–device interaction paradigms [11].

In the field of imperative languages, a considerable step to-
wards portability has been carried out by the Java Micro Edi-
tion™ [42] framework, which provides an effective way to hide
the native platform. Unfortunately, important mobile platforms
such as Microsoft Windows Mobile and iPhone do not natively
support Java ME. Moreover, the use of Java for developing user
interfaces is for experts: novice programmers must invest valu-
able time to master it. Finally, Java is an imperative language
and, if not natively supported by the mobile OS, slows down
program execution without offering a higher abstraction with re-
spect to other native languages, such as C# [9] or Objective-C
[4]. UIs are today implemented on an increasing number of soft-
ware and hardware technologies, thus demanding new abstrac-
tions [38].

UIML is based on an extension to the model/view/controller
paradigm, called the meta interface model (MIM) [32]. MIM pro-
vides a six-way separation or factorization of the UI elements: UI
structure, style, content, behavior rules, connection of the UI to
external API (business logic), and mapping of the vocabulary used
for class/property/event names to widget set (presentation ele-
ments). This canonical factorization pursues the evolution of the
W3C specifications in the UI area, which has followed a path of
gradually splitting a UI description into orthogonal parts [20]. In
fact, up until HTML 3.2, there was no partition in a UI. In HTML
4, the style was separated (via CSS and XSL-FO) from the remaining
part of the UI specification. Then, in XForms, the portion of a doc-
ument that represents a form was extracted from the UI specifica-
tion. Finally, in XML Events, events were managed separately from
the other aspects of the UI. Thus, the factorization of the UI

288 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



elements made in UIML is compatible with the most important
W3C standards.

UIML is today a standard of the OASIS, a global consortium that
drives the development, convergence and adoption of e-business
and web service standards. Since 1999, the initial work on UIML
was conceived to create multi-platform UIs. Hence, UIML does
not contain tags specific to a particular UI toolkit. UIML defines
generic tags common to any toolkit, and language elements to
map these tags to a particular toolkit. In a UIML document the
vocabulary of a particular toolkit appears as the value of the tag
attributes. An external toolkit-specific document enumerates for
a particular toolkit a vocabulary of toolkit components and their
property names. Although UIML allows a multi-platform descrip-
tion of UIs, there is a limited similarity between platform-specific
descriptions, when platform-specific vocabularies are used. This
means that the UI designer has to create separate user interfaces
for each platform, using its own platform-specific vocabulary. A
vocabulary is defined in terms of a set of concrete user interface
elements with associated properties and behavior.

More specifically, in the MIM, a UI has an abstract structure
made of a set of interface elements with which the end-user inter-
acts. Each interface element, i.e., a part, may be organized differ-
ently for different categories of end-users and different families
of services. Each interface part has content (e.g., text, sounds,
images, etc.). The mapping between an interface part and the asso-
ciated artifact is carried out by using special elements. The inter-
face portion of a UIML document defines a virtual tree of parts
with their associated content, style and behavior. Hence, in UIML
there is a differentiation between structure and content. The behav-
ior element of UIML describes the actions that occur when an end-
user interacts with a UI, and is built on rule-based languages. Each
rule contains a condition and a sequence of actions. Whenever a
condition is true, the associated actions are executed. A condition
becomes true when suitable events are triggered. Each action can
change a property or variable of some part of the UI, invoke a func-
tion in a scripting language or from a software object, in order to
specify the application logic that modifies dynamically the view
or the model of an application. Furthermore, UIML provides reus-
able pieces of a UI as a template. This allows a canonical description
of a user interface through the UI lifetime.

4. A new model-based methodology for developing mobile
applications: the trade-off between abstraction and granularity

This section shows a comparative view of UI toolkits in terms of
abstraction level and granularity, and introduces our model-based
methodology starting from the model driven architecture of the
OMG group.

An important feature of UIML is the level of abstraction used to
describe a UI. UIML does not contain tags specifically related to a
particular UI toolkit, e.g., <BUTTON>, <WINDOW> and <MENU>.
It captures the elements that are common to any UI toolkit through
a set of generic tags, defining special attributes that map these ele-
ments to any toolkit. Therefore, a UIML author needs to specify, in a
separate document, the UI toolkit (e.g., Java Swing,1 Microsoft
Foundation Classes,2 WML, etc.) to which he/she wishes to map
the UIML document. This binding mechanism, from an abstract ele-
ment of an interface to a concrete presentation component of a UI
toolkit, can be implemented at different abstraction levels.

Indeed, UIML should only capture the human–computer inter-
action (HCI) designer’s intent. This is possible by allowing descrip-
tions of the UIs expressed using abstractions of the HCI designer’s

choices, rather than using UI designer languages and/or widgets. If
a traditional UI development tool is used, e.g., Visual Basic,3 Dream-
weaver,4 and NetBeans,5 UI designers are forced to map their think-
ing to Visual Basic, HTML forms, and Java widgets, respectively,
because the palette they use to design the UI contains widgets. In
contrast, since UIML is a meta-language to which a vocabulary can
be added, one can devise vocabularies specific to training courses,
auto and industrial automation, thus separating the HCI designer’s
intent from the particular widgets used in a specific target language
or device.

The aim of this paper is to propose a novel design methodology
based on a purposely designed UIML abstract toolkit. To this con-
cern, two key concepts are abstraction and granularity. In general,
abstraction in a specification/programming language means to hide
implementation details from the language, thus reducing the
amount of expertise and time needed to develop the software.
For example, the Java virtual machine abstracts the native architec-
ture, providing APIs over it. Granularity pertains to the average
quantity of functionality encapsulated by a single atomic element
or method of the API, which can be natively implemented. For in-
stance, in a service-oriented architecture, service granularity de-
fines the capability of a specific service.

Indeed, an abstract toolkit based on patterns can enable a very
efficient UIML description as well as a very efficient implementa-
tion, because each pattern can be natively implemented. A pattern
captures the essence of a successful solution to a recurring usabil-
ity problem in interactive systems [7]. For instance, Apple has
identified several simple and intuitive patterns, not very dissimilar
from those for traditional mouse use, specialized for a multi-touch
interface. Such patterns are provided via the UITouch class, which
is one of many related classes in the UIKit framework.6 Patterns are
both at a higher level of abstraction and a coarser granularity than
normal toolkit components. There is, however, a tradeoff between
providing designers with a high level of abstraction and giving them
the control over the interface design. Thus, in designing an abstract
UI toolkit, a crucial decision is the granularity of the toolkit elements.
For instance, a toolkit that includes only simple controls such as line,
rectangle, text, is a fine-grained toolkit, which allows skilled devel-
opers to control each pixel of the GUI. A toolkit that includes high-
er-level controls such as windows, buttons, menus, and text fields,
is a coarse-grained toolkit. Fig. 1 represents some language for UI
and their relative position in the abstraction/granularity space. Here,
elements that are more complex are represented with large circles,
whereas elements that are more abstract are represented with
dotted circles.

Fig. 1. Granularity and abstraction levels of UI toolkit components.

1 http://java.sun.com/docs/books/tutorial/uiswing.
2 http://msdn.microsoft.com/en-us/library/d06h2x6e%28VS.71%29.aspx.

3 http://msdn.microsoft.com/en-us/vbasic.
4 http://www.adobe.com/it/products/dreamweaver.
5 http://netbeans.org/features.
6 http://developer.apple.com/library/ios.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 289



In general, a declarative language is more abstract than an
imperative language, because the latter specifies in detail how to
perform a task, while the former only specifies what the task is
[38]. Since Markup languages are by their nature declarative,
HTML, V-XML, WML, and UIML are at the top side of the figure.
In general, the abstraction can be realized also with an imperative
language that hides architectural aspects. For instance, multiple ar-
cade machine emulator (MAME) is an emulator designed to recre-
ate the hardware of vintage game systems in software on modern
personal computers and other platforms, thus using the original
program code. MAME provides abstraction, but there is no granu-
larity at all, as it interprets each line of code. Hence, it is at the top
left side of the figure. Imperative platform-dependent languages
such as C++ have a low abstraction and a low granularity, because
they do not natively support powerful APIs to create GUI, as, for in-
stance, Visual Basic 6 does. Finally, modern imperative languages
(Java, C#, Objective-C) based on virtual machines are at the middle
of the figure, because they support a certain class of devices and
the construction of a GUI requires more details than in Visual Basic
6.

Our proposal comes from the role that a toolkit can play consid-
ering different levels of abstraction of its components. To allow the
development of a mobile UI according to an abstract UI toolkit, we
have to design first an abstract mobile device, in a platform inde-
pendent way. This has to be done considering a coarse granularity
in order to be efficiently implemented on HDs. Then model adapta-
tion/transformation techniques can be used to refine the design by
adding details specific to the chosen platform.

In order to produce an architectural framework that depends on
a formal, declarative, implementation-neutral description of the UI
[12], we follow a model-based methodology which is inspired to
the model driven architecture (MDA) of the OMG group [5]. In
the MDA, building models are defined by using the unified model-
ing language (UML) notation. At the highest level, the MDA has a
platform-independent paradigm, which can be employed in the
model-based UI realm. The purpose of this paradigm is to capture
the requirements that are specific to a particular domain. At the
next level, the platform independent model (PIM) has a lower de-
gree of platform-independence, for a set of different platforms of
similar types. It is equivalent to an abstract UI in the model-based
UI realm. The platform specific model (PSM) combines the func-
tionality of the PIM with the requirements of the target platform.
Finally, a platform model provides the details of a particular plat-
form and the provided services [1]. Hence, the key to enable an
MDA methodology is model transformation, which will be dis-
cussed at several levels in this paper. Indeed, UIML in its current
version lacks of a transformation model. An overview of the meth-
odology proposed in this paper for HDs is shown in Fig. 2.

The initial UIML description (Fig. 2i) is created by an HCI de-
signer, considering an abstract device model: it is independent of
any technology, but it is completely detailed in terms of function-
ality, thanks to the use of a set of interaction patterns, discovered
via the aforementioned process. This description is then automat-
ically transformed into a device-dependent description (DDD)
(Fig. 2ii), which considers a concrete device model. This mecha-
nism is based on the variation or adaptation of patterns [5]. Pat-
terns may need different features (attributes, operations,
constraints) to be effective in different delivery contexts. For in-
stance, some new features may be added and/or optional features
may be omitted. This allows patterns to be configurable and adapt-
able. The DDD is a model that contains both business and platform
information, and is the basis of source code and associated arti-
facts. Once the DDD has been generated, it is ‘‘compiled’’ so as to
generate other artifacts, such as deployment descriptors, build
files, and so on for a particular platform model (concrete model
in Fig. 2iii). Finally, the code is deployed and rendered on a device
instance (Fig. 2iv). It can be observed that this approach separates
concerns: the business functionality is represented in a PIM (ab-
stract device model), and the implementation aspects are repre-
sented in a PSM (concrete device model). This makes the PIM
reusable over many different platforms, provided that there is a
suitable PIM-to-PSM mapping agent, and a PSM-to-code compiler
agent for the target platform.

5. Architectural view of the proposed model

In this section, we first introduce the delivery context and the
related standards, and then outline our system architecture.

Delivery context information is typically used to provide an
appropriate format that makes the service suitable for the capabil-
ities of a delivery device [50]. The adaptation can be performed: (i)
by the originating server; (ii) by an intermediary in the delivery
path; (iii) by a user agent. In [50], the term delivery context (DC)
refers to a set of attributes that characterize the capabilities of
the access mechanism, the user preferences and other aspects of
the context into which a resource has to be delivered. Potential
characteristics that might be expressed in the DC are: (i) interac-
tion (I/O modalities and parameters), (ii) user agent capabilities,
(iii) connection, (iv) location, (v) locale,7 (vi) environment, (vii) level
of discourse and (viii) trust.

Some aspects of the DC, such as user preferences, normally re-
quire manual configuration. User preferences related to application
personalization could be transmitted as part of the DC. It is impor-

Fig. 2. A model-based methodology for developing mobile applications.

7 A locale represents a geographical region.

290 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



tant that the user is provided with sufficient flexibility to control
those characteristics, especially where the needs of the user may
differ from those provided in standard configurations. From the
point of view of the designer of a system with DC information,
three important components need to be defined to ensure interop-
erable implementations: (a) a data structure and a vocabulary for
exchanging DC information; (b) a protocol for conveying the DC
information; (c) a processing model for handling the DC
information.

Considering a canonical client–server web paradigm, the client,
originating a request for some resources, may also include some DC
information, which can help in handling the request appropriately.
In practice, the context information may be included as part of the
request, or may be supplied indirectly as a reference to information
that is stored separately. DC information may also be used locally.
Fig. 3 represents a paradigm in which the adaptation is made by an
intermediary in the delivery path.

Here, the intermediary may modify the request, providing new
delivery context information, in such a way that the response can
be adapted appropriately. In the most general situation, a sequence
of intermediaries may provide additional DC information at differ-
ent points in the request path from client to server, and may mod-
ify the response in the response path from the server to the client.
The response may be modified based on any delivery context infor-
mation available at that point in the response path. In some situa-
tions, an intermediary may block delivery context information
from being passed further along the request path. The delivery con-
text also has wider significance than its usage in developing
adapted content. The application that runs on the user agent (typ-
ically the client device) can utilize the device and environment
context information for providing contextual adaptation.

The W3C has specified a data structure and a sample vocabulary
for profiles that can convey delivery context information, i.e., the
composite capabilities/preferences profile (CC/PP) [48]. CC/PP is a
vocabulary extension of the resource description framework stan-
dard: it allows different vocabularies to be designed and imple-
mented by communities involved in developing applications,
devices and browsers. Further, it also allows the dynamic compo-
sition of a delivery context profile from fragments of capability
information that may be distributed among multiple repositories
on the web. CC/PP is the preferred approach to communicate deliv-
ery context between clients, intermediaries and origin servers. It is
the basis for UAProf [33], which is used to express the capabilities
of the mobile devices in the proposed framework.

In order to implement the interoperable exchange of delivery
context information, it is necessary to specify how the information
is conveyed as part of a request protocol. No consensus has been
reached on how more general delivery context information can
be conveyed. When expressing device capabilities, the strength of
CC/PP is that it has a certain flexibility which is lacking in other
languages. Indeed, CC/PP allows not only defining a fixed set of

preferences that would be used to build device profiles, but also
creating whole vocabularies, making the modeling of device and
agent capabilities, and user preferences infinitely extensible.

An example of transformation mechanisms based on the deliv-
ery context is the resize of images to fit the device resolution [12].
This can be done automatically by the intermediary proxies based
on the resolution information given by the CC/PP profile. Another
example is the reduction of the capabilities of a specific graphical
component, according to the capabilities offered by the device [51].

The open mobile alliance,8 a leading industry forum for develop-
ing interoperable mobile service enablers, already implements CC/PP
in their UAProf technology for WAP devices. This technology is used
to help proxies transform content for mobile use.

Guidelines and paradigms illustrated up to here have been
implemented and tested in a system architecture called mobile de-
vice independence framework (MODIF). Fig. 4 shows the overall
architecture of MODIF. Here, the application repository (APP) con-
tains the UIML description which characterizes the application as
independent of the content and the context of delivery. This
description is given considering an abstract device: the HCI de-
signer can, therefore, focus on her/his activity without paying
attention to mobile device features (e.g., precise screen dimension)
and user preferences (e.g., theme). User preferences are stored in
the content server (SERVER), and can be managed by the user via
web interface. User preferences concern application parameters
and content, and then are independent of the device model and
type. For instance, different user preferences can be set for the
same device model. Most of the user preferences have a default va-
lue. Hence, users do not need to set parameters for the execution of
the application. Once the user launches a specific application, after
the client request, this description goes through a content adapta-
tion process that can be made by the content server with the user
parameters. This process is performed by the content adaptation
layer (in figure, dashed boxes represent logical layers). For in-
stance, the specific user theme, which determines background col-
or, font type, etc., can be resolved at this stage in the UIML
description.

The UIML page is then sent to the Proxy to be processed by the
context adaptation layer. Here, the Proxy can access the CC/PP
descriptor of the user device to determine a set of interface fea-
tures, such as screen size, device sensors, etc. [15]. The UIML
description produced by the Proxy is tailored for a concrete device
(e.g., iPhone, Android, RIM Blackberry, Microsoft Windows Mobile,
Symbian, etc.). Once this description is loaded on the client, it can
be ‘‘compiled’’ and rendered in an efficient manner, thanks to a ser-
ies of Interface Object Model APIs. In the next sections, each layer
will be described in detail.

Fig. 3. Intermediate adaptation paradigm.

8 http://www.openmobilealliance.org/.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 291



6. Content and context adaptation layers: a behavioral model

In this section, we describe how the data on user preferences,
context delivery and interface design are processed by MODIF, pro-
viding a more detailed design of each subsystem. In agreement
with the intermediate adaptation paradigm of Fig. 3, MODIF is
made of three subsequent processing nodes. Fig. 5 gives a sequence
diagram with the interaction between client, proxy and server dur-
ing the first request of an interface description.

More specifically, when a mobile application starts, the client
sends a request to a specific application proxy for an interface
description (1). The request, received by the proxy, contains an
identifier of the interface description (valid within the specific
application), a universal identifier of the device (e.g., the IMEI
code), and the device name. The first two parameters are for-
warded to the server (2). The server is then responsible for locating
the specific (abstract) interface description and building the (ab-
stract) description with a content adaptation process (3), which
is based on the user preferences. In particular, the initial UIML
description contains a series of formal user preferences, which need
to be resolved by the server considering the IMEI code and the
preferences of the owner of the device. For example, the user theme
is the preference that encapsulates a set of graphical options, such

as a specific background image or color, a foreground color, font
family and size, etc. There can be either a default theme or a theme
specified by the user via web interface. In the UIML abstract docu-
ment, each formal user preference is marked with a special text
pattern, and coded using a simplified XPATH expression. An XPATH
expression allows identifying concrete values in the database of
user preferences. Thus, the parser responsible for content adapta-
tion can be very generic and completely independent of the user
database and the user preferences. Fig. 6 shows a UIML fragment
with some formal user preference. After the content resolution
process, the text in bold is replaced by actual values (e.g., ‘‘arial’’,
12, ‘‘green’’).

The UIML description returned to the Proxy, in the form of a
Java DOM object, is personalized for the specific user, but is still ab-
stract and device-independent. It is the Proxy itself that produces a
concrete UIML description, for the specific device model. Starting
from the device name, the proxy is able to access a series of device
capabilities represented in terms of UAProf description. In the
UIML description, a special marker denotes the formal elements,
attributes and values that need to be made concrete after the de-
vice adaptation. The adaptation process is made of a series of rules.
For instance, let us consider two scenarios: (a) the adaptive scaling
of an image and (b) the adaptive resizing of a component. In the

Fig. 4. The MODIF overall system architecture.

Fig. 5. Interaction between subsystems for building a UIML description.

292 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



first case, let us suppose that a specific device has a 320 � 480-res-
olution screen. On small screens, the stretching/resizing of an im-
age results in a diminished image quality. Hence, the server side
should be able to provide the same image content scaled for differ-
ent resolution screens, dynamically or statically prepared, and lo-
cated at different URIs. Let us consider an abstract URI, that is, a
URI that identifies partially a resource content, e.g., at least a piece
of path or name. Fig. 7a shows an example of URI transformation.
Here the left side represents an abstract URI, whereas the right side
is the same URI after the delivery-context adaptation process, once
the screen resolution has been determined.

It is worth noting that the context adaptation process can adapt
content chosen by the user, such as an image. For this reason it
comes after the content adaptation process.

The second illustrative example concerns the adaptive resizing
of a component. Let us consider an abstract element (pattern)
called graphical menu, i.e., a menu with each item made of a text-
label and an image-logo. In the graphical menu, the number of vis-
ible elements can be adaptively set, according to the available
screen size. Fig. 7b shows an example, in which the context-adap-
tation process is able to resolve the concrete value for the abstract
parameter numElemVisible. The context adaptation process is more
powerful than the content adaptation one. It is possible, for in-
stance, to introduce abstract elements, i.e., elements that can be in-
cluded only in the structure of specific device classes. For instance,
for some device with a small screen size, the screen footer and
header have to be removed.

Once the context adaptation process is performed, the UIML
concrete description is sent to the client, in the HTTP response. In-
deed, both the content and context adaptation processes can be
accomplished in a short time, considering that the UIML descrip-
tions are usually short for a mobile interface, and are based on a
series of declarative patterns which do not need to be specified
in detail. Hence, the basic design rule of a coarse-grained UI mod-
eling is that only very essential information should be detailed in a
UIML description. In order to allow this process to be scaled up to
thousands of users, a caching mechanism has been also imple-
mented on the client side.

The web application cache is similar to the browser cache, i.e., a
mechanism for the temporary storage of interfaces, such as UIML
descriptions and multimedia content, and is employed to reduce
bandwidth usage, server load, and perceived lag. In the MODIF par-
adigm, an application is made of a cluster of interfaces connected
by events, and hence an interface could be requested many times,
depending on the frequency of each event. Thus, a caching

mechanism is very important to speed-up the transition between
interfaces: only when the concrete UIML description is out-of-date,
it should be removed from the cache. A concrete UIML description
is out-of-date if the corresponding abstract UIML description and/
or the user preferences have been updated. In order to capture
when a concrete UIML description is out-of-date, we have
exploited a mechanism of automatic version synchronization. The
mechanism is based on two different timestamps: the last-modi-
fied date of the abstract UIML description and the last-received
user preferences date. These two temporal instants are included
in the header of the UIML file, and constitute the version of the
interface description. Fig. 8 shows the automatic version synchroni-
zation process in a sequence diagram which extends the one shown
in Fig. 5 to cope with caching. Here, the client sends a request of a
UI by sending also the timestamps. If the description is up-to-date,
the client receives a confirmation signal only. If the description is
out-of-date, the entire process of building the UIML description is
performed.

Another client-side caching mechanism has been implemented
for the downloading of multimedia content (e.g., sound and image
files). Such a mechanism starts during the parsing of the UIML doc-
ument, at each URI. Here, the name of the file (within a specific
application namespace) is the criterion to check whether the image
has already been downloaded, and then if it is locally available.

7. The interface object model API layer

This section describes how on the client side a UIML description
can be efficiently transformed into native code, keeping a uniform
set of APIs for the different platforms.

In the MODIF paradigm, the client application receives a con-
crete UIML description, which is parsed and then rendered.
UIML-based design fosters reusability, reducing redundancy,
thanks to a six-way factorization of the UI elements, and a flexible
reuse of fragments based on templates. In order to be efficient at
runtime, an interface renderer module should be provided with a
reorganized interface representation where all the information
needed for each component is locally grouped. For example, to cre-
ate an instance of the Button component, all the related informa-
tion, such as style, content, behavior and structure are needed. If,
for instance, the style of this button is shared with other compo-
nents, it will be located in a different fragment of the UIML file.
Hence, using the UIML file for rendering purposes is not efficient,
because the information is often spread over the file. In theory, it

Fig. 6. An example of formal user preferences for content adaptation.

Fig. 7. An example of abstract URI (a) and parameter (b) for delivery context adaptation.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 293



might be possible to have locally the information for each compo-
nent, by replicating the shared fragments. This would not be a good
solution, since the file dimension would grow, thus increasing the
memory request and time cost. Hence, an important step is to de-
sign a ‘‘compiled’’ view of the interface, suitable for the rendering
engine, thus avoiding redundancy and keeping the efficiency. This
means that the parser should produce an intermediate format for
each interface description. According to MDA principles, this pro-
cess should be based on a transformational model.

Fig. 9 shows the views of an event-driven application interface
in the MODIF methodology. Here, an application in UIML is viewed
as a graph of interfaces (Fig. 9i). From a given interface, an event
typically produces the transition to another interface. Each inter-
face can be described in terms of reusable segments of UIML ele-
ments by four basic aspects, namely, Structure (S), Style (R),
Content (C), and Behavior (B), which can be shared and reused
among different interfaces. In Fig. 9i, the Server and Proxy views
of an application are shown. An event causes the restructuring of
an interface, and this transition is represented by the ‘‘restructure’’
relation. For instance, the selection of an item in a main menu
might cause the interface to become a sublevel menu, via restruc-
turing of content and behavior, or to become a completely new ser-
vice interface. It is also possible to use Templates (denoted as T in

figure) as reusable pieces of interfaces. At the Client view
(Fig. 9ii), UIML descriptions are transformed into an object-ori-
ented structure, made of instances of classes derived from the ab-
stract class Block, as shown in Fig. 10. Each Style, Content and
Behavior segment is transformed into an object one time only,
and referenced by some Structure block, via object references.
Structure blocks are referenced by the Application block. The tran-
sition from one interface to another is made via a name reference,
stored as a value in a behavior parameter. A name reference pro-
duces a dynamic loading of a new interface. This model allows
the reuse of the interface elements, and a very efficient information
access by the rendering engine.

Fig. 10 shows a class diagram representing the view of Fig. 9ii.
Here, the fundamental brick is the abstract class Block, specialized
by ValueBlock and ReferenceBlock. A ValueBlock is a set of pairs
(name, value) that acts as a container for a generic UIML property.
For instance, the pair (‘‘align’’, ‘‘left’’). A ReferenceBlock is a set of
pairs (name, reference). Depending on the reference type, i.e., a ref-
erence to a ValueBlock or to a ReferenceBlock, this class is special-
ized by MainReferenceBlock and SecondaryReferenceBlock,
respectively.

To make the interface representation clear, Fig. 11 shows a cor-
responding object diagram for a sample application. Here the
object Application refers to a MainReferenceBlock, containing the
names of all UIML files. In particular, the primary interface file is
called as the application itself (DesktopMate), and the secondary
one is a template describing the structure of a graphical menu ele-
ment. Hence, for each UIML file, a corresponding SecondaryRefer-
enceBlock is referred to. This object in its turn refers to a
ValueBlock. In a ValueBlock, properties are grouped by component,
and then efficiently accessed by the renderer. Furthermore, a
ValueBlock can be shared among files in order to realize the reuse
of pieces of interfaces.

Let us consider more specifically the dynamic view of the main
engines that manage this structure, i.e., the parser and the render-
ing engine. At the beginning of the application, there is a prefetch
process. In this process, the block structure is built considering a
certain number of UIML files that can be immediately loaded, fol-
lowing some possible event on the main interface. It is worth not-
ing that the process of construction of the block structure is based
simply on a SAX parser, and therefore is very efficient. Once the
parser has generated the internal interface representation, the ren-
dering engine is responsible for binding each UIML component to
an element of the toolkit, and hence to instantiate each component
of the interface.

Fig. 8. The automatic version synchronization process.

Fig. 9. Views of an event-driven application interface: server, proxy (i) and client (ii).

294 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



In our methodology, the generic toolkit that has been designed
provides a common application-programming interface valid for
all HDs, which has been inspired to the W3C DOM.9 The proposed
interface object model (IOM) is a cross-platform and language-inde-
pendent convention for representing parts of a UI and interacting
with them. The UI is supposed to be represented using the generic
MODIF UIML toolkit, made of abstract patterns after the process of
content and context adaptation. All aspects of the IOM (such as its

parts) are implemented within the syntax of the native program-
ming language, but the public interface of an IOM is specified in a
corresponding API. With this generic interface, the UIML elements
are mapped using a universal binding for any platform. Fig. 12 shows
a top-level class diagram of the IOM API.

At the top of the structure, there is the Interface class, with gen-
eric factory methods to create and refer to parts. An interface is
made of Parts. A Part is provided with a generic method setAttrib-
ute, which allows setting any property of the element. For each
possible attribute, generic properties have been defined. For in-
stance: topOffset, width, height, content, opacity, etc., according to

Fig. 10. The interface representation in the MODIF client (class diagram).

Fig. 11. An instance of interface representation in the MODIF client.

9 http://www.w3.org/DOM/.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 295



the specific element. A Part can be specialized as a series of UI gen-
eric components, such as Image and Label. These are provided in
the Pattern Layer. Each component is implemented using the native
platform API, in the Platform Dependent Layer. For example, on An-
droid OS, in the platform dependent layer there are JImage, JLabel,
etc.; whereas on iPhone OS, there are UIImage, UILabel, etc. Some
patterns are not natively provided in some platform, e.g., the
GraphicalMenu on Blackbererry OS. In this case, the entire pattern
is natively implemented, providing the same API in the Pattern
Layer, in order to guarantee a universal mapping model-to-code
for every platform.

8. Some implementation details of the MODIF architecture

In this section, we discuss some implementation details of the
MODIF architecture. In particular, we discuss the structure of the
MODIF subsystems Server, Proxy and Client, and how the main
components of these subsystems interact with each other for car-
rying out the most relevant MODIF services.

8.1. The MODIF Server subsystem

Fig. 13 shows the package diagram of the Server subsystem,
which is entirely based on the Sun GlassFish Enterprise Server
[43]. Here, different notations have been used to denote modules
with different levels of reuse. More specifically, a service-oriented
module is denoted by a gear symbol and contains only application
independent elements. A program-oriented module, denoted by a
scroll icon, contains elements that a modeler/implementer may
need to adapt to each different application with the assistance of
an environment. A human-oriented module, denoted by a user
icon, contains elements that are expected to be defined in an appli-
cation-dependent manner.

In particular, according to the J2EE platform, packages Entity-
Bean and SessionBean contain classes used to map the database
and to implement the business logic, respectively.

The UIMLVersionSynchronization package implements the auto-
matic version synchronization process. The ImageProvider package
provides image content. The UIMLDescription package realizes the

Fig. 12. Interface object model API.

Fig. 13. Package diagram of the MODIF Server subsystem. Fig. 14. An excerpt of the EntityBean package of the MODIF Server subsystem.

296 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



content adaptation process. The DataConnection and the Applica-
tionManager packages are responsible for the application I/O, and
for processing and storing input data, respectively. It is worth not-
ing that only the ApplicationManager, EntityBean and SessionBean
packages are application-dependent.

The EntityBean package contains all the EJB components that ac-
cess the information stored in the Application Database. Fig. 14
shows an excerpt of this package, with some important general
purpose class such as User, Theme, and Service. Each class contains
a set of management methods (e.g., set and get).

The SessionBean package contains the Java components to oper-
ate, via EntityBean, on the Application Database. Each component of
this package is made by an interface and a corresponding concrete
class, which implements the interface itself (e.g., the ThemeSession-
Bean class).

The UIMLVersionSyncronization package contains the EJB com-
ponent which compares the versions of the server and client UIML
descriptions, in the mechanism of automatic version synchroniza-
tion. To this aim, the package contains: (i) a remote managing
interface and the corresponding implementation; (ii) a method to
access the UIML document on the server; (iii) a method to receive
the XML client document. The last two methods are implemented
by a SAX parser, via corresponding event handler.

The UIMLDescription package manages the content adaptation
mechanism and the transmission of the UIML documents. More
specifically, as shown in Fig. 15, the UIMLDescription component
processes the UIML document via a DOM parser, whereas the
UIMLSequenceContent component reads the content-related infor-
mation from the Application Database. Finally, the ImageProvider
package implements a service of image delivery. Images are stored
on the file system.

Fig. 16 shows the interaction between the subsystem Proxy and
the UIMLDescription package. For the sake of simplicity, the local
interaction involving other components of the Server subsystem
has been omitted. More specifically: a UIML description is re-
quested by the Proxy (1), via the UIMLDescriptionRemote interface,

and then loaded from the Server file system; each content node is
analyzed (2) and potentially modified (3 and 4) according to the
content adaptation mechanism; finally, an adapted description is
sent back to the Proxy (5).

8.2. The MODIF Proxy subsystem

Fig. 17 shows the package diagram of the MODIF Proxy subsys-
tem. Here, the DBMS package manages the communication with

Fig. 15. Components of the UIMLDescription package of the MODIF Server
subsystem.

Fig. 16. Interaction between the subsystem Proxy and the UIMLDescription package.

Fig. 17. Package diagram of the MODIF Proxy subsystem.

Fig. 18. An excerpt of the DeviceProfile class of the MODIF Proxy subsystem.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 297



the database. The DeviceProfile package represents an abstraction
of the CC/PP data and services. The ApplicationProfile package is
strictly related to the specific mobile application. The Transforma-
tion package implements the context-adaptation process. Finally,
the ServerCommunication and ClientCommunication packages man-
age the interaction with the Server and Client subsystems,
respectively.

Fig. 18 shows an excerpt of the DeviceProfile class, in the Device-
Profile package, which represents the features of a HD.

The Transformation package is based on the UIMLTransformation
(Fig. 19) and the UIMLDescription (Fig. 20) classes. The latter re-
ceives from the MODIF Server the DOM version of the UIML docu-
ment, on which the context adaptation has been already made by
the former according to the mobile device type. The ServerCommu-
nication package contains classes to interact with remote objects
provided by the MODIF Server, for example a class to retrieve the
UIML descriptions. Finally, the ClientCommunication package in-
cludes the ServletDescription class, which interacts with the Client
subsystem.

Fig. 21 shows the sequence diagram of the adaptation and deliv-
ery of the UIML description performed by the MODIF Proxy subsys-
tem. For the sake of simplicity, the interaction involving other
components of the Proxy and Server subsystems has been omitted.
In particular: (1) the Client sends a request to ServletDescription for
a contextualized UIML document; (2) a DeviceProfile object pro-
vides the client device properties such as the device name (3–4);
a UIMLDescription object provides the result (5–11) after a context
adaptation made for each element by a UIMLTransformation object
(7–10). It is worth noting that the Server provides the Proxy with a
DOM version of the UIML document.

8.3. The MODIF client

Fig. 22 shows the package diagram of the MODIF Client subsys-
tem. Mostly, packages that are application-independent are pro-
vided, with the most important dependencies. In particular, the
ApplicationController package manages threads for the application
logic. The Communicator package contains services to communicate

with the Proxy subsystem. The Serializer package generates the XML
files with business data to be sent to the proxy. This is done during
the automatic version synchronization process. The Storing package
holds the images and the UIML descriptions. The Model package
contains a set of classes that model the interface state, i.e., classes
for the intermediate block structure. The Parser package processes
the concrete UIML description and generates the intermediate
block structure. The Renderer package is responsible for the instan-
tiation of graphical components, based on the intermediate block
structure. The UIPart package contains classes that implement the
IOM API. The UIController package manages the user–device inter-
actions. Finally, the ApplicationLogic package contains the classes
specific to the application.

For the sake of brevity, in the following, we only consider the
most important classes of each package related to the transforma-
tion and rendering processes of an interface description. Fig. 23
shows the ServerConnection class in the Communication package.
In particular the class is able to send a request to the Proxy for a
UIML description, and to check the version of such description.
Fig. 24 shows the ParserUIML class in the Parser package, which
is responsible for processing the UIML document. Fig. 25 and
Fig. 26 show the InterfaceBuilder and InterfaceDisplay classes,
respectively. The former is responsible for the instantiation of the
components of the user interface, according to the compiled
description of the interface (Fig. 9.ii), whereas the latter is respon-
sible for the instantiation of the layout of the user interface itself,
including the above components. The UIPart package contains the
Interface class, discussed in Fig. 12. Finally, the DescriptionLoader
class in the ApplicationController package is shown in Fig. 27. This
class is in charge of reading names of UIML descriptions from a
buffer, sending a request to the Server only in case of out-of-date
descriptions.

Fig. 28 shows the sequence diagram of the interface creation
process. Here, AplicationController sends a request to InterfaceBuild-
er and to InterfaceDisplay to create (1) and render (6) the interface,
respectively. The interface creation is made by creating each part
(2–4).

Fig. 29 shows the sequence diagram of the UIML description
loading process. For the sake of simplicity, the interaction involv-
ing other components of the Client and Proxy subsystems has been
omitted. Here, DescriptionNameBuffer, DescriptionBuffer, and Image-
Buffer are buffer objects used to allow an efficient communication
between related threads. For instance, the thread which is in
charge of loading images from the Server stops if the buffer of im-
age names is empty; the thread which is in charge of loading UIML
description stops if DescriptionBuffer is empty.

More specifically, the DescriptionLoader accesses the Descrip-
tionNameBuffer (1–2); in case of out-of-date description, it sends
a request to ServerConnection for an up-to-date description (3–4),
which is put into the DescriptionBuffer, to be processed by the Pars-
erUIML. Each image is loaded separately (9–10).

Fig. 19. The class Transformation.UIMLTransformation in the MODIF Proxy subsystem.

Fig. 20. The class Transformation.UIMLDescription in the MODIF Proxy subsystem.

298 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



The MODIF Client subsystem has been implemented for two dif-
ferent mobile OS: Android and iPhone. To test the overall frame-
work, two real-world applications have been designed and
implemented. In the following, we first illustrate both applications,
and then we show some assessment of the framework properties.

9. Case studies

The first application is a customer application, called Desktop-
Mate. It is a resource launcher for HDs, i.e., an advanced bookmark

manager with the possibility of parameterized launch, and the
capacity of tracking the launches history. At the interface level,
the UI of DesktopMate can be designed by using three different
kinds of UIML files. The first file describes the main interface,
whose structure is represented in the mock-up of Fig. 30-a. More
specifically, it consists of header, footer, graphical menu, and back-
ground. The second UIML file is a template that describes an item
of the graphical menu in terms of structure and style. In particular,
an item is made of a Logo and a Label. This template is referred to
by the main interface so as to build the main menu, as well as by
the third file, which describes the sublevel interface. The sublevel
interface expresses a sublevel menu. A sublevel menu can be de-
rived from the main menu via a change of the content and behavior
segments, leaving the same structure and style segments. It is
worth noting that the description of a UIML interface by four sep-
arate segments allows a high level of reusability of the interfaces.
Fig. 30-b and Fig. 30-c show the main interfaces on Android and
iPhone, respectively.

The second example is a business application, called Tracking. It
is a service that tracks time and position of GPS-enabled HDs in
real time. The configuration interface allows setting: (i) the fre-
quency of track upload, by means of a ComboBox; (ii) the sampling
period, by means of a ComboBox; (iii) track name and description,

Fig. 21. Sequence diagram of the adaptation and delivery of the UIML description performed by the MODIF Proxy subsystem.

Fig. 22. Package diagram of the MODIF Client subsystem.

Fig. 23. The Communication.ServerConnection class in the MODIF Client subsystem.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 299



with two TextField; (iv) an alternative storage unit (if available on
the device), by means of a SwitchButton; and (v) the start/stop of
the tracking, by means of two static buttons, or a single dynamic
button.

The main interface comprises also a background and a header.
Fig. 31 shows the mock-up (a), and the Android (b) and iPhone (c)
versions.

It is important to note that, although the abstract interface (a) is
the same for all OSs, the concrete interfaces (b, c) can be very dif-
ferent, depending on the implementation of the abstract pattern on
the native platform.

In the Tracking application, we also experienced a form of adap-
tation that is totally controlled on the client-side. More specifically,
a SwitchButton allows choosing the SD Card as an alternative stor-
age unit, if the card is plugged in. This availability depends on nei-
ther the device model nor the user preferences. It depends on the

physical availability of a SD Card on a specific device instance.
The Proxy server cannot manage this information. Hence, in the
UIML model, the behavior of the SwitchButton has been set in order
to allow the dynamic detection of the SD card. In case of unavail-
ability, the button will not appear on the interface.

9.1. Experimental use of MODIF

During the development of the applications, we have also per-
formed a number of interviews with two different groups of devel-
opers for evaluating the effectiveness of the proposed framework.
A group (developer group) composed of three medium-skilled
developers, who carried out the applicative task of implementing
DesktopMate and Tracking, for both iPhone and Android OSs, using
the proposed methodology. A group (observer group) composed of
three high-skilled developers belonging to two different

Fig. 24. The Parser.ParserUIML class in the MODIF Client subsystem.

Fig. 25. The Renderer.InterfaceBuilder class in the MODIF Client subsystem.

Fig. 26. The Renderer.InterfaceDisplay class in the MODIF Client subsystem.

Fig. 27. The ApplicationController.DescriptionLoader class in the MODIF Client subsystem.

300 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



Fig. 28. Sequence diagram of the interface creation process in the MODIF Client subsystem.

Fig. 29. Sequence diagram of the UIML description loading process in the MODIF Client subsystem.

Fig. 30. The DesktopMate application: mock-up (a), Android (b) and iPhone (c) versions.

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 301



companies, who performed an accurate analysis of the activities
performed by the first group.

The overall experimental activity has been split into two
phases. In the first phase, two developers implemented indepen-
dently of each other the DesktopMate on iPhone and Android OS,
respectively. At the end of the first phase, both the two developers
and the observers provided their first assessments. In the second
phase, the third developer implemented Tracking on both iPhone
and Android OS. At the end of the second phase, both the developer
and the observers provided their final assessments. In particular,
the assessment focused on the important properties for UI lan-
guages and tools discussed in [15]. Fig. 32 shows the general
assessment for each considered property. The rating (bad, medium,
good, and very good) is intended to be comparative with respect to
the development of ad-hoc solutions, and averaged with respect to
the opinion of the two groups.

More specifically, the Effort for native platform is the effort that
the developer performed to cope with problem solving related to
native platforms. It can be noticed that in the first phase this effort
was higher than expected, because the development of a general

framework requires a deeper knowledge of the platform, with re-
spect to an ad-hoc solution. However, in the second phase this ef-
fort has been lower than expected, because in the second phase the
developers have taken advantage of the reuse of API components
developed in the first phase. The Effort for application task is the ef-
fort spent for developing the specific application rather than for
developing the framework components. This effort has been usual
in the first phase, because each component has been natively
implemented in order to add some component to the framework.
In the second phase, this effort has been lower than expected, be-
cause some reusable framework components had been already
developed in the first phase. This has allowed the developer to fo-
cus only on the specific application requirements.

Expressiveness is the ability to express via an abstraction any
real world aspect of interest. This property has been increasingly
better than expected, mainly for the expressiveness of the UIML
standard notation, with respect to an ad-hoc XML description.
Readability has been evaluated very good in both the phases,
thanks to the readability of UIML. Due to the engineered transfor-
mation engines (content and context adaptation, parsing and

Fig. 31. The Tracking application: mock-up (a), Android (b) and iPhone (c) versions.

Fig. 32. Qualitative assessment of the proposed methodology.

302 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304



rendering), the memory and time cost has been lower than in ad-
hoc solutions. Thus, Compilation/Interpretation has been evaluated
very good. Threshold and ceiling are two connected metrics in eval-
uating tools. Threshold refers to the difficulty of learning how the
tool should be used. Ceiling expresses the potentialities of the tool,
that is, how much can be done using the tool [8,25]. An important
challenge is to develop tools characterized by a low difficulty of
learning (i.e., a good threshold) and a high potentiality (i.e., a good
ceiling) [25]. In general, some of the most successful tools are char-
acterized by either low threshold and low ceiling, or high threshold
and high ceiling [25]. In our case, the learning of a new language in
the first phase has required more time than expected. However, in
the second phase the learning has required less time than ex-
pected, thanks to the example developed in the first phase, made
available to the third developer. Thus, the threshold has been as-
sessed bad and good in the first and second phases, respectively.
The ceiling is considered good in both the phases, i.e., higher than
expected, because the proposed methodology does not limit the
kinds of interfaces that can be produced. Indeed, the abstract tool-
kit is richer than the native toolkit for most mobile platforms, thus
providing a wider range of possibilities to the designer. Finally,
automatic techniques that are sometimes unpredictable are poorly
received by designers. Thus, Predictability is a desirable feature: a
high level of predictability reduces the probability of re-iteration,
and improves early design planning and exploration. In our meth-
odology, the designer has the control of what should be modified in
terms of high-level notations for producing a desired change at the
low-level.

10. Conclusions and future work

In this paper we have proposed a novel model-based methodol-
ogy for developing event-driven applications for handheld devices.
The methodology relies on an abstract mobile device, content and
context adaptation mechanisms based on user preferences and
standardized context of delivery, respectively, a uniform set of cli-
ent-side APIs and an efficient transformational model. Further, the
methodology employs two important standard specifications. The
first specification is UIML, which allows a canonical description
of an event-driven application, providing a proper abstraction le-
vel. The second specification is CC/PP, which offers a data structure
and a sample vocabulary for describing the delivery context.

The paper also includes the analysis of transformational models
and the design of MODIF, an architectural framework for adapta-
tion, based on the device capabilities and the user preferences. Fi-
nally, some case studies have been discussed so as to show a
practical use of MODIF. The experimental activity has highlighted
important properties of the framework, such as automation of
the lifecycle, expressiveness and readability of the representation,
efficiency of the compilation/interpretation, fast learning curve,
and predictability. The client side architecture has been imple-
mented on iPhone and Android OS. In the near future, the frame-
work will be adopted to develop applications on other important
mobile OSs such as BlackBerry, WindowsMobile and Nokia.

Acknowledgements

This work was supported by the MOVAS Lab, a joint project at
the University of Pisa between academy and industry. The authors
would like to thank the company Softec S.p.a. Prato (Italy) for
financial and technical support.

References

[1] M.F. Ali, A Transformation-Based Approach to Building Multi-Platform User
Interfaces Using a Task Model and the User Interface Markup Language.

Doctoral Thesis, UMI Order Number: AAI3172932, Virginia Polytechnic
Institute & State University, Virginia, USA, 2005.

[2] M.F. Ali, M.A. Pérez-Quiñones, M. Abrams, E. Shell, Building Multi-Platform
User Interfaces with UIML, in: Proceedings of the 4th International Conference
on Computer-Aided Design of User Interfaces (CADUI’02), Valenciennes,
France, May 2002, pp. 255–266.

[3] Apple, Inc., App Store, http://www.apple.com/iphone/appstore (accessed April
2011).

[4] Apple, Inc., The Objective-C Programming Language, http://developer.apple.
com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
(accessed April 2011).

[5] J. Arlow, I. Neustadt, Enterprise Patterns and MDA, Addison-Wesley, Canada,
2003.

[6] G. Banavar, L. Bergman, R. Cardone, V. Chevalier, Y. Gaeremynck, F. Giraud, C.
Halverson, S. Hirose, M. Hori, F. Kitayama, G. Kondoh, A. Kundu, K. Ono, A.
Schade, D. Soroker, K. Winz, An authoring technology for multidevice Web
applications, IEEE Pervasive Computing 3 (3) (2004) 83–93, http://dx.doi.org/
10.1109/MPRV.2004.1321033.

[7] J.O. Borchers, A Pattern Approach to Interaction Design, John Wiley & Sons, Inc.,
New York, NY, 2001.

[8] P.F. Campos, N.J. Nunes, CanonSketch: A User-Centered Tool for Canonical
Abstract Prototyping, in: R. Bastide, P. Palanque, J. Roth (Eds.), Proceedings of
the 11th IFIP International Workshop on Design, Specification and Verification
of Interactive System (EHCI-DSVIS 2004), LNCS 3425, 2005, pp. 146–163.

[9] ECMA, International, ECMA-334, C# Language Specification, fourth ed., June
2006, http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-
334.pdf.

[10] J. Eisenstein, A. Puerta, Adaptation in automated user-interface design, in:
Proceedings of the 5th International Conference on intelligent User interfaces
(IUI ‘00), New Orleans, Louisiana (USA), January 2000, pp. 74–81, http://
dx.doi.org/10.1145/325737.325787.

[11] J. Eisenstein, J. Vanderdoncki, A. Puerta, Adapting to Mobile Contexts with
User-Interface Modeling. Third IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA 2000), Monterey, CA, USA, December 2000, pp. 83–
92.

[12] J. Eisenstein, J. Vanderdonckt, A. Puerta, Applying model-based techniques to
the development of UIs for mobile computers, in: Proceedings of the 6th ACM
international Conference on intelligent User Interfaces (IUI’01), Santa Fe, NM,
USA, January 2001, pp. 69–76, http://dx.doi.org/10.1145/359784.360122.

[13] K. Gajos, D.S. Weld, SUPPLE: automatically generating user interfaces, in:
Proceedings of the 9th International Conference on Intelligent User Interfaces
(IUI’04), Funchal, Madeira, Portugal, January 2004, pp. 93–100.

[14] K.Z. Gajos, J.O. Wobbrock, D.S. Weld, Improving the performance of motor-
impaired users with automatically-generated, ability-based interfaces, in:
Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors
in Computing Systems (CHI’08), Florence, Italy, April 2008, pp. 1257–1266,
http://dx.doi.org/10.1145/1357054.1357250.

[15] E. Georgieva, T. Georgiev, Methodology for mobile devices characteristics
recognition, in: Rachev, A. Smrikarov, D. Dimov (Eds.), Proceedings of the 2007
International Conference on Computer Systems and Technologies
(CompSysTech ‘07), vol. 285, Bulgaria, June 2007, pp. 1–6, http://dx.doi.org/
10.1145/1330598.1330674.

[16] Google, Inc., Android Market, http://www.android.com/market (accessed April
2011).

[17] R.G. Hanumansetty, Model Based Approach for Context Aware and Adaptive UI
Generation, Master Thesis, VT-masters-2004-08-26, Virginia Polytechnic
Institute & State University, Virginia, USA, 2004.

[18] V. López-Jaquero, F. Montero, F. Real, Designing user interface adaptation rules
with T: XML, in: Proceedings of the 13th International Conference on
Intelligent User Interfaces (IUI ’09), Sanibel Island, FL, USA, 2009, pp. 383–
388, http://dx.doi.org/10.1145/1502650.1502705.

[19] K. Luyten, K. Thys, J. Vermeulen, K. Coninx, A generic approach for multi-device
user interface rendering with UIML, in: Proceedings of the 4th International
Conference on Computer-Aided Design of User Interfaces (CADUI’06),
Bucharest, Romania, June 2006, pp. 175–182.

[20] M. Mcrae, OASIS User Interface Markup Language (UIML) TC, The Relationship
of the UIML 3.1 Spec. to Other Standards/Working Groups, White paper. http://
www.oasis-open.org/committees/tc_home.php?wg_abbrev=uiml, July 2004.

[21] J. Meskens, J. Vermeulen, K. Luyten, K. Coninx, Gummy for multi-platform user
interface designs: shape me, multiply me, fix me, use me, in: Proceedings of
the Working Conference on Advanced Visual Interfaces (AVI’08), Napoli, Italy,
May 2008, pp. 233–240.

[22] Microsoft, Corp., Windows Phone, http://marketplace.windowsphone.com
(accessed April 2011).

[23] G. Mori, F. Paternò, C. Santoro, Tool support for designing nomadic
applications, in: Proceedings of the 8th International Conference on
Intelligent User Interfaces (IUI ‘03), Miami, FL, USA, 2003, pp. 141–148,
http://dx.doi.org/10.1145/604045.604069.

[24] G. Mori, F. Paternò, C. Santoro, Design and development of multidevice user
interfaces through multiple logical descriptions, IEEE Transaction on Software
Engineering 30 (8) (2004) 507–520, http://dx.doi.org/10.1109/TSE.2004.40.

[25] B. Myers, S.E. Hudson, R. Pausch, Past present and future of user interface
software tools, ACM Transactions on Computer Human Interaction 7 (1) (2000)
3–28, http://dx.doi.org/10.1145/344949.344959.

[26] J. Nichols, B.A. Myers, M. Higgins, J. Hughes, T.K. Harris, R. Rosenfeld, M. Pignol,
Generating remote control interfaces for complex appliances, in: Proceedings

M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304 303



of the 15th Annual ACM Symposium on User Interface Software and
Technology (UIST’02), Paris, France, October 2002, pp. 161–170, http://
dx.doi.org/10.1145/571985.572008.

[27] J. Nichols, B.A. Myers, K. Litwack, Improving automatic interface generation
with smart templates, in: Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI’04), Funchal, Madeira, Portugal, January 2004,
pp. 286–288, http://dx.doi.org/10.1145/964442.964507.

[28] J. Nichols, B.A. Myers, B. Rothrock, UNIFORM: automatically generating
consistent remote control user interfaces, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’06), Montréal,
Québec, Canada, April 2006, pp. 611–620, http://dx.doi.org/10.1145/
1124772.1124865.

[29] Nokia, Corp., Ovi Store, http://store.ovi.com, 2011 (accessed April 2011).
[30] S. Nylander, M. Bylund, Providing device independence to mobile services, in:

Universal Access: Theoretical Perspectives, Practice, and Experience, Lecture
Notes in Computer Science, vol. 2615, Springer, Berlin/Heidelberg, 2003, pp.
465–473.

[31] S. Nylander, M. Bylund, A. Waern, Ubiquitous service access through adapted
user interfaces on multiple devices, Personal and Ubiquitous Computing 9 (3)
(2005) 123–133, http://dx.doi.org/10.1007/s00779-004-0317-4.

[32] OASIS, User Interface Markup Language (UIML) Version 4.0, Committee
Specification, http://docs.oasis-open.org/uiml/ns/uiml4.0, 2009 (1 May 2009).

[33] OMA (Open Mobile Alliance), User Agent Profile Specification, http://
www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-
a.pdf, 20 October 2001.

[34] OMA (Open Mobile Alliance), Wireless Markup Language (WML) 2.0, http://
www.openmobilealliance.org/tech/affiliates/wap/wap-238-wml-20010911-
a.pdf, 11 September 2001.

[35] F. Paternò, C. Santoro, One model, many interfaces, in: Proceedings of the
Fourth International Conference on Computer-aided Design of User Interfaces
(CADUI 2002), Valenciennes, France, May 2002, pp. 143–154.

[36] F. Paternò, C. Santoro, A unified method for designing interactive systems
adaptable to mobile and stationary platforms, Interacting with Computers 15
(3) (2003) 349–366.

[37] F. Paternò, C. Santoro, J. Mantyjarvi, G. Mori, S. Sansone, Authoring pervasive
multimodal user interfaces, International Journal of Web Engineering and
Technology 4 (2) (2008) 235–261, http://dx.doi.org/10.1504/
IJWET.2008.018099.

[38] C. Phanouriou, UIML: A Device-Independent User Interface Markup Language,
Ph.D. Thesis, Virginia Polytechnic Institute, Blackburg, VA, USA, 2000.

[39] A. Puerta, J. Eisenstein, XIML: A Universal Language for User Interfaces,
RedWhale Software, Technical Report, 2001, Available at: http://www.ximl.org/
pages/docs.asp (accessed April 2011).

[40] A. Puerta, J. Eisenstein, XIML: a common representation for interaction data,
in: Proceedings of the Seventh International Conference on Intelligent User
Interfaces (IUI ‘02), San Francisco, CA, USA, January 2002, pp. 214–215, http://
dx.doi.org/10.1145/502716.502763.

[41] RIM (Research In Motion), Lim, BlackBerry App World, 2011, http://
www.blackberry.com/appworld (accessed April 2011).

[42] SUN, Microsystems, Inc., Java Platform, Micro Edition, 2010, http://
java.sun.com/javame (accessed April 2010).

[43] SUN, Microsystems, Inc., Sun GlassFish Enterprise Server, 2011, http://
developers.sun.com/appserver (accessed April 2011).

[44] S. Trewin, G. Zimmermann, G. Vanderheiden, Abstract user interface
representations: how well do they support universal access, in: Proceedings
of the 2003 Conference on Universal Usability (CUU ’03), Vancouver, British
Columbia, Canada, November 2003, pp. 77–84, http://dx.doi.org/10.1145/
957205.957219.

[45] J. Vanderdonckt, Model-driven engineering of user interfaces: promises,
successes, failures, and challenges, in: Proceedings of Romanian National
Conference of Human–Computer Interaction (ROCHI’08), Iasi, Romania, 2008,
pp. 1–10.

[46] J. Vanderdonckt, L. Bouillon, N. Souchon, Flexible reverse engineering of web
pages with VAQUISTA, in: Proceedings of the Eighth Working Conference on
Reverse Engineering (WCRE ‘01), Washington, DC, USA, October 2001, pp. 241.

[47] W3C, Compact HTML (C-HTML), http://www.w3.org/TR/1998/NOTE-
compactHTML-19980209, 9 February 1998.

[48] W3C, Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0, http://www.w3.org/TR/CCPP-struct-vocab, 15 January 2004.

[49] W3C, Voice eXtensible Markup Language (V-XML) 2.0, http://www.w3.org/TR/
voicexml20, 16 March 2004.

[50] W3C, Delivery Context Overview for Device Independence, http://
www.w3.org/TR/di-dco, 20 March 2006.

[51] W3C, Device Description Repository Core Vocabulary, http://www.w3.org/TR/
2008/NOTE-ddr-core-vocabulary-20080414, 14 April 2008.

Mario G.C.A. Cimino received the Ph.D. degree in
Information Engineering from the University of Pisa
(Italy) in 2007. In 2006, he spent six months as a visiting
Ph.D. student in the Electrical and Computer Engineer-
ing Research Facility of the University of Alberta,
Edmonton (Canada). He co-organized three editions of
the Workshop on Computational Intelligence for Per-
sonalization in Web Content and Service Delivery. He is
reviewer of research projects funded by the Czech Sci-
ence Foundation. He is a member of the Editorial Board
of the International Journal of Information Science and
Computer Application. Since January 2007, he is with

the Department of Information Engineering of the University of Pisa, as a member of
the Computational Intelligence Group, and a research fellow in the Competence
Centre on MObile Value Added Services (MOVAS). He is currently involved in the
fields of Mobile Information Systems, Business Process Analysis, and Computational
Intelligence. He is (co-) author of more than 20 publications.

Francesco Marcelloni received the Laurea degree in
Electronics Engineering and the Ph.D. degree in Com-
puter Engineering from the University of Pisa in 1991
and 1996, respectively. He is currently an associate
professor at the Faculty of Engineering of the University
of Pisa. He has co-founded the Computational Intelli-
gence Group at the Department of Information Engi-
neering of the University of Pisa in 2002. Further, he is
the founder and head of the Competence Centre on
MObile Value Added Services (MOVAS). His main
research interests include mobile information systems,
energy-efficient data compression and aggregation in

wireless sensor nodes, multi-objective evolutionary fuzzy systems, clustering
algorithms, web user profiling, system modeling, pattern recognition and signal
analysis. He has co-edited two volumes, two journal special issues, and is (co-
)author of a book and of more than 150 papers in international journals, books and
conference proceedings. He has served as TPC co-chair of the ninth International
Conference on Intelligent Systems Design and Applications (ISDA’09), and as gen-
eral co-chair of ISDA’10. Currently, he serves as associate editor of three interna-
tional journals and as TPC co-chair of the ISDA’11, Cordoba, Spain. Further, he is one
of the co-organizers of the third Workshop on Computational Intelligence for Per-
sonalization in Web Content and Service Delivery (Cordoba, Spain). In 2011, he has
been keynote speaker at the 5th IEEE International Workshop on Genetic and
Evolutionary Fuzzy Systems, April 15, 2011, Paris, and will hold a plenary talk at the
third International Conference of Soft Computing and Pattern Recognition (SoCPaR
2011), Dalian, China, October 14–16. He has been the main investigator of several
projects supported by the European Commission, the Italian Ministry, the Tuscany
region, and many private companies.

304 M.G.C.A. Cimino, F. Marcelloni / Journal of Systems Architecture 58 (2012) 286–304


