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Abstract—Due to growing endurance, safety and non-
invasivity, small drones can be increasingly experimented in 
unstructured environments. Their moderate computing power 
can be assimilated into swarm coordination algorithms, 
performing tasks in a scalable manner. For this purpose, it is 
challenging to investigate the use of biologically-inspired 
mechanisms. In this paper the focus is on the coordination 
aspects between small drones required to perform target search. 
We show how this objective can be better achieved by combining 
stigmergic and flocking behaviors. Stigmergy occurs when a 
drone senses a potential target, by releasing digital pheromone on 
its location. Multiple pheromone deposits are aggregated, 
increasing in intensity, but also diffused, to be propagated to 
neighborhood, and lastly evaporated, decreasing intensity in 
time. As a consequence, pheromone intensity creates a 
spatiotemporal attractive potential field coordinating a swarm of 
drones to visit a potential target. Flocking occurs when drones 
are spatially organized into groups, whose members have 
approximately the same heading, and attempt to remain in range 
between them, for each group. It is an emergent effect of 
individual rules based on alignment, separation and cohesion. In 
this paper, we present a novel and fully decentralized model for 
target search, and experiment it empirically using a multi-agent 
simulation platform. The different combination strategies are 
reviewed, describing their performance on a number of synthetic 
and real-world scenarios. 
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I.  INTRODUCTION AND MOTIVATION 

Small drones are unmanned aerial vehicles small enough to 
be man-portable. Recent advances in sensing technology 
encourage the use of small drones for military intelligence, 
reconnaissance, surveillance, traffic monitoring, forest fire 
localization, scientific surveys in dangerous conditions, border 
and harbor patrol, search and rescue, wildlife tracking, and so 
on [1]. Indeed, small drones can be equipped with self-
localization and sensing capabilities, to be used for information 
gathering tasks, such as target search or environmental sensing. 
More specifically, in target search small drones offer more 
potential, because they can perform tasks in highly inhospitable 
environments, where access to humans and large drones is 
limited or impossible, or in environments where medium and 
large drones can cause significantly more damage. Moreover, 
in tasks such as search and rescue, to accurately scan every 

available location on the area is also an inappropriate strategy. 
A more effective approach is to achieve a quick “survey” of the 
area, identifying key locations as quick as possible, and to 
better investigate only key locations that provided some 
circumstantial evidence. To complete this task with a single 
drone, both structure and control logic should be highly costly 
in terms of design, construction and maintenance. Moreover, a 
unique drone is vulnerable, because a single hardware or 
software fault may affect the whole system, and it is difficult to 
predict. Hence, a number of considerations support the use of 
small drones. 

To take advantage of the above strategy, an important 
requirement is to avoid centralized control approaches, which 
frequently lead to exponential increases in communication 
bandwidth requirements and software complexity [2]. To solve 
problems cooperatively while maintaining scalability, 
application designers are investigating swarm intelligent 
methodologies. The main inspiration for swarm drones comes 
from the observation of social animals, such as ants, bees, 
birds, and fishes, exhibiting a sort of collective intelligence 
which appears to achieve complex goal through simple rules 
and local interactions [3]. The main benefits of swarm drones 
are: (i) robustness, for the ability to cope the loss of 
individuals; (ii) scalability, due to the ability to perform well 
with different group size; (iii) flexibility, thanks to the ability to 
cope with a broad spectrum of different environments and 
tasks. For this purpose, each individual of the swarm: (i) acts 
with a certain level of autonomy (ii) performs only local 
sensing and communication; (iii) operates without centralized 
control or global knowledge, and (iv) cooperates to achieve a 
global task. 

From a structural standpoint, we assume that each small 
drones is provided with the following equipment: (a) wireless 
communication capability for sending and receiving 
information from the ground station; (b) self-location 
capability, e.g. based on global position system (GPS) and 
inertial technology, returning the coordinates of its current 
location; (c) one or more target sensing technology, capable of 
capturing samples in the area over which it flies; (d) processor 
with limited computing capability; (e) obstacle avoidance 
capability, i.e., locally managed detection and steering to avoid 
flying towards surrounding barriers and drones. 

A fundamental swarm coordination mechanism is marker-
based stigmergy [4]. With stigmergy, individuals leave 
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information in the environment in the form of pheromones, 
volatile substances diffused locally and staying temporarily for 
other individuals that properly react and modify their behavior 
[5]. Simulated pheromones can be used to coordinate groups of 
drones for various tasks. We assume that the pheromone map is 
built and maintained on each region of the search space, and 
made available at the ground station for drones as a “remote 
brain” capability [6]. 

When the sensing system of a drone determines a potential 
target, it has to enable the cooperation of its swarm. Indeed, in 
case of a complex target, there are likely to be multiple pieces 
of target within the surrounding region. In case of a simple 
target, it is supposed that their distribution is not uniform, and 
then, again, there are likely to be other simple targets within the 
surrounding region. For this purpose, the drone releases a 
particular amount of pheromone with the location of the sensed 
target, whose diffusion acts as an attractive potential on 
neighboring drones. As an effect, other drones helps in sensing 
surrounding targets or piece of them, thus enabling an 
emerging behavior of the swarm that aggregate a considerable 
amount of pheromone for each new sensed piece of target. 
Since pheromone evaporate over time and already sensed 
targets do not activate additional pheromone, after a certain 
time the pheromone intensity cannot be reinforced in an 
explored region, and in practice disappears. 

To be attracted by pheromone trails, the available drones 
should be spatially organized into a number of swarms. Each 
member of a swarm has approximately the same heading of the 
other members, and attempts to remain in range between them. 
For this purpose, the structural dimensions of the pheromone 
should take into account the average size of a swarm (or vice 
versa). Otherwise, a highly diffused or poorly evaporated 
pheromone could attract disproportionate resources on a single 
target, thus interfering with the progressive development of the 
emergent behavior. In contrast, a poorly diffused or highly 
evaporated pheromone could not be sensed at all. Flocking is a 
strategy to allow the self-organization of drones into a number 
of swarms. Flocking behavior is an emergent effect of 
individual rules based on alignment, separation and cohesion 
[7]. Indeed, with alignment rules the drones tends to move in 
the same direction that nearby drones. With separation rules, 
the drone keeps a minimum distance able to provide the drone 
with flexibility when moving in the swarm, and for a better 
exploration. Finally, with cohesion rules the drone tends to 
move towards the swarm.  

In our approach, stigmergy and flocking are two emergent 
behavioral patterns which should work in conjunction with 
other basic behavioral patterns of the drone, such as obstacle 
and boundary avoidance. The process of designing a 
combination strategy is bottom-up and consists in finding the 
right setting at the micro-level (agent-level) in order to obtain a 
coherent emergent behavior at macro-level (swarm-level or 
even global-system level) [8]. In this paper, the different 
combination strategies are reviewed and tested empirically 
with both synthetic and real-world scenarios, with obstacles 
having irregular complex shapes. For this purpose, we adopted 
a multi-agent simulation platform with the possibility of 
importing environments with obstacles and targets sampled 
from real landscapes. 

The paper is structured as follows. Section II briefly 
characterizes related work. In Section III, the design of the 
proposed model is covered. Experimental studies are detailed 
in Section IV. Section V draws conclusions and future works. 

II. RELATED WORK 

The goal of this section is to briefly characterize the main 
approaches and results in the literature on stigmergic 
mechanisms coordinating swarms of small robots to perform 
target search or similar tasks. The published works in the field 
can be distinguished into three categories: (a) using a physical 
substance as a pheromone, which is necessarily transmitted in 
an indirect way between robots, by means of the physical 
environment; (b) using a digital pheromone, transmitted via 
direct communication between robots; (c) using a digital 
pheromone, transmitted via an indirect communication 
between robots. The latter is the category of our approach. 

In [9] the authors use a swarm of robots releasing physical 
substance as a repulsive pheromone, for environment 
exploration. In particular, robots act combining three basic 
behaviors, with decreasing priority: wall avoiding, pheromone 
coordination, and random walk. Actually there are various 
approaches in the literature using physical pheromones, 
because they do not require a computational structure. 
Although real pheromones are not usable with aerial vehicle, 
they can be simulated. Thus, this type of research can be 
interesting to digitally model new types of stigmergy. 

 An example of stigmergic coordination between drones 
using direct communication is presented in [10], where the 
author focuses on automatic target recognition. Potential target 
are marked by drones, which also communicate the gossiped 
pheromone to nearby drones, with probability inversely 
proportional to the distance from the source. The proposed 
stigmergic schema employs also repulsive pheromone, as a 
negative feedback, when a predefined number of drones 
identify the same target. A disadvantage of such scheme is that 
the bandwidth required goes into an exponential explosion as 
the population grows. Moreover, to avoid redundancy in target 
evaluation each UAV has to maintain in memory the state of 
each potential and confirmed target. In this way, the direct 
communication in the swarm should be strongly limited [11]. 

A swarm coordination schema with indirect coordination is 
proposed in [4]. Here the coordination of a swarm of vehicles 
is based on digital pheromones maintained in an artificial space 
called pheromone map and composed by an arbitrary graph of 
place agents, i.e., intermediate control nodes. There are two 
classes of agents which deposit, withdraw, and read 
pheromones, i.e., walkers and avatars. A walker agent aims to 
make movements and action decisions, whereas avatars collect 
location information to make estimates when sensor 
information is not available. The schema has been applied to a 
range of scenarios, among which target acquisition. An 
important problem of this approach is that the exploration 
depends on the initial state of deploy of the swarm. Moreover, 
this model does not consider complex targets but only simple 
targets with no reciprocal relationships.  



III. DESIGN OF ENVIRONMENT DYNAMICS AND DRONE BEHAVIOR  

This section explains the logic structure of both the 
environment and the drones, together with their parametric 
setting. 

A. The environment structure and the pheromone dynamics 

Without loss of generality, we assume that the environment 
is constrained to a specific area. We superimpose to this area a 
grid consisting of C2 cells, each identified by a pair (x,y) of 
coordinates, with x,y [1,…,C]. The actual size of the area and 
the number of squares depend on the specific application 
domain. Fig. 1 shows some basic scenario of the marking 
process. The levels of pheromone intensity are represented by 
different grey gradations: the darker the gradation is, the higher 
the intensity.  

 
(a) t = 1 

 
(b) t = 2 

 
(c) t = 3 

 
(d) t = 5 

 
(e) t = 20 

 
(f) t = 25 

Fig. 1. Basic scenario of pheromone dynamics: (a) releasing; (b) mainly 
diffusing; (c-d) diffusing and evaporating; (e-f) mainly evaporating. 

More specifically, see Fig. 1: (a) a single pheromone 
intensity I is released; (b) at the first step, the pheromone is 
mainly diffusing (moving) to the nearby cells, with a constant 
diffusion rate [0,1]  ; (c-d) the pheromone is diffusing and 

evaporating; by evaporating, pheromone decreases its intensity 
over time; it is ruled by the constant rate [0,1]  ; (e-f) the 

pheromone is mainly evaporating. More formally, the 
pheromone intensity p released at the instant t on the cell (x,y) 
is then characterized by the following dynamics: 

, , , ,( ) (1 ) ( 1) ( 1, ) ( 1, )x y x y x y x yp t p t p t t d t t            
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where (1-)px,y(t-1) represents the amount remaining after 
diffusion to nearby cells, px,y(t-1,t) the additional deposits 
made within the interval (t-1,t], and dx,y(t-1,t) the input 
pheromone diffused from all the nearby cells. The latter can be 
formally calculated as: 

1 1

, ,
1 1

( , ) (0,0)

( 1, ) ( 1)
8

x y x i y j
i j

i j

d t t p t


 
 



       (2) 

since each of the 8 neighbor cells propagates the portion  of 
its pheromone to the cell (x,y) at each update cycle. The total 
amount in (1) is also multiplied by  to take into account 
evaporation. 

B. The drone behavior 

Basically, at each update cycle (hereafter called tick), the 
drone behavior is structured into a three-layer logic, where 
each layer implements one basic behavior: random fly 
(exploration) is the behavior corresponding to the lowest 
priority layer, while the pheromone-based coordination 
(exploitation) is the middle layer, and the objects/boundary 
avoiding and the pheromone releasing behaviors are realized 
by the highest priority architectural level. 

Fig. 2 shows an overall representation of the drone 
behavior, using a UML activity diagram. Here, a rounded-
corner box represents an activity (a procedure), a rectangular 
box represents an input/output data object (a parameter), solid 
and dashed arrows represent control and data flows, 
respectively. The diagram is also structured into three 
horizontal lanes, representing physical or logical components. 

 

Fig. 2. Overall representation of the drone behavior. 

More precisely, every tick period the drone performs in 
parallel: (a) the target detection, in which case it releases 
pheromone; (b) the objects and boundary detection. If a close 
object (i.e., obstacle or drone) is detected, the drone points 
toward a free direction. If a free direction is found, it moves 
forward. Otherwise, if there are no close objects detected, the 
drones try to sense pheromone and, if detected, points toward 



the maximum intensity of it (the drone is able to detect 
pheromone at the pheromone sensing distance ). Differently, 
if pheromone is not detected, the drone tries to detect 
surrounding drones in order to point toward the flock. Finally, 
if there are no surrounding drones, it performs a random turn 
and move forward. 

In the flocking behavior, the drone takes into account only 
drones within a flock visibility radius (). Fig. 3 shows the 
main flocking parameters. More specifically, Fig. 3a represents 
the separation behavior: drones close to others have to separate 
for better exploration; thus, if a drone senses another drone 
closer than the flock mobility distance (), it turns by an angle 
 (flock separation angle). 

 

 
(a) Separation 

 
(b) Alignment 

 
(f) Cohesion 

Fig. 3. Flock visibility radius and other parameters in flocking behavior. 

 

Fig. 3b shows the alignment behavior: the drone calculates 
the average direction of the drones in the flock visibility radius 
and turns by an angle  (flock alignment distance) to conform 
its direction to the flock direction. Fig. 3c illustrates the 
cohesion behavior: isolated drones do not sense digital 
pheromone, and this prevent cooperation; thus, drones tend to 
stay in proximity; for this reason, the drone calculates the 
barycenter of the drones in the flock visibility radius and turns 
by an angle  (flock cohesion angle) towards the barycenter.  

By means of a reactive behavior, a drone is able to sense 
and avoid close obstacles, drones, and boundary (objects) at the 
distance  (object sensing distance) on its trajectory. Here the 
drone horizontal speed () has been modeled, when it moves 
forward. If an object is in its collision trajectory, the drone 
finds a free trajectory or stops moving. It randomly chooses to 
turn left or right to avoid the obstacle. Then, it turns one degree 
by one and checks the new trajectory. If the drone finds a free 
trajectory, before turning by 180 degrees it moves, otherwise it 
stops for one tick. It is worth noting that a drone flies at 1 meter 
height from the ground, and then we consider buildings and 
trees as obstacles to be modeled.  

Actually, the boundaries of the total navigation area can be 
calculated by using the drone position and comparing it to the 
perimeter. This can be done by the ground station, which 
simulates a “wall” so as to avoid losing the drone. Finally, 
when the drone is in the basic behavior (random fly), it 
randomly turns by an angle smaller than  (maximum rand-fly 
turn angle). 

For the reader’s convenience, Table I summarizes the main 
structural and behavioral parameters of the model, with their 
range and their value set. 

TABLE I.  STRUCTURAL AND BEHAVIORAL PARAMETERS 

Parameter Description (unit measure)  Section   Range    Set v. 

  Drone horizontal speed (m/s) III.B (0,15) 1 

  Drone max rand-fly turn angle (°) III.B (0,180) 90 

  Drone object sensing distance (m) III.B (0, 5) 5 

  Flock visibility radius (m) III.B   [0, 50] 10 

  Flock mobility distance (m) III.B [0,5] 3 

  Flock separation angle (°) III.B   (0,180) 20 

  Flock alignment angle (°) III.B   (0,180) 8 

  Flock cohesion angle (°) III.B   (0,180) 5 

I  Pheromone release intensity III.A (0, ) 50K 

  Pheromone diffusion rate (%) III.A [0,1] 0.90 

  Pheromone evaporation rate (%) III.A [0,1] 0.95 

  Pheromone sensing distance (m) III.B (0, ) 1 

IV. EXPERIMENTAL STUDIES 

The proposed model has been implemented on NetLogo1, a 
leading simulation platform for swarm intelligence. To assess 
the effectiveness of the proposed approach, we have evaluated 
the performance of the model on the three basic behaviors: 
random fly (“R”), stigmergic behavior (“S”), stigmergic and 
flocking behavior (“S+F”). For each experiment, 10 trials have 
been carried out, by using as a performance indicator the time 
needed to detect the 95% of targets in the scenario. We tested 
the model on 5 different scenarios. We also determined that the 
resulting performance indicator samples are well-modeled by a 
normal distribution, using a graphical normality test. Hence, 
we calculated the 95% confidence intervals. Table II 
summarizes the characteristics and the results for each 
scenario, in the form “mean  confidence interval”. 

TABLE II.  NUMERICAL RESULTS 

Scenario 
N° of targets / 

clusters 
Type / n° of 

obstacles 
Drones 

Completion time 
(ticks) 

Field 50 / 5 
  Trees: 0 
  Build: 0 

80 

R 1756  178 
S 802  160 

S+F 689  142 

Forest 20 / 1 
  Trees: 400 
  Building: 0 

80 

R 2378  512 
S 744  194 

S+F 677  68 

Urban 110 / 2 
  Tree: 0 
  Building: 7 

40 

R 1448  106 
S 861  148 

S+F 800  73 

Rural 
Mines 

28 / 28 
  Tree: 281 
  Building: 3 

200 

R 724  83 
S 694  88 

S+F 666  68 

Urban 
Mines 

40 / 40 
  Trees: 54 
  Building: 28 

25 

R 354  25 
S 455  60 

S+F 415  44 

 
 The synthetic scenario called Field is made by 5 targets 

scattered over the area, with about 10 targets per group. There 
are no obstacles. Fig. 4a represents the initial configuration: 80 
total drones arranged into 4 swarms are represented by 
triangular forms, and are placed at the antipodes of the area, 
whereas the targets are represented by cluster of dots. Fig. 4b 
shows the spatial arrangement of swarms with different form 

                                                           
1 https://ccl.northwestern.edu/netlogo/ 



and size. Finally Fig. 4c represents three stigmergic formations 
on three different targets. On the bottom right it can be 
observed that a stigmergic formation attracted a swarm of 
drones. Results in Table II confirm that the combination of 
stigmergy and flocking behaviors speed up the target search 
process in the Field scenario. 

 
(a) (b) 

 
(c) 

Fig. 4. Some snapshot of the scenario Field: (a) initial state; (b) flocks; (c) 
three stigmergic formations. 

The Forest scenario (Fig. 5a) represents a synthetic 
reconstruction of spread targets in a stand of timber. Here, 20 
targets and 400 trees are represented by black and gray dots, 
respectively. 80 total drones, arranged into 4 swarms, have 
been initially placed at the antipodes of area. Again, the 
combination of stigmergy and flocking sensibly improves both 
the mean and the confidence interval. 

The Urban scenario (Fig. 5b) is characterized by two 
cluster of 110 total targets placed on two sides of 7 total 
buildings. 40 drones, arranged into 4 swarms, are placed at the 
antipodes of the area, with no trees at all. Also for this scenario, 
the performance of Table II confirms the positive trend of the 
approach combining stigmergy and flocking. 

The Rural Mines (Fig. 5c-d) and Urban Mines (Fig. 5e-f) 
scenarios are derived from real-world examples of areas near 
Sarajevo, in Bosnia-Herzegovina, with landmine objects, 

selected from publicly available maps2. Recently, some authors 
actually proposed the use of small drones for detecting 
landmines [12]. On both cases, drones have been initially 
placed on the boundaries of the area. With respect to the map 
of the first three scenarios, whose area is 200 square meters, in 
the last two scenarios the area is 400 square meters. In the 
Rural Mines scenario, the positive effect of Stigmergy and 
Flocking is confirmed. Thus, it can be observed in Table II that 
to adopt Stigmergy, and then Stigmergy with Flock, improves 
the performance in all scenarios, except for the Urban Mines 
scenario, whose trend is the opposite. This result could be 
ascribed to the fact that the Urban Mines map has a very 
complex layout of obstacles, which makes difficult flock 
navigation and coordination strategy. It is worth noting that all 
scenarios have been processed by using a general purpose 
parameterization. Indeed, a parameterization ad initialization 
adapted to types of scenario might produce different results. 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 5. Models of 2 synthetic and 2 real-world scenarios: (a) Forest; (b) 
Urban; (c-d) Rural Mines; (e-f) Urban Mines. 
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To better investigate the dynamics of the target search, Fig. 
6a-c shows the completion rate against time, for the Urban 
scenario.  

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 6. Completion rate against time for the Urban scenario: (a) Random Fly; 
(b) Stigmergy; (c) Stigmergy + Flocking. 

Here, the evolution of each trial of an experiment is shown. 
It is apparent that Stigmergy introduces a significant 
improvement over Random Fly, starting from about one third 
of the target coverage, whereas the combination of Stigmergy 

and Flocking overtakes Stigmergy especially in terms of 
variability between trials. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented a novel swarm strategy for 
coordinating small drones performing target search, based on 
stigmergy and flocking behaviors. The approach uses 
stigmergy to attract drones in areas with potential targets and 
employs flocking to organize drones into swarms. Simulated 
results on synthetic and real-world scenarios proved the 
benefits of stigmergy and flocking. The overall mechanism can 
be better enabled if structural parameters are correctly tuned for 
the given scenario. Determining such correct parameters is not 
a simple task since different areas have different features. Thus, 
an appropriate tuning to adapt parameters to the specific search 
area is desirable to make the search more effective. For this 
purpose, to use a parameter optimization strategy is considered 
a key investigation activity for future works. 
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