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a b s t r a c t

Situation awareness is a computing paradigm which allows applications to sense parameters in the
environment, comprehend their meaning and project their status in the next future. In collaborative
situation awareness, a challenging area in the field of Ambient Intelligence applications, situation patterns
emerge from users0 collective behavior. In this paper we introduce a multi-agent system that exploits
positioning information coming from mobile devices to detect the occurrence of user0s situations related to
social events. In the functional view of the system, the first level of information processing is managed by
marking agents which leave marks in the environment in correspondence to the users0 positions. The
accumulation of marks enables a stigmergic cooperation mechanism, generating short-term memory
structures in the local environment. Information provided by such structures is granulated by event agents
which associate a certainty degree with each event. Finally, an inference level, managed by situation agents,
deduces user situations from the underlying events by exploiting fuzzy rules whose parameters are
generated automatically by a neuro-fuzzy approach. Fuzziness allows the system to cope with the
uncertainty of the events. In the architectural view of the system, we adopt semantic web standards to
guarantee structural interoperability in an open application environment. The system has been tested on
different real-world scenarios to show the effectiveness of the proposed approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Situation awareness is a computing paradigm that enables
applications to sense and explore situations in which the users
are, with the aim of predicting their demands at a certain time [1].
The paradigm relies on the context, that is, all the relevant data
and information (e.g., the user0s position in space and time, the
surrounding things and events) which can help comprehending
what is happening in the environment [2–4]. This form of
autonomous perception implies reasoning, decision, adaptation,
and other characters of cognitive systems [5], as well as dealing
with an intrinsic uncertainty in data [6,7].

To this aim, Korpipää et al. [8] have proposed a framework
for managing uncertainty in raw data and inferring higher-level
context abstractions with a related probability. Fuzzy sets are
employed to convert unstructured raw data into a representation
defined in a context ontology through predefined fuzzy labels.

Situations are recognized by means of a basic Bayes classifier,
which learns conditional probabilities from training data for each
situation. In [9] fuzzy quantization is used to convert raw sensor
data into context information. Such information is exploited by
fuzzy controllers for adapting applications to the specific context.
However, no semantic description of context is considered.
Ranganathan et al. [10] have modeled uncertainty in situation
awareness by associating a confidence value with all pieces of
contextual information. The authors adopt three methods to infer
the user0s situation: (i) probabilistic logic, (ii) fuzzy logic, and
(iii) Bayesian networks.

In [11] uncertainty is managed by first extending the context
ontology so as to allow additional probabilistic markups and then
by adopting Bayesian networks to infer the current situation of the
user. In [12] contextual information is codified in the antecedent
part of linguistic rules whose consequent parts express the degree
of confidence in the occurrence of a situation. Weights can be
specified to represent the relative importance of each contextual
condition for inferring a situation. In [13] a neuro-fuzzy classifica-
tion system is trained to map sets of contextual information to
particular situations by fuzzy rules.

In [7,14] we have proposed a design method for managing
situation awareness. This method is based on the concurrent use
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of a semantic and a fuzzy engine. The semantic engine can infer
one or more situations exploiting symbolic information. When
multiple situations are inferred, a fuzzy engine computes a
certainty degree for each situation, taking the intrinsic vagueness
of some conditions of the semantic rules into account.

The structure of rules has been designed according to an upper
situation ontology which is domain independent. The user calen-
dar acts as a reference for the parameterization of such fuzzy rules
for each user. The use of a calendar is however an explicit input
required to the user. On the contrary, context information should
be collected in terms of collaborative implicit input, coming from
changes in the environment.

To avoid using explicit inputs as context sources, in [15,16] we
have proposed an approach based on the emergent paradigm [5] for
automatically detecting social events (e.g., meetings, conferences,
festivals, entertainment, and so on) by exploiting a position-based
stigmergy paradigm. Stigmergy can be defined as an indirect
communication mechanism that allows simple entities to structure
their activities through the local environment [17]. The approach has
been referred to as collaborative situation awareness (CSA). In
particular, each user is associated with one marking agent which
leaves periodically marks in the environment in correspondence to
his position. In a stigmergic computing scheme, the environment
acts as a common shared service for all entities enabling a robust
and self-coordinating mechanism. The accumulation of these marks
is monitored by an event agent which detects events based on a
fuzzy information granulation process. Finally, situation agents infer
user situations from the underlying events. The inference process is
performed by fuzzy rules generated by an expert taking some
mathematical constraints into consideration.

In this paper, we extend our approach by focusing on a multi-
agent architecture. Further, in order to make the approach com-
pletely independent of the user0s inputs, we generate the fuzzy
rules by exploiting a neuro-fuzzy system. We adopt Gaussian
membership functions and train the neuro-fuzzy system by tracing
a number of users involved in a social event. We need only to know
the number of users who participate in the event. The proposed
scheme is tested on four representative real scenarios, considering
four different types of situation. For each scenario, the scheme has
proved to be able to recognize the four types of situation just
approximately at the instants when these situations occur.

The paper is organized as follows. In Section 2, we introduce
the functional view of the system. Section 3 shows the architecture
of the system, by focusing on the knowledge representation. In
Section 4, we discuss some experimental results. Section 5 draws
some final conclusion.

2. The functional view of the system

Situation awareness is achieved in our multi-agent system by
exploiting three processing levels: the marking, the fuzzy granula-
tion and the inference processing levels. In this section, we will
describe how the three levels work and interact with each other.
The first two levels will be discussed shortly. The interested reader
can refer to our previous paper [16] for details. The third level will
be analyzed in depth. Indeed, unlike in [16], where fuzzy partitions
were generated heuristically, here we adopt a neuro-fuzzy
approach. Further, we employ slightly different fuzzy rules which
determine the situation at a certain instant by considering the
certainty degrees of the situations at the previous time step.

2.1. The marking processing level

We consider the spatial area under observation normalized in
½0;1� � ½0;1� and superimpose on this area a grid consisting of L2

squares, where each square Q is identified by a pair of coordinates
ðx; yÞ, with x; yA ½1;…; L�. The size of the area and the number of
squares depend on the specific application domain. Each user is
associated with a Marking Agent (MA), which periodically leaves a
mark at the position where the user is currently located. Each
mark is specific to an MA and is characterized by an intensity
with a spatial and a temporal decay. In particular, the intensity
decreases with the increase of the distance from the position of
the user and with the passing of the time. The time period of the
intensity decay is longer than the time period used by the MAs for
leaving marks. Thus, if the user is still in a specific position, new
marks at the end of each period will superimpose on the old marks
and the intensity will reach a stationary level. On the contrary, if
the MA moves to other locations, the mark intensities will
decrease with the passage of the time without being reinforced.

Formally, at each instant t , t ¼ 0; TM ;2TM , …, the MAi leaves in
the squares Q ðx; yÞ; x; yA ½1;…; L�, a mark of intensity Iiðx; y; t Þ
defined as

Ii;t ðx; y; t Þ ¼maxð0; IMAX � ½1�δ �maxðjx�xpj; jy�ypjÞ�Þ ð1Þ

Every TD seconds the intensity of the mark decays of a percentage
α of its current value, that is,

Ii;t ðx; y; tÞ ¼ α � Ii;t ðx; y; t�TDÞ ð2Þ

with t ¼ tþTD; tþ2TD;…
For each square Q ðx; yÞ, the actual value Iðx; y; tÞ of the intensity

is obtained as the sum of the intensities of the marks left by each
MA, that is,

Iðx; y; tÞ ¼ ∑
8 i;8 t :Ii;t ðx;y;tÞ40

Ii;t ðx; y; tÞ ð3Þ

The intensities of the marks are granulated in the second
processing level by two event agents (EAs), namely the Grouping
Agent (GA) and the Disjoining Agent (DA). Both the GA and the DA
agents are generated by an MA whenever the mark left by the MA
itself is superimposed on at least one mark left by other MAs.

The control logic of a generic marking agent MAi can be
summarized as follows:

Loop
Wait for TM seconds;
Leave a mark of Intensity Iiðx; yÞ in the squares Q ðx; yÞ;
Ask the Environment whether, in at least one square

with Iiðx; yÞ40, there exists another mark left by
another MAj with intensity Ijðx; yÞ40;

If there exists such mark
Then Generate a GA and a DA;

End loop

2.2. The fuzzy granulation processing level

The GA characterizes the behavior of groups of MAs and is
devoted to detect when a grouping event occurs. Once instan-
tiated, each GA observes a neighboring area, here denoted by
NðxG; yGÞ, centered in the position ðxG; yGÞ of the GA. The position
ðxG; yGÞ coincides with the position ðxP ; yPÞ of the MA which
generates the GA. As a consequence, the GA follows the same
movements as the corresponding MA. We assume that the size of
the area NðxG; yGÞ is equal to the size of the area of a mark. The
intensity associated with the area NðxG; yGÞ is computed as

IGAðxG; yG; tÞ ¼ ∑
ðx;yÞANðxG ;yGÞ

Iðx; y; tÞ ð4Þ

GAs corresponding to the same group of users are fused in such
a way that only one GA is associated with a group of users. Two
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GAs are fused when at least one square of the neighborhood of the
former is superimposed on one square of the neighborhood of the
latter. At each instant t , the position ðxG; yGÞ of the generated GA is
computed as the center of gravity of the positions ðxP ; yPÞ of the
MAs which have instantiated the fused GAs.

The DA detects if a user, after having joined a group, separates
from it. The position ðxD; yDÞ of a DA coincides at each time step
with the position of the corresponding MA. A DA is removed when
the GA, which contains the user corresponding to the DA, is
removed. Once instantiated, each DA observes a neighboring area,
here denoted by NðxD; yDÞ, centered in ðxD; yDÞ. We assume that also
the size of NðxD; yDÞ is equal to the size of the area of a mark. The
intensity associated with the area NðxD; yDÞ is computed as

IDAðxD; yD; tÞ ¼ ∑
ðx;yÞANðxD ;yDÞ

Iðx; y; tÞ ð5Þ

Both GAs and DAs are modeled by fuzzy granules [18]. In
particular, an s-shape membership function is adopted for the GA:

μGAðIGAðxG; yG; tÞÞ

¼

0 if IGAðxG; yG; tÞra

2
IGAðxG; yG; tÞ�a

b�a

� �2

if ar IGAðxG; yG; tÞr
ðaþbÞ

2

1�2
b� IGAðxG; yG; tÞ

b�a

� �2

if
ðaþbÞ

2
r IGAðxG; yG; tÞrb

1 if IGAðxG; yG; tÞZb

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

where parameters a and b control the curve slope of the s-function.
The parameters a and b have to be chosen appropriately so as to
make the granulation process independent of the number of users
involved in the collaborative situation. As explained in [16], we set
a¼ Imin

GA ðxG; yG; tÞ and b¼ 2
3 � Imax

GA ðxG; yG; tÞ .
The choice of b is motivated by the following reasonable

assumption: a grouping event occurs when at least half of the U
users are close to each other. Thus, we consider that when a
number of users higher than 2/3 U are close to each other, then the
grouping event should have maximum degree. The minimum
value a¼ Imin

GA ðxG; yG; tÞ corresponds to the case in which a unique
user has left a mark in the squares NðxG; yGÞ. If we assume that
δ¼ 0:5 (the value used in our experiments), then the minimum
value is Imin

GA ðxG; yG; tÞ ¼ 5 � IMAX . The maximum value Imax
GA ðxG; yG; tÞ

corresponds to the case in which all the users are still and leave
marks on the same squares. As proved in [16], Imax

GA ðxG; yG; tÞ ¼
5 � U � IMAX � 1=ð1�αÞ, where U is the number of users. Fig. 1(a)
shows an example of a GA fuzzy granule.

Since the value of b depends on the number of users, the result
of the granulation process is independent of U. As regards DA, the
following z-shaped membership function is adopted as fuzzy
granule:

μDAðIDAðxD; yD; tÞÞ

¼

1 if IDAðxD; yD; tÞra

1�2
IDAðxD; yD; tÞ�a

b�a

� �2

if ar IDAðxD; yD; tÞr
ðaþbÞ

2

2
b� IDAðxD; yD; tÞ

b�a

� �2

if
ðaþbÞ

2
r IDAðxD; yD; tÞrb

0 if IDAðxD; yD; tÞZb

8>>>>>>>>><
>>>>>>>>>:

ð7Þ

where parameters a and b have the same values computed for
IGAðxG; yG; tÞ. Unlike GA, which considers a group of users, DA takes
only one user into consideration: a disjoining event occurs when
a user is alone in the area of the mark. Thus, a¼ 5 � IMAX and
b¼ 2 � 5 � IMAX � =ð1�αÞ, where b coincides with the maximum
value achievable in correspondence to two users still and alone.
Obviously, for values higher than b, we can be sure that the user is

not alone and therefore the disjoining event is recognized with
minimum certainty degree. Fig. 1(b) shows an example of a DA
fuzzy granule. For simplicity of notation, in the following we denote
the certainty degrees μGAðIGAðxG; yG; tÞÞ and μDAðIDAðxD; yD; tÞÞ as GR(t)
and DJ(t), respectively.

The control logic of a GA can be summarized as follows:

Loop
Wait for TM seconds;
Get the positions ðxP ; yPÞ of all the MAs of the group;
Compute position ðxG; yGÞ as center of gravity of the

positions ðxP ; yPÞ;
Get from the Environment the intensity Iðx; yÞ of each

square in the neighboring area NðxG; yGÞ;
Compute the intensity IGAðxG; yGÞ by formula (4);
Compute the certainty degree of the grouping event

by formula (6);
End loop

The control logic of a DA can be summarized as follows:

Loop
Wait for TM seconds;
Get from the Environment the intensity Iðx; yÞ of

each square in the neighboring area NðxD; yDÞ;
Compute the intensity IDAðxD; yDÞ by formula (5);
Compute the certainty degree of the grouping event

by formula (7);
End loop

In conclusion, the processing performed by the first two levels
can be summarized as follows. Information granules originate at
the marking processing level where the environment, a short-term
memory of the user0s positions, supports an emergent process
activated by the users0 proximity. Indeed, information provided by
the mark intensity allows identifying groups of users who have
been close to each other in a recent period of time. Subsequently,
in order to extract essential information from mark intensity,

Fig. 1. Membership functions used to model the granulation process of the
GA (a) and the DA (b).
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the fuzzy granulation processing emphasizes the intensity values
that are more relevant for identifying the grouping and disjoining
events. The membership functions, which characterize the fuzzy
granules, are automatically calibrated on the number of partici-
pants to the event and therefore their semantics results in practice
to be independent of this number.

2.3. The fuzzy inference processing level

This level is in charge of assessing the current user0s situations.
It is accomplished by a Situation Agent (SA) which is aimed
at recognizing four types of situations related to collaboration:
(i) pre-collaboration (PreC), while the user is discussing with one
or more other users about the coming collaboration; (ii) on-going
collaboration (OngC), while the user is attending the collaboration;
(iii) collaboration pause (PauC), while the user is having a break
during the collaboration; (iv) post-collaboration (PstC), while
the user is discussing with one or more other users about the
collaboration, once it has terminated.

The SA uses fuzzy rules to provide for each user the certainty
degree of being in each situation. The methodology used for
identifying the fuzzy rules is expert-driven, and can be summar-
ized as follows. In the first step, we identify the situations of
interest for the specific application domain by interviewing the
end-users. Through the identification of the situations, we define
the output variables of the system and their possible values. In the
second step, we characterize the relations between the system
outputs and some contextual information, which in the case in
point is the degree of interaction among participants. In the third
step, we design a general-purpose ontology as suitable contextual
source of information for deriving the above situations. With
respect to the application domain, the basic assumption is that
grouping and disjoining events are necessary, but not sufficient
because they are based on proximity information only. In the fourth
step, we identify the antecedent part of the rules, by expressing
some precise form of knowledge on the systemmodeling. As regards
this step, contextual information of proximity has been combined
with information about the situations defined in the previous steps,
in order to distinguish pre-collaborations and post-collaborations
situations.

Specifically, fuzzy rules have been designed so as to describe
the constraints characterizing the sequence of situations occurring
during a collaboration. In this way, a small set of fuzzy rules was
defined to recognize each situation for the i-th user, for a total
number of 14 rules listed in Table 1. The consequent part of each
rule expresses the certainty degree of being in one situation (Low
or High). The antecedent part of each rule is a conjunction of fuzzy
terms which express contextual information provided by the
GA and the DA as well as the information about the situation
recognized at the previous step. This enables the SA to accomplish
the sequence PreC-OngC-ðPauC-OngCÞ-PstC for the i-th user.
A small memory, called Agenda, stores at each instant the
certainty degree of the situation recognized for the i-th user. At
each instant t ¼ tþTD; tþ2TD;…, the SA detects a new situation
for the i-th user by taking into account both the content of
the Agenda at step t�TD and the certainty degree GR(t) of the
grouping event provided at time t by the GA to which the i-th user
belongs. The variable GR(t) is described by three linguistic values
(Low, Medium and High) defined by Gaussian fuzzy sets. Fuzzy
rules aiming to recognize the PauC situation use also the certainty
degree DJ of the disjoining event provided at time t by the DA
corresponding to the i-th user. The variable DJ(t) is described
by two linguistic values (Low and High) defined by Gaussian
fuzzy sets.

The control logic of an SA can be summarized as follows

Loop
Wait for TD seconds;

For each user i
Get from the GA of the user i the current
grouping degree GR;

Get from the DA of the user i the current
disjoining degree DJ;

Get from the Agenda of the user i the degrees of
the situations recognized at the previous step;

Infer from rules in Table 1 the degrees of the
current situations of user i;

Update the Agenda with the degrees of the
current situations of user i;

End for
End loop

The parameters of fuzzy sets used in the SA rules were defined in a
completely automatic way by means of a neuro-fuzzy learning
process. In particular, fuzzy rules were mapped to a neural architec-
ture, resulting in a neuro-fuzzy network comprising five layers of
neurons (Fig. 2). Neurons in layer 1 simply provide input values to the
network. Neurons in layer 2 represent fuzzy sets defined on the input
variables: each neuron receives the input value and computes a
membership value through a Gaussian function. Each neuron in layer
2 has two adjustable parameters corresponding to the center and the
width of the Gaussian function. Each neuron in layer 3 corresponds to
a rule: it is connected to the neurons in layer 2 which implement the
fuzzy sets used in the antecedent of the rule and computes the
activation strength as product of the membership values output by
these neurons. The neurons in layer 3 have no adjustable parameter.
Neurons in layer 4 represent fuzzy singletons used in the consequent
part of fuzzy rules. Consequent fuzzy singletons are adjustable
parameters of the network. Layer 5 performs defuzzification and
includes one neuron for each considered situation. The outputs of
these neurons are certainty degrees of being in the corresponding
situation.

Parameters of neurons in layers 2 and 4 are automatically
defined via supervised learning using the same algorithm defined

Table 1
Fuzzy rules used by the SA for situation recognition.

Rules for PreC recognition

R1 IF GR(t) IS M AND PREC(t�TD) IS L THEN PREC(t) IS H
R2 IF GR(t) IS H AND PREC(t�TD) IS H THEN PREC(t) IS L

Rules for OngC recognition

R3 IF GR(t) IS H AND PREC(t�TD) IS H THEN ONGC(t) IS L
R4 IF GR(t) IS H AND ONGC(t�TD) IS L THEN ONGC(t) IS H
R5 IF GR(t) IS H AND ONGC(t�TD) IS H THEN ONGC(t) IS H
R6 IF GR(t) IS M AND ONGC(t�TD) IS H THEN ONGC(t) IS L
R7 IF GR(t) IS H AND DJ(t) IS L AND PAUC(t�TD) IS H

THEN ONGC(t) IS H

RULES FOR PstC RECOGNITION

R8 IF GR(t) IS M AND ONGC(t�TD) IS H THEN PSTC(t) IS L
R9 IF GR(t) IS M AND PSTC(t�TD) IS L THEN PSTC(t) IS H
R10 IF GR(t) IS L AND PSTC(t�TD) IS H THEN PSTC(t) IS L
R11 IF GR(t) IS L AND PAUC(t�TD) IS L THEN PSTC(t) IS L

RULES FOR PauC RECOGNITION

R12 IF GR(t) IS H AND DJ(t) IS H AND ONGC(t�TD) IS H
THEN PAUC(t) IS L

R13 IF GR(t) IS H AND DJ(t) IS H AND PAUC(t�TD)IS L
THEN PAUC(t) IS H

R14 IF GR(t) IS H AND DJ(t) IS L AND PAUC(t�TD) IS H
THEN PAUC(t) IS L
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for the well-known ANFIS model [19]. The ANFIS learning
algorithm is a two-step hybrid procedure that combines the
back-propagation gradient descent method and the least squares
method. In the first step, consequent parameters are updated via a
least squares method. In the second step the error rates propagate
backward into the layers and the premise parameters are updated
by the gradient descent.

By fuzzy rule inference, the SA can provide a certainty degree for
each situation and for each user at each time step. For example, in the
preliminary phase of a meeting, a user may be in the PreC situation
with high degree and in the OngC situation with low degree; likewise,
during the ending phase of a meeting a user may be in the OngC
situation with low degree and in the PstC situation with high degree.
Given the certainty degrees of all situations for each user at a certain
time step, the SA selects the situation with the highest degree as
current situation to be included in the Agenda of the user.

3. Architecture and knowledge representation
in the CSA system

A robust and general approach to CSA should guarantee that
system architecture and behavioral knowledge can be easily
integrated in an open environment. Further, a variety of contex-
tual, possibly uncertain, collective inputs should be supported.
Finally, situational knowledge should be provided to multiple
applications. To this aim, the architecture of the system has been
designed in compliance with an agent-oriented approach [20–22],
which operates at the knowledge level, shows flexible behavior,
easy maintenance, reusability and platform independence.

This is achieved thanks to the use of highly standardized
technologies, such as Semantic Web and Approximate Reasoning
[14,23]. In the following, we will describe the main modules of the
architecture and their interaction and some aspects of the knowl-
edge representation.

3.1. Main architectural modules and their interaction

Fig. 3 shows a UML deployment diagram of the proposed system.
Here, there are three device categories, i.e., Smart phone on the client
side,Marking Server and Situation Server on the server side. The Smart
phone provides the server side with the current position of the user,
generated by its Time-Position Sampler module. Position estimation
can be based on a GPS signal reader, or can be computed by means of
other technologies, such as GSM and Wi-Fi [24].

On the server side, the Marking Server manages the marking
process, i.e., it hosts the MA and the Time-Position Log module, and
delivers marks to the Situation Server. Finally, the Situation Server
manages the Environment (via a Multi-Agent Systems Manager),
hosts the SA and EA instances, and supports both fuzzy granulation
and situation fuzzy inference processes, according to linguistic
variables and rules processed by means of the Fuzzy Engine. A
single Marking Server can support many smart phone clients, via a
lightweight and platform-independent communication protocol
based on XML-RPC over HTTP. Thus, any client-side platform can
be easily integrated with the system. A single Situation Server can
support many Marking servers, via an efficient Java-RMI commu-
nication protocol. Indeed server-side subsystems are entirely Java-
based. More specifically, the following environments have been
employed to develop and execute the infrastructure. The Semantic
Web Engine is based on Apache Jena,1 a Java framework for building
Semantic Web applications, used in conjunction with Pellet,2 a Java
based OWL DL reasoner. The Fuzzy Engine is based on jFuzzyLogic,3

a Java package that implements a series of basic fuzzy operations as
well as a fuzzy inference system. Finally, the Multi-Agent Systems
Manager is based on Repast Simphony,4 a Java-based modeling
system supporting the development of interacting agents. It can be
used as a GUI-based (user driven) simulation environment, as well
as an execution engine run from another Java application.

Fig. 4 shows a scenario of communication among the most
important modules, by using the UML communication diagram.

Fig. 2. Architecture of the adopted neuro-fuzzy network.

Fig. 3. Overall system architecture.

1 http://incubator.apache.org/jena.
2 http://clarkparsia.com/pellet.
3 http://jfuzzylogic.sourceforge.net.
4 http://repast.sourceforge.net.
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The interaction starts with the MA (1), which gets the position
from the TimePositionLog module and leaves a mark in the
Environment (2). Supposing that the MA receives from the Envir-
onment the information whether the mark is going to be super-
imposed on marks left by other MAs, the MA creates an EA (3).
Possibly, EAs corresponding to the same group of users are fused.
An EA performs a local observation in the Environment (4), and
assesses a specific type of event (5). Finally, an SA takes as input
the specific event (6) and infers the situation (7).

3.2. Knowledge representation in the CSA system

CSA relies on a distributed system. Hence, knowledge port-
ability, integration and extensibility are key features since context
reasoning implies collaboration among software agents that man-
age their own contextual sources. For this purpose, our system
employs web knowledge representation standards, such as
Semantic Web Languages [25] and Fuzzy Markup Language [26].

In the Semantic Web domain, the Resource Description Frame-
work (RDF)5 and the Web Ontology Language (OWL)6 are the basic
languages traditionally employed to author ontologies [27]. RDF
and OWL are W3C standard specifications, well-supported by
semantic engines. In order to manage fuzzy information in an
OWL compliant ontology, we used a representation pattern
proposed in [14,28]. The pattern, named Fuzzy Ontology Repre-
sentation (FOR), considers a fuzzy property as a relation between
two concepts, representing additional attributes to describe each
relation instance. It is applicable to properties that are related to
the same base variable and to the same pair of concepts. More
specifically, in the FOR pattern an OWL group of properties is
transformed into a concept, which includes a specification of
the degree for each property. In other words, we assert that there

is a property with a certain degree. Each degree is the membership
level of the base variable to a specific fuzzy set. It is worth noting
that this scheme can be used also in case of a property related to a
single concept. In such case, the concept property corresponds to
the concept itself. As an example, Fig. 5(a) and (b) shows the
representation of the fuzzy properties concerning the certainty
degrees GR(t) and OngC(t) of the grouping event and the certainty
degrees of the OngC Situation. Since FOR pattern is RDF and
OWL compliant, it is possible to extend any property with fuzzy
characters using conventional RDF/OWL engines.

Context Awareness should enable users to seamlessly employ
and configure the intelligent devices and systems in their envir-
onments without being cognitively and physically overloaded. The
complexity associated with the number, varieties, and uses of
smart personal devices, and of possibly different services, requires
a technology that lets intelligence embody in the environment
without interfering with the user0s task. In other words, Context
Awareness requires necessarily two types of intelligence, i.e.,
reasoning and interoperability. Our proposal exploits fuzzy-based
reasoning and position-based stigmergy to realize collaborative
situation aware services.

The Fuzzy Markup Language (FML) is used to enable the
interoperable fuzzy-based reasoning, since it describes both the
data base and rule base [26,29]. FML is an XML-based language
used to model fuzzy controllers. It provides a platform-
independent grammar over shared resources. FML is particularly
suitable for: (i) distributing the fuzzy control flow, in order to
minimize the global deduction time and to better exploit the
natural distributed knowledge repositories; (ii) acquiring, online,
the user0s behavior and environment status, in order to apply
context-aware adaptivity [26]. A simple example of FML fuzzy
knowledge base is shown in Fig. 6. Here, Fig. 6(a) shows the
definition of the membership functions associated with the
linguistic terms “Low”, “Medium”, and “High” of the linguistic
variable GR(t), expressed in the usual graphical representation.
Fig. 6(b) is the corresponding FML serialization.

The user0s position is detected by the Time-Position Sampler at
the client side. Whatever the positioning mechanism employed,
the server is expected to receive the position of the user. In the
CSA system, the GPX (GPS eXchange format)7 is used to express
interoperable tracks as ordered collections of points where the
user has been, and corresponding timestamps. GPX is an open and
widely used XML format that allows describing waypoints, tracks

Fig. 4. Communication diagram for the situation reasoning process.

Fig. 5. Concrete representation of the fuzzy property GR(t) (a) and OngC(t) (b) with
the FOR pattern.

5 http://www.w3.org/RDF.
6 http://www.w3.org/OWL. 7 http://www.topografix.com/gpx.asp.
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and routes. An example of a GPX track sent to the server is shown
in Fig. 7. Here, the most important elements are: metadata with
name, description, author and timestamp of the track, as well as
the track itself, with a name, a series of geographic coordinates
and their timestamps.

4. Simulation results

To assess the effectiveness of the proposed multi-agent system
in detecting collaboration situations, we tested our scheme on four
real-world scenarios involving a different number U of participants
ðP1;…; PUÞ. The four scenarios, denoted as A, B, C and D, refer to a
meeting among 10, 8, 6 and 4 participants, respectively. Scenarios
are characterized as follows:

� Scenario A (U¼10). P1 meets P2 at a bar before arriving at the
meeting place. P8 reaches P1 and P2 at the bar and then together
they go to the meeting place. During the meeting, P3 leaves the
meeting place for a short time to go to the bar. Further, P4 and
P5 leave the meeting place for a longer time to go to the fast

food. P1, P2, P3 and P4 leave the meeting place before the other
participants.

� Scenario B (U¼8) was obtained by selecting participants P1, …,
P8 from the scenario A.

� Scenario C (U¼6) was obtained by selecting participants P1,…,
P6 from the scenario A.

� Scenario D (U¼4) was obtained by selecting participants P1,…,
P4 from the scenario A.

Fig. 8 shows the points of main interest in the considered scenarios.
As an example, in Fig. 9 we show the GPS data generated by the
mobile devices of each participant in scenario B.

As a first step, continuous GPS data have been discretized into a
grid of square cells. We adopted a 100�100 grid. More specifi-
cally, for all the scenarios the system parameters were set as
follows: L¼100, δ¼50%, α¼0.5, TD¼TM¼T¼60 s. We considered a
time interval of 100 TD.

As an example, in Fig. 10 we show the value of marking intensities
corresponding to different steps of the scenario C. Here, x and y are
dimensionless integer coordinates used to refer to cells of the
physical area under observation, which has been discretized into a
grid. More specifically, in Fig. 10(a) at time step t¼27 all participants
are moving alone and far from the meeting place. In particular, the
two participants located approximately at (x¼60, y¼60) are moving
close to each other. For this reason their marks are slightly over-
lapping, although they are moving fast and therefore their marks are
quite small. Taller marks correspond to participants that are moving
slower, e.g., the participants located approximately at (30, 40) and

Fig. 6. Classical visual definition of the fuzzy linguistic variable GR(t) (a), and its
FML serialization (b).

Fig. 7. A fragment of a GPX waypoint containing the user position.

Fig. 8. Points of main interest.
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(20, 50). Very small marks correspond to fast moving participants,
e.g., the remaining participants. In particular, for the participant
located at (20, 80) we can identify also the direction of the move-
ment. Fig. 10(b) represents the scenario at instant t¼45, when two
late participants are approaching the meeting place, thus creating
a minor accumulation of marks. Here, the tallest mark intensity
corresponds to the meeting place, where the other participants are
already located. In Fig. 10(c), corresponding to instant t¼72, all
participants are still at the meeting place, thus creating a unique and
tall mark intensity. Finally, Fig. 10(d) is taken at t¼78 when some
participants leave the meeting place for a break. Here the minor
intensity peak corresponds to the break location, whereas the tallest
mark corresponds to the meeting place.

Next, marking intensities have been employed as described in
Section 2.2 to calculate the certainty degrees GR(t) and DJ(t) for the
grouping and the disjoining events, respectively. As an example, in
Fig. 11(a) we show the certainty degree GR(t) computed for the
grouping event in correspondence of t¼49, when all participants
reach the meeting place. It can be seen that in this step, for
all participants, GR(t) is maximum. Fig. 11(b) shows GR(t) at time
step t¼55. We observe that there exist two peaks: the highest is
in correspondence to the meeting place while the lowest is in
correspondence to the positions of participants P4 and P5, who are
leaving the group.

In order to train the neuro-fuzzy system we have adopted the
samples of the scenario A. To assess the goodness and stability of the
neuro-fuzzy approach we have employed a 10-fold cross-validation.
The learning process is stopped after 100 epochs or when the
network error drops below a small fixed threshold. In our trials,Fig. 9. GPS data for scenario B involving 8 participants to a meeting.

Fig. 10. Marking intensities in different steps: initially (a), during PreC (b), OngC (c) and PauC (d) situations.
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the minimum training error was set to 0 and the initial learning rate
to 0.01. Moreover, during the training, the learning rate was updated
by considering decreasing/increasing multiplicative factors equal to
0.9 and 1.1 respectively. We observed very stable results in terms of
the obtained classification error (misclassified situations at each
considered time instant t) that was equal to 2.5% in all runs. We

chose randomly a knowledge base generated in one of the trials and
used it in SA for recognizing situations in the other scenarios. In
Fig. 12, we show the partitions of each linguistic variable after the
neuro-fuzzy learning.

To prove the effectiveness of our approach, for each scenario we
compared the instants when the SA recognized the beginning and
the end of each situation to the instants when the beginning and
the end of the situation actually occur. Tables 2, 3, 4 and 5 compare
these instants for scenarios A, B, C and D, respectively. The values
reported in each table represent the instants corresponding to the
beginning and the end of each situation. The values in brackets
represent the instants in which each situation actually begin/ends.
The values out of brackets represent the instants in which the SA
recognizes the beginning/end of each situation. The closer these
values are, more precisely the SA recognizes the instants in which
each situation begins/ends.

As it can be observed in Table 2, the SA detected almost exactly
the instants when each situation begins and ends. Only for users

Fig. 11. Certainty degrees GR(t) when all the participants are still at the same
location (a) and when two participants are left the group for a pause (b).

Fig. 12. Partitions of the linguistic variables used in the rules after the neuro-fuzzy learning.

Table 2
Comparisons between instants recognized by the SA and actual instants (between
parentheses) for the beginning and the end of each situation in scenario A.

Participant PreC
begins

PreC ends/OngC
begins

PauC
begins

PauC
ends

OngC
ends
/PstC
begins

PstC
ends

P1 28(28) 46(46) 78(78) 82(82) 90(90)
P2 28(28) 46(46) 78(78) 82(82) 90(90)
P3 48(48) 61(61) 67(67) 82(82) 90(90)

80(80)
P4 41(41) 46(46) 53(53) 71(71) 82(82) 90(90)

77(78)
P5 44(44) 46(46) 54(54) 71(71) 82(82) 90(90)

81(82)
P6 44(44) 46(46) 81(82) 83(83) 90(90)
P7 38(38) 46(46) 81(82) 83(83) 90(90)
P8 29(29) 47(47) 82(82) 90(90)
P9 45(45) 47(47) 82(82) 90(90)
P10 46(46) 47(48) 82(82) 90(90)
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P4, P5, P6 and P7 the SA recognized the beginning of the PstC
situation with a step in advance with respect to the target step.
Moreover, the SA recognized with a step in advance the time when
the user P10 reached the other users in the meeting place (i.e.,
beginning of OngC). For the scenario B (Table 3) the SA detected
the beginning of OngC with a step in advance for some users.
The beginning and the end of all the other situations are correctly
detected. Similar observations can be made by analyzing the
results listed in Tables 4 and 5.

The effectiveness of the SA agent in recognizing situations was
measured through the responsiveness index defined as follows:

RðSsÞ ¼
∑U

i ¼ 1jti;s�t0i;sj
U

ð8Þ

where ti;s represents the time step at which the s-th situation
begins/ends for each i-th participant and t0i;s is the time step at

which the SA agent recognizes the beginning/end of the situation.
The lower the responsiveness value is, the higher the accuracy
of the system is to recognize the beginning/end of the situation.
In Table 6 we show the responsiveness values obtained in
correspondence of the beginning/end of each situation recognized
during the test of the system in the four scenarios. It can be seen
that on an average the value of the responsiveness is close to 0.
Further, for all the situations, the responsiveness is lower than one
time step (except for the end of the PstC situation, where respon-
siveness value is 1). This demonstrates the good performance of
the SA in detecting situations.

A further consideration concerns the ability of the SA to
recognize situations not only in correspondence of the begin-
ning/end steps but also in the middle steps when situations
continue. We observed that the SA succeeds in detecting the
correct situation in all time steps except for a very low number
of cases, as demonstrated by the classification rates obtained in
the four considered scenarios (Table 7).

Finally, the proposed system was compared with the system
presented in [16] where fuzzy rule parameters were tuned
heuristically by hand. Table 8 shows the average responsiveness
values obtained by the two systems in correspondence of the four
considered scenarios. As it can be observed, the system where
fuzzy rule parameters were tuned by the neuro-fuzzy learning
identifies more precisely the beginning and the end of each
situation by obtaining for all the considered scenarios average
responsiveness values lower than the system where fuzzy rule
parameters were heuristically tuned.

Further, we compared the two systems also in terms of the
obtained classification rates. For each considered scenario, the
classification rate was computed by adopting a classical metric,
namely, the percentage of correctly classified samples (i.e., the
percentage of samples for which the output of the system matches
with the available target.

Table 4
Comparisons between instants recognized by the SA and actual instants (between
parentheses) for the beginning and the end of each situation in scenario C.

Participant PreC
begins

PreC ends/
OngC
begins

PauC
begins

PauC
ends

OngC
ends/
PstC
begins

PstC
ends

P1 28(28) 45(46) 78(78) 83(83) 90(90)
P2 28(28) 45(46) 78(78) 83(83) 90(90)
P3 48(48) 61(61) 67(67) 83(83) 90(90)

80(80)
P4 41(41) 45(46) 53(53) 69(70) 83(83) 90(90)

78(78)
P5 44(44) 46(46) 54(54) 69(70) 83(83) 90(90)

81(81)
P6 44(44) 45(46) 82(82) 83(83) 90(90)

Table 5
Comparisons between instants recognized by the SA and actual instants (between
parentheses) for the beginning and the end of each situation in scenario D.

Participant PreC
begins

PreC ends/
OngC
begins

PauC
begins

PauC
ends

OngC
ends/
PstC
begins

PstC
ends

P1 28(28) 29(28) 78(80) 81(81) 82(82)
P2 28(28) 29(28) 78(78) 81(81) 82(82)
P3 48(48) 61(61) 66(67) 81(81) 82(82)
P4 41(41) 42(42) 53(53) 70(70) 81(81) 82(82)

78(78)

Table 6
Responsiveness values for the four scenarios and the four situations.

Scenario PreC
begins

PreC ends/
OngC begins

PauC
begins

PauC
ends

OngC ends/
PstC begins

PstC
ends

avg

A 0.0 0.1 0.2 0.0 0.0 0.0 0.05
B 0.0 0.625 0.0 0.0 0.0 0.0 0.11
C 0.0 0.67 0.0 0.33 0.0 0.0 0.17
D 0.0 0.5 0.5 0.0 0.0 0.0 0.21

Table 7
Classification rates obtained in the four scenarios.

Tuning method A (%) B (%) C (%) D (%)

SA with fuzzy rule parameters tuned
by neuro-fuzzy learning

97.5 97.0 97.5 96.0

SA with fuzzy rule parameters tuned
heuristically [16]

97.5 95.0 93.5 91.0

Table 3
Comparisons between instants recognized by the SA and actual instants (between
parentheses) for the beginning and the end of each situation in scenario B.

Participant PreC
begins

PreC ends/
OngC
begins

PauC
begins

PauC
ends

OngC
ends/
PstC
begins

PstC
ends

P1 28(28) 45(46) 78(78) 82(82) 90(90)
P2 28(28) 46(46) 78(78) 82(82) 90(90)
P3 48(48) 61(61) 67(67) 82(82) 90(90)

80(80)
P4 41(41) 45(46) 53(53) 71(71) 82(82) 90(90)

77(78)
P5 44(44) 46(46) 54(54) 71(71) 82(82) 90(90)

81(81)
P6 44(44) 45(46) 82(82) 83(83) 90(90)
P7 38(38) 45(46) 81(81) 83(83) 90(90)
P8 29(29) 46(47) 82(82) 83(83) 90(90)

Table 8
Average responsiveness values for the four scenarios obtained by tuning the fuzzy
rule parameters through the neuro-fuzzy learning and heuristically.

Tuning method A B C D

SA with fuzzy rule parameters tuned
by neuro-fuzzy learning

0.05 0.11 0.17 0.21

SA with fuzzy rule parameters tuned
heuristically [16]

0.06 0.20 0.27 0.33
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In Table 7 we show classification rates obtained by the two
systems for all the four scenarios A, B, C and D. We may note that
the neuro-fuzzy approach outperforms the approach based on
heuristic rules. In effect, the latter achieves classification rates
lower for the four scenarios than the former.

In conclusion, the new proposed approach allows tuning the
fuzzy sets effectively and automatically, thus avoiding the burden
of manual tuning. For better readability Table 9 summarizes all the
abbreviations used throughout the paper.

5. Conclusions and future work

In this paper, we presented a multi-agent system for the detection
of situations related to social events via position-based stigmergy and
neuro-fuzzy learning. The proposed system is structured into three
different processing levels managed by different agents in order to
recognize situations through inference of fuzzy rules. Antecedent and
consequent parameters of fuzzy rules are automatically defined by
means of neuro-fuzzy learning. The system was tested on real-world
meeting scenarios involving a different number of participants. The
obtained results in terms of situation detection and responsiveness
show that the proposed scheme can be successfully applied to
recognize situations in any scenario regardless of the number of
participants involved in the collaboration.

As a future work, we would like to perform a more extensive
validation of our system by considering not only meetings, but also
other social events, such as conferences, festivals and entertain-
ment, which involve a larger number of users with different
interaction patterns. In addition, we would like to integrate
the CSA system with context aware services. For this reason, the
architecture of the system has been designed to be easily inte-
grated with different applications.
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