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a b s t r a c t

Granular data and granular models offer an interesting tool for representing data in prob-
lems involving uncertainty, inaccuracy, variability and subjectivity have to be taken into
account. In this paper, we deal with a particular type of information granules, namely inter-
val-valued data. We propose a multilayer perceptron (MLP) to model interval-valued
input–output mappings. The proposed MLP comes with interval-valued weights and
biases, and is trained using a genetic algorithm designed to fit data with different levels
of granularity. In the evolutionary optimization, two implementations of the objective
function, based on a numeric-valued and an interval-valued network error, respectively,
are discussed and compared. The modeling capabilities of the proposed MLP are illustrated
by means of its application to both synthetic and real world datasets.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction and background

Humans exploit abilities of processing non-numeric information clumps (granules) rather than individual numeric values
[29]. Granulation is a suitable way for managing situations characterized by excess or a lack of data [13]. The first situation
occurs, for instance, when there are collections of many objects that exhibit some similarity in terms of their properties or
functional appearance [24]. Here, information granulation provides a vehicle to abstract the complexity of the data set that
one can organize into hierarchies and convert the original problem into manageable subtasks. The second situation occurs,
for instance, when there are noisy data or we encounter qualitative assessments provided by human experts. Here, granu-
lation of information allows modeling the precision of indirect measurements, providing a computationally appealing view
of knowledge [13].

There are a number of formal models of information granules including intervals, sets, rough sets, fuzzy sets, and shad-
owed sets just to name a few existing alternatives. The type of representation formalism is an essential issue to be tackled. Its
choice depends on the available domain knowledge. In [27,28] the authors claim that the implementation of information
granules in terms of interval-valued data is the easiest to comprehend and express by a domain expert, and the simplest
to process when there is a great variability of granule sizes. In interval-valued data, all elements included in the same inter-
val lose their identity in the sense they become fully indistinguishable. In a multidimensional domain, each granule is mod-
eled by a hyperbox, which is a simple geometrical structure fully defined by its boundaries.

In the literature, two different areas are concentrated on interval-valued data, namely Symbolic Data Analysis and Inter-
val Analysis [22]. Symbolic Data Analysis is a new development related to statistics, data mining and computer science. This
paradigm offers a comprehensive approach that consists of summarizing a dataset by means of symbolic variables, e.g.
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interval variables, so as to transform the data set into a smaller and more manageable set of symbolic data. Symbolic data
preserve the essential information and can be processed by means of symbolic methods. Interval Analysis introduces inter-
vals as a fundamental means of representing real data, thus providing methods for numeric processing of these intervals.

In real-world scenarios, interval-valued data arise in several situations, such as recording monthly interval temperatures
at meteorological stations, daily interval stock prices, inaccuracy of the measurement instruments, and range of variation of a
variable through time [16].

The use of information granulation requires developing appropriate learning algorithms. Given this objective in mind, in
the paper we propose a neural architecture to process information granules consisting of interval-valued data. Our focus is
on an interval regression problem.

The first conceptualization of neural networks for processing granular data was introduced by Pedrycz and Vukovich [28].
Here, several design approaches are discussed, together with a number of architectures of granular neural networks and
associated training methods. Also, the authors tackle a number of fundamental issues of these networks, such as specificity
of information granules, learning complexity and generalization capabilities. Neural architectures based on interval arithme-
tic have been proposed in [7,10,11,22,24,26]. In particular, the model developed in [22] uses a standard multilayer percep-
tron (MLP) with numeric weights and biases, and a neuron transfer function able to operate with interval-valued inputs and
outputs. Here, the training process uses an error function based on a weighted Euclidean distance between intervals, and a
Quasi Newton method for the minimization of the error function. Other minimization methods such as genetic algorithms
(GA) and evolutionary strategies have been also discussed [10].

In its general architecture proposed in the literature, an MLP that processes interval-valued data is characterized by
weights and biases expressed in terms of intervals, and maps an interval-valued input vector to an interval-valued output.
However, very often, in the design of the training algorithms some simplifying assumptions are being made, e.g., it is as-
sumed that inputs, weights and biases may be real numbers, or the error function formed for the intervals is not compliant
with the rules of the interval arithmetic. As regards the error function, other strategies exploit a modified quadratic error
function, based on upper and lower bounds [10,14]. In [11] we proposed a new genetic algorithm-based learning method
for a general interval-valued neural architecture. In this study, we adopted a numeric-valued error function derived from
basic properties of interval arithmetic. However, due to the interval nature of the network output, the error of the model
should be viewed as an interval to quantify the precision of the model (in addition to the quantification of its accuracy
[4]). Indeed, to assess the extent to which a set of outputs of the model satisfy the requirements is not sufficient to know
the proximity of a representative output to a desired value. We should also know how much other outputs are close to
the representative. Such information is often important to guarantee an effective optimization, especially when the model
exhibits low resolution. Hence, a numeric-valued error represents a design constraint which strongly limits the capabilities
of the GA optimization.

Unlike the approaches proposed in the literature, in our MLP architecture, weights and biases are intervals, and each oper-
ation performed in the network is based on interval arithmetic. Furthermore, the parameters of the neural network are
learned by using a GA which optimizes an error function expressed in terms of intervals. The use of network errors expressed
as intervals requires defining an ordering relation between the chromosomes based on the interval arithmetic.

The resulting network allows forming mappings at different levels of granularity and therefore at different model reso-
lutions. Resolution concerns the smallest change in the data that produces a modification in the model. Since the level of
granularity is problem-oriented and user-dependent, it is a parameter of our neural architecture. We show the effectiveness
of the method by using various interval-valued datasets.

The paper is organized as follows. In Section 2, we introduce some basic notions of interval arithmetic. The architecture of
the interval neural network and the problem requirements are formally defined in Sections 3 and 4. Sections 5 and 6 describe
the design of the GA, especially its search space representation issues. A procedure for parameter setting and experimental
results are shown in Section 7. Finally, Section 8 draws some conclusions and discusses some future work.

2. Interval arithmetic: some definitions

We employ a generic implementation of information granules in terms of conventional interval-valued schemes. An
interval-valued variable €X is defined as:

€X ¼ x; �x½ � 2 IR; x; �x 2 R; ð1Þ

where IR is the set of all closed and bounded intervals in the real line, and x and �x are the boundaries of the intervals. An F-
dimensional granule (hyperbox [15]) is then represented by a vector of interval-valued variables as follows:

€X ¼ €X1; . . . ; €XF

h i
2 IRF ; €Xi 2 IR: ð2Þ

Alternatively, an interval variable can be described in terms of its midpoint _x and half-width x
_

, as follows [10]:

_X
_

¼ h _x; x
_
i 2 IR; _x; x

_
2 R; _x ¼ ðxþ �xÞ=2; x

_
¼ ð�x� xÞ=2: ð3Þ
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The notation of the midpoint and half-width is common to express the result of a physical measurement _x with an asso-
ciated accuracy x

_
, i.e., _x� x

_
, related to a measuring instrument with unknown probability of errors [16].

Numbers can be considered as special intervals, called degenerated intervals, with x
_
¼ 0, i.e., x ¼ �x [21]. The four algebraic

operations obey the following rule [15]:

€X op €Y ¼ fx op yjx 2 €X; y 2 €Yg for €X; €Y 2 IR; op 2 fþ;�;�;�g: ð4Þ

In the case of division, the condition 0 R €Y is also assumed. Thus, the image of each of the four basic interval operations is
the range of the corresponding real operation. Unary operations obey the following rule [1]:

uð€XÞ ¼ fuðxÞjx 2 €Xg for €X 2 IR; ð5Þ

where u(�) is a real continuous function defined on R (e.g., sqr, sqrt, sine, log).
Although rule (4) characterizes these operations in a formal way, the usefulness of the interval arithmetic is due to direct

expressions of the boundaries of the result. Table 1 summarizes some basic operations of interval arithmetic that have been
used in this study. The reader can refer to a detailed discussion in [1,2,9,15,17]. In interval arithmetic any generic operator }
must satisfy the following condition:

If €Z ¼ €X } €Y then x } y ¼ z 2 €Z; 8ðx; yÞjx 2 €X; y 2 €Y: ð6Þ

Interval arithmetic does not follow the same rules as the ‘‘standard’’ arithmetic for R2 [1]. For instance, €X � €X – ½0;0� and
€X=€X – ½1;1�, for €X 2 IR.

It is worth noting that the implementations (vii) and (viii) presented in Table 1 do not obey the condition (6). Indeed, such
implementations return a real value instead of an interval. Fig. 1a shows an example of computing based on the implemen-
tation (vii) of real distance between two intervals. More specifically, here the distance is equal to d, which is the maximum
distance between corresponding boundaries of the two intervals. Fig. 1b shows the computation of the interval distance be-
tween the same intervals of Fig. 1a, based on the implementation (iii) and (ix). Here, the resulting interval effectively satisfies
the condition (6), representing the minimum and maximum possible distance between two corresponding elements of the
two intervals, respectively.

3. The adopted interval-valued neural architecture

Let f : IRF ! IR be an F-dimensional interval-valued regression model:

f ð€XÞ ¼ f €X1; . . . ; €XF

� �
¼ €Y : ð7Þ

Fig. 2 shows the MLP we adopt to deal with the regression problem modeled by (7). This architecture has been already
proposed by some authors (for instance, in [10]). The novelty of the approach here concerns the training process, which al-
lows for an effective and efficient sensitivity analysis (i.e., an ability to quantify the effect of input variability on the outputs).

The hidden layer comprises N nonlinear hidden units and the output layer consists of a single linear output unit.
The activation of each hidden unit j is formed as a sum between the weighted linear combination, with weights

€Xi;j; i ¼ 1; . . . ; F; j ¼ 1; . . . ;N, of the F interval-valued inputs €X and the bias €X0;j. Since both weights and biases are intervals,
this linear combination results in a new interval. The output of each hidden unit is then obtained by transforming its acti-
vation interval using a hyperbolic tangent (sigmoid) function. According to the formula (vi) in Table 1, since the function is
monotonic, this transformation yields a new interval [10]. Finally, the output of the network, €Y , is obtained as the sum be-
tween the weighted linear combination, with weights €Xj; j ¼ 1; . . . ;N, of the outputs of the hidden layer, and the bias €X0. The
overall processing method is based on the fundamental arithmetic operations on IR as shown in Table 1. The resulting model

Table 1
Some basic interval arithmetic operations used in neural network.

Operation Implementation

(i) Addition x; �x½ � þ y; �y
h i

¼ xþ y; �xþ �y
h i

(ii) Real multiplication k x; �x½ � ¼ kx; k�x½ � if k > 0; k�x; kx½ � if k < 0
(iii) Subtraction x; �x½ � � y; �y

h i
¼ x; �x½ � þ � y; �y

h i� �
¼ x� �y; �x� y
h i

(iv) Multiplication x; �x½ � � y; �y
h i

¼ min xy; x�y; �xy; �x�y
n o

; max xy; x�y; �xy; �x�y
n oh i

(v) Division x; �x½ � � y; �y
h i

¼ x; �x½ � � 1=�y;1=y
h i

(vi) Function evaluation F x; �x½ �ð Þ ¼ F xð Þ; F �xð Þ½ �, F monotonically increasing
(vii) Real distance [1] dist x; �x½ �; y; �y

h i� �
¼max x� y

���
���; �x� �yj j

n o

(viii) Real Absolute value [1] x; �xj j ¼ dist x; �x½ �; ½0;0�ð Þ ¼max xj j; �xj jf g
(ix) Absolute value [17] x; �xj j ¼ max x;��x;0f g;max �x; �xf g½ �
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can be used in two ways [22]: (i) as a granular function approximation model, whose granular weights can be adjusted
through supervised learning by minimizing an error function and (ii) as a tool to evaluate the prediction of a pre-adjusted
MLP model subject to variable uncertainty associated with its input variables. Such input uncertainty can be characterized
using interval inputs of different lengths.

4. The problem requirements and the granularity interval

As pointed out in [10], the width of the predicted output regions for an interval MLP is affected by the width of the weight
intervals. Wide widths cause the propagation of large ranges of intermediate values through the network, thus generating
wide output intervals. This is known as the ‘‘bound explosion’’ effect. To control this effect, we adopt the following proce-

dure. Let €X; €Y
n o

2 IRFþ1 be a set of T input–output interval-valued samples, represented as midpoint and half-width. First,

we use the midpoints of T to train a ‘‘conventional’’ MLP which has the same structure as the interval-valued MLP to be
developed. We adopt the Levenberg-Marquadt method. In this way, we create a reference model which solves the regression
problem for reference points of the interval-valued data. When we tackle the regression problem for the interval-valued

data, we expect that the interval weights and biases contain the numerical weights and biases ( _xðinitÞ
i;j and _xðinitÞ

j ) of the ref-
erence model, respectively. Further, we expect that the widths of these intervals are constrained by the level of granularity of
the mapping that is determined by the problem itself and by the desired resolution at which the user is interested in working
with the data.

The first requirement is satisfied by enforcing the following relationship:

_xðinitÞ
i;j 2 €Xi;j and _xðinitÞ

j 2 €Xj 8i; j: ð8Þ

With regard to the second requirement, we enforce that the half-widths of weights and biases are bounded by an interval-
valued percentage of the initial values:

x
_

i;j 2 _xðinitÞ
i;j

���
��� � €G and x

_

j 2 _xðinitÞ
j

���
��� � €G 8i; j; ð9Þ

where €G ¼ g; �g
h i

2 IRþ, with g; �g 2 Rþ, is a granularity interval expressed in percentage which allows adapting the granu-
larity of the mapping to the granularity level of the information. The choice of €G captures a subjective aspect of the problem:

Fig. 1. Example of computation of real distance (a) and interval distance (b).

Fig. 2. The proposed MLP architecture for interval-valued data.
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there is no a universal value of it, since it is problem-oriented and user-dependent [29,34]. In case of a numeric-valued €G, i.e.
g ¼ �g ¼ g, the midpoints and half-widths of weights and biases are prefixed by (8), (9). At the limit, for g = 0 the MLP is forced
to be a conventional MLP, which is generally suitable only if data are numeric-valued. In general, the user provides an inter-
val-valued €G so as to allow an optimization of weights and biases with respect to data. For instance, with very limited uncer-
tainty in data, €G! €0 may produce a detailed mapping. In such case, higher values of both g and �g may produce a coarse-
grained description of the data, by omitting irrelevant details. Hence, the granularity interval produces models of different
resolution. The resolution of the model relates to the smallest change in the data that produces a different model. It is a dif-
ferent concept with respect to the accuracy (average error) of the model and its precision (its variance).

To learn the interval-valued weights and biases, standard error back propagation is likely to give poor results [10]. Indeed,
the network prediction error surface is expected to be nonlinear with several local minima. A global search method is much
more desirable. GAs and evolutionary strategies are, in general, effective examples of such methods.

The literature on interval-valued objective function optimization is entirely based on GA [2,8,18,30,31,35]. To the best of
our knowledge, only in [10], differential evolution has been used to train an interval-valued network for a regression prob-
lem, but the fitness function is real-valued. Thus, we decided to adopt a GA as optimization tool.

5. The genetic training of the interval neural network

The chromosome coding used in the GA is shown in Fig. 3. Each gene encodes an interval weight or interval bias in terms
of its midpoint and half-width. Such representation is very efficient in enforcing constraints (8) and (9).

Ranking of individuals is made according to the network error, whose computation will be discussed in the next section.
First, the individuals are sorted in a descending order. The worst and best individuals are placed in positions 1 and Nind,
respectively, where Nind is the number of individuals in the population. A fitness value is then assigned to each individual,
depending on its position Pos in the sorted population, according to the linear ranking rule [32]:

FitnðPosÞ ¼ 2� SP þ 2ðSP � 1Þ Pos� 1
Nind� 1

; ð10Þ

where SP represents the selective pressure, commonly set to 2.
The initial population is randomly generated by satisfying the constraints expressed in formulas (8) and (9). Chromo-

somes are selected for mating by using the linear ranking selection: the individuals are sorted according to their fitness val-
ues and the rank Nind is assigned to the best individual and the rank 1 to the worst individual. For each individual, the
probability to be selected is linearly proportional to its rank [6].

We perform both crossover and mutation on the selected individuals. As regards the crossover, we have experimented
two different crossover operators, i.e., the two-point (TP) crossover and the intermediate recombination (IR) operators.
The former has the advantage of preserving the constraints fixed in formulas (8) and (9). The latter is considered more suit-
able for real coding chromosome [3]. Since the IR operator does not preserve the constraints, it has been adapted accordingly
to generate offspring pursuant to formulas (8) and (9). The TP crossover operator consists in choosing two crossover points
randomly in the two chromosomes (parents) selected for mating and exchanging the contents within these points between
the two parents. In the IR operator, the values of the offspring are chosen around and between the corresponding values of
the parents. More specifically, each value xC

i;j of the offspring C is the result of a linear combination of the corresponding

values xA
i;j and xB

i;j of the parents A and B, according to the following expression: xC
i;j ¼ xA

i;j þ a xB
i;j �xA

i;j

� �
, where the scaling

factor a 2 [�0.25, 1.25] is chosen for each pair of parents. In geometric terms, IR is capable of producing new values within a
slightly larger hypercube, determined by the scaling factor, than that defined by parents. As mentioned above, the IR cross-
over operator does not preserve the constraints fixed in formulas (8) and (9). Thus, we have reformulated the above expres-
sion of xC

i;j as follows:

x
_C

i;j ¼min max _xðinitÞ
i;j

���
��� � g; x

_A
i;j þ a x

_B
i;j �x

_A
i;j

� �� �
; _xðinitÞ

i;j

���
��� � �g

� �
;

_xC
i;j ¼min max _xðinitÞ

i;j �x
_C

i;j; _xA
i;j þ a _xB

i;j � _xA
i;j

� �� �
; _xðinitÞ

i;j þx
_C

i;j

� �
:

Both the crossover operators are applied with some probability PC.
The mutation operator replaces the current values of a gene by randomly extracting two values x

_

i;j and _xi;j in the intervals

_xðinitÞ
i;j

���
��� � g; _xðinitÞ

i;j

���
��� � �g

h i
and _xðinitÞ

i;j �x
_

i;j; _xðinitÞ
i;j þx

_

i;j

h i
, respectively. The first interval is directly related to the definition of €G.

Once provided x
_

i;j, from formula (8) we derive that the maximum distance from _xðinitÞ
i;j can be x

_

i;j so as to allow _xðinitÞ
i;j 2 €Xi;j.

Fig. 4 shows the relation between _xðinitÞ
i;j and _xi;j. Here €Xi;j has been put in evidence by a shadowed strip. More specifically,

Fig. 3. The chromosome coding.
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Fig. 4a and b shows, respectively, an example of value of _xi;j that obeys formula (8), i.e., such that _xðinitÞ
i;j 2 €Xi;j, and an example

of value of _xi;j that does not obey formula (8), i.e., such that _xðinitÞ
i;j R €Xi;j. The mutation operator is applied to each gene with

probability cm/L, where cm is a user-defined mutation coefficient and L = 2N(F + 2) + 2 is the chromosome length.
As a termination criterion for the GA, the algorithm stops if a maximum number NG of generations has been reached.

6. Objective function: numeric and interval valued network error

As regards the objective function, the network error functions proposed in the literature implicitly assume an isomor-
phism between IR and R2, which does not obey condition (6) and distorts the search space. In this paper we study two dif-
ferent error functions directly derived from the interval arithmetic operations shown in Table 1:

E ¼ 1
T

XT

i¼1

Ei; Ei ¼ dist €Yi; €Y 0i
� �

2 Rþ; ð11Þ

€E ¼ 1
T

XT

i¼1

€Ei; €Ei ¼ €Yi � €Y 0i
���

��� 2 IRþ; ð12Þ

where €Yi and €Y 0i are the desired and network outputs. To minimize the interval error in (12) via the GA described in the pre-
vious section, an order relation between intervals has to be exploited for computing the fitness in (10) [8]. In the literature,
there are a few studies on order relations of intervals [18,20,25]. A common strategy is to establish an order on the basis of
boundaries, midpoints and half-widths. The method described in [25] uses midpoints and half-widths to obtain a member-
ship function of the fuzzy relation ‘‘the interval €E is more/less than interval €F’’. In [18] the authors show how the order rela-
tions between two intervals depend on the type of the problem and the decision maker’s point of view. For this reason, we
define the order relation between intervals with respect to decision maker’s point of view for the minimization problem and
under the pessimistic principle ‘‘more uncertainty is worse than less uncertainty’’ [19].

Given two error intervals €E ¼ e; �e½ � and €F ¼ f ; �f
h i

, let us define the order relation between them as follows: €E 6 €F if and
only if the area covered by the pairs ðe; f Þ 2 €E� €F such that e 6 f is larger than the area covered by the pairs ðe; f Þ 2 €E� €F such
that e > f.€E� €F is the Cartesian product of the two intervals on IR2. Let us denote with AðSÞ the area covered in the Cartesian
product by the set S.

More specifically, the two intervals €E ¼ e; �e½ � and €F ¼ f ; �f
h i

can be in the following three different reciprocal relations,
shown in Fig. 5.

(a) Disjoining: €E \ €F ¼£. If �e < f then e < f8e 2 €E; f 2 €F, i.e., all the elements of €E are lower than the elements of €F. Hence
€E < €F () �e < f .

(b) Including: €E # €F i.e., €E is a subset of €F. Let €FLEFT and €FRIGHT be the subset of €F at the left and right of €E, respectively. The
following relations hold:
(b.1) Afðe; f Þ : e 6 fg ¼ Afðe; f Þ 2 €E� €E : e 6 fg þ A ðe; f Þ 2 €E� €FRIGHT

n o
¼ A\ þ �e� eð Þ �f � �e

� �
.

(b.2) Afðe; f Þ : e > fg ¼ A ðe; f Þ 2 €E� €E : e > f
n o

þA ðe; f Þ 2 €E� €FLEFT

n o
¼ A\ þ �e� eð Þ e� f

� �
.

From b.1 and b.2 we can conclude that €E 6 €F () F
_

LEFT 6 F
_

RIGHT .

(c) Overlapping: €E \ €F – £; €E n €F – £ and €F n €E – £. The following relations hold:

(c.1) Afðe; f Þ : e6 fg ¼Afðe; f Þ 2 €E\ €F
� �

� €E\ €F
� �

: e6 fgþA ðe; f Þ 2 €E n €F
� �

� €F n €E
� �n o

þA ðe; f Þ 2 €E n €F
� �

� €E\ €F
� �n o

þA ðe; f Þ 2 €E \ €F
� �

� €F n €E
� �n o

¼ A\ þ f � e
� �

�f � �e
� �

þ f � e
� �

�e� f
� �

þ �e� f
� �

�f � �e
� �

¼ A\ þ f � e
� �

�f � f
� �

þ �e� f
� �

�f � �e
� �

.

Fig. 4. Two scenarios of value for _xi;j: (a) _xðinitÞ
i;j 2 €Xi;j and (b) _xðinitÞ

i;j R €Xi;j.
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(c.2) Afðe; f Þ : e > fg ¼ A ðe; f Þ 2 €E \ €F
� �

� €E \ €F
� �

: e > f
n o

¼ A\.

Fig. 6 shows an example of the area A\. From c.1 and c.2 we can conclude that €E 6 €F () f � e
� �

�f � f
� �

þ
�e� f
� �

�f � �e
� �

P 0, which is true in the scenario shown in Fig. 5c. It is worth noting that if �e ¼ f holds, A\ = £, and then

Afðe; f Þ : e 6 fg ¼ �e� eð Þ �f � f
� �

, i.e. the total area covered by the two intervals, and obviously €E 6 €F.

7. Experimental studies

Although several works have been published in the field of interval-valued data, unfortunately there is still a lack of sig-
nificant benchmark datasets for interval-valued data regression. In this section, we discuss the application of our interval-
valued neural architecture to four real world and two synthetic datasets. In all experiments, the data are normalized between
0 and 1 (by subtracting the minimum value and dividing the data by the difference between the maximum and the minimum
values). In what follows, we consider two GAs, which adopt the numeric-valued error E (formula (11)) and the interval-val-
ued error €E (formula (12)), respectively. We denote these GAs as GA-NE and GA-IE, respectively.

7.1. Setting user parameters and crossover

In this subsection we present the methodology for setting the parameters of the system and then evaluate the perfor-
mances of the two crossover operators. First of all, we observe that the values of parameters of the GA scheme and the
MLP depend on the type of dataset.

Table 2 briefly characterizes the interval datasets used in the experiments.
We adopt the following heuristic procedure for determining the main parameters which affect the performance of our

approach, namely, granularity interval, number of neurons in the hidden layer in the interval MLP and number of individuals
in the population of the GA. First of all, we determine the granularity interval. As discussed in Section 4, the choice of the
granularity interval is basically problem-oriented and user-dependent. Indeed, the lower bound of the interval determines
the level of resolution with which the user wants to analyze the data: the higher this level, the lower the resolution. Thus, if
the user would like to use the maximum resolution, he fixes the lower bound to 0; otherwise, he tries different increasing
values until the desired resolution level is determined. To perform this analysis on the dataset considered in the paper, we
adopted a simple interval MLP with 5 neurons in the hidden layer and 12 individuals in the population of the GA. The width
of the granularity interval imposes a constraint on the variation of weights and biases during the optimization process so as

Fig. 6. An example of the area A\ of the Cartesian product in the Overlapping scenario.

Fig. 5. Types of intervals: (a) disjoining; (b) including; and (c) overlapping.
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to limit the search space. A small width can constrain excessively the exploration of the GA, preventing it from achieving
satisfactory results. On the other hand, a large width increases the search space, thus requiring the execution of a high num-
ber of generations of the GA for producing an optimal interval MLP. We have verified that variations of this width, which do
not constrain too much the search space, do not affect significantly the performance of the GA. Once we have determined the
granularity interval, we choose the other parameters by following a procedure which is similar to the one typically adopted
in the design of conventional MLPs. We first determine the lower and upper bounds of the number of neurons in the hidden
layer which do not determine underfitting and overfitting. Underfitting and overfitting are detected by the low accuracy on
the training set and by the high difference in accuracy between training and testing sets, respectively. Within these bounds,
we test three different values. In general, the number of neurons in the hidden layer needed by the interval MLP to achieve a
good accuracy is not high. This is mainly due to the characteristics of the interval-valued data. Indeed, intervals provide a
means for abstracting the complexity and the noise in the data. Hence, a paradigm shift from numeric-valued to interval-
valued data (via granulation or human induction) brings to a reduction of both the data complexity and noise. It follows that
a low number of neurons in the hidden layer is already sufficient to fit the interval-valued dataset. We consider the number
of neurons as the first parameter to be analyzed because this value is strongly related to the complexity of the dataset and
therefore considerably affects the performance of the interval MLP. The analysis is performed by executing the GA for 100
generations with a population of 12 individuals. This starting setting has been determined as follows. With regard to the gen-
erations, we have verified that 100 generations are sufficient to achieve a stable interval-valued error, that is, the error does
not significantly decrease with the increase of the number of generations. Hence, the parameter NG has been definitively set
to 100. With regard to the population size, we have verified that a value of about ten individuals is a lower bound to avoid
quality issues when setting the other parameters. Finally, we analyze if the increase of the number of the individuals in the
population produces a decrease of the interval-valued error which can justify the increase of the computational time. We
have verified in practice that, even with a non-optimal parameters setting, populations larger than about twenty individuals
are not beneficial to the optimization. For this reason, we test values from 12 to 24.

The parameters PC and cm have been set to 0.4, and 0.7, respectively. These values have been easily determined by means
of the common practice adopted in GAs. Indeed, they are typical values, and are largely independent of the dataset.

To numerically assess the model performance on each combination of parameters, we adopt a 10-fold cross-validation.
At the end of this procedure, we choose the combination of the parameters which generates the best interval MLP in

terms of interval-valued error.
For the sake of brevity, we do not discuss all the experiments performed on all the datasets. Just to give a glimpse to the

reader, we show in Table 3 and 4 the most significant results obtained on the parameterization of the GA-IE on the Salary
dataset. We show the data obtained by applying the two different crossover operators experimented in the paper: the TP
crossover (Table 3) and the IR (Table 4) operators, respectively [3].

In the tables, N, I and €G denote the number of neurons in the hidden layer, the number of individuals in the population and
the granularity interval, respectively. In the tables, we show the combination of the parameters in the same sequence in
which they have been evaluated following the procedure described above. First of all, we have assessed the granularity inter-
val. Since we were interested in using the maximum resolution, we set the lower bound to 0. In the tables, we note that,
when the width of the interval is too small, the GA cannot explore the search space adequately (high interval-valued error
in the training set). On the other hand, when the width is large, the GA has difficulties to find the optimal interval MLP. We
adopted the intermediate width 4% for evaluating the other parameters.

We can observe that when N is too low (N = 2), the resulting interval MLP suffers from underfitting (high interval-valued
error on the training set). On the contrary, when N is high (N = 8), the interval MLP suffers from overfitting (high difference
between the inter-valued errors computed on the training and testing sets, respectively). Once fixed the number of neurons
to N = 5, we analyze how the number of individuals affects the final result. We observe from the tables that just with 12 indi-
viduals the GA achieves the best and also the most stable results. Thus, we choose the combination N = 5, I ¼ 12; €G ¼ ½0;4�%
(shown in boldface in the two tables).

In Table 5 we show the results obtained by the GAs executed with IR and TP crossover operators for all the datasets. We
executed the GAs for the same number of fitness evaluations. The values in the table are obtained by applying a 10-fold
cross-validation. We note that the interval MLPs generated by using the TP crossover operator generally achieve lower inter-
val-valued errors than the ones generated by using the IR operator. This result shows that the choice of the GA with the TP
crossover operator as optimization tool is a suitable option for the specific problem. Also, the TP crossover operator preserves

Table 2
A brief summary of the interval-valued datasets used in the experiments.

Data set name No. of samples Description Type

Salary 30 US Salary by years of experience (1989) Real
Peak 189 Dataset with a high density of intervals Synthetic
Micro-Spread 50 Spread Germany-Portugal in the last decade Real
Macro-Spread 20 Spread Germany-Portugal in the last decade Real
Heart 90 Time series of heartbeats of a man with CHF Real
Wave 400 Three dimensional dataset Synthetic
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the constraints determined by formulas (8) and (9). Thus, we can conclude that the TP crossover operator is preferred to the
IR operator in this specific context.

7.2. The Salary dataset

The Salary dataset [23] shown in Fig. 7 consists of 30 interval-valued samples which represent the range of salaries by
years of experience for American males with degree in 1989.

The original data samples are not granular, and are subject to significant sampling error. We performed a granulation pro-
cess as follows. First fuzzy information granules have been generated via Fuzzy C-Means (FCM) clustering [5]. Hence, an al-
pha-cut of 0.05 has been applied to the resulting fuzzy partition. Finally, interval-valued data have been derived considering,
for each alpha-cut, the smallest containing rectangle.

We determined €G ¼ ½0;4�%; N ¼ 5, and I = 12.
In order to highlight the structural quality of the system, Fig. 8 shows a scenario of function fit for the conventional MLP

trained by using the midpoints of the intervals. For the scenario, the Mean Squared Error (MSE) is 3.7 � 10�6. The effective-

ness of this process is crucial to provide the neurons in the hidden layer with reliable reference weights and biases _xðinitÞ
i;j

� �
.

This stage is typically very fast and accurate.
Table 6 shows the mean values ± the standard deviations of the interval-valued error €E on training and testing sets

achieved by the GA-NE and GA-IE. With the aim of comparing the two approaches, we have computed and reported the
interval-valued error €E also for the best solution generated by the GA-NE. Due to the definition of the absolute value operator,
the lower bound of €E is 0 when 0 belongs to the interval-valued error. This condition has been always true in our experi-
ments. For this reason, the variability of the interval-valued error €E with lower bound e equal to 0 has been determined only
by the variation of the upper bound �e. Thus, we show the standard deviation of �e in the table. We can observe that GA-IE
outperforms GA-NE in terms of interval-valued error €E. Further, the interval-valued errors €E computed on training and test-
ing sets are very similar, thus confirming the good generalization features of the network.

Fig. 9 shows the weights and biases for the hidden and output layers. We observe that many weights and biases are really
interval-valued, thus reflecting an amount of uncertainty existing in data. Furthermore, there is no individual weight/bias
that may be responsible for the majority of the uncertainty, thus confirming a good balancing of the tuning process. Since
the scenario visualized in Fig. 9 is common to all the experiments, for the sake of brevity we do not show the corresponding
plots for the other datasets.

Finally, Fig. 10 shows the target output and the network output of an MLP trained by using GA-IE. We observe that the
network approximates very well the target intervals.

7.3. The Peak dataset

The Peak dataset presented in Fig. 11 consists of 189 synthetic interval-valued samples, generated from a noisy sampling
of the function K0 + K1sin (x1) with high distortion in the ordinate. We determined €G ¼ ½0:4;4�%; N ¼ 9, and I = 12.

Table 7 shows the mean values ± the standard deviations of the interval error €E on training and testing sets. Again, we
observe that GA-IE outperforms GA-NE in terms of the interval-valued error €E.

In order to highlight the overall quality of the training process, Fig. 12 shows the plot of the MSE versus the number of
epochs for the conventional MLP trained by using the midpoints of the intervals. We can observe that the MSE gets stable
after a few epochs, with a good function fit. Hence, the conventional MLP achieves convergence in a very few epochs and
therefore is not computationally demanding.

Table 3
Salary dataset, interval-valued error €E on training and testing sets, produced by different
interval MLPs, generated by GA-IE after the same number of fitness evaluations, using different
combinations of parameters and the two-point crossover operator.

Parameters Training set Testing set

N : 5; I : 12; €G : ½0;1�% [0, 0.116 ± 0.049] [0, 0.104 ± 0.050]

N : 5; I : 12; €G : ½0;4�% [0, 0.097 ± 0.017] [0, 0.098 ± 0.037]

N : 5; I : 12; €G : ½0;7�% [0, 0.112 ± 0.017] [0, 0.110 ± 0.045]

N : 2; I : 12; €G : ½0;4�% [0, 0.117 ± 0.041] [0, 0.113 ± 0.048]

N : 5; I : 12; €G : ½0;4�% [0, 0.097 ± 0.017] [0, 0.098 ± 0.037]

N : 8; I : 12; €G : ½0;4�% [0, 0.092 ± 0.029] [0, 0.244 ± 0.127]

N : 5; I : 12; €G : ½0;4�% [0, 0.097 ± 0.017] [0, 0.098 ± 0.037]

N : 5; I : 15; €G : ½0;4�% [0, 0.101 ± 0.010] [0, 0.111 ± 0.054]

N : 5; I : 18; €G : ½0;4�% [0, 0.105 ± 0.017] [0, 0.120 ± 0.069]
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Figs. 13 and 14 show the numeric-valued and interval-valued training errors versus generations, for GA-NE and GA-IE
respectively. In the case of GA-IE, we plotted only the upper bound �e of €E since the lower bound is always zero. We can
observe that both the errors become stable after 100 generations. It is worth noting that the two figures are not directly com-
parable with each other because they refer to the two different definitions of the error. However, to allow a comparative
analysis of the final networks, in Table 7 the errors are calculated by using the same performance index, i.e., the interval-
valued error.

Finally, Fig. 15 shows the target output and the network output of an MLP trained by using GA-IE. We observe that the
network approximates very well the target intervals.

Table 5
Comparison in terms of interval-valued error €E on training and testing sets between the IR and TP crossover operators.

Data set Parameters Training set Testing set

Salary N : 5; IÞ : 12; €G : ½0;4�%;C : IR [0, 0.100 ± 0.007] [0, 0.103 ± 0.045]

N : 5; I : 12; €G : ½0;4�%;C : TP [0, 0.097 ± 0.017] [0, 0.098 ± 0.037]

Heart N : 8; I : 12; €G : ½0;3�%;C : IR [0, 0.128 ± 0.026] [0, 0.135 ± 0.038]

N : 8; I : 12; €G : ½0;3�%;C : TP [0, 0.124 ± 0.033] [0, 0.129 ± 0.038]

Peak N : 9; I : 12; €G : ½0:4;4�%;C : IR [0, 0.062 ± 0.0098] [0, 0.064 ± 0.0013]

N : 9; I : 12; €G : ½0:4;4�%;C : TP [0, 0.037 ± 0.0027] [0, 0.035 ± 0.0025]

Micro-Spread N : 12; I : 12; €G : ½0;0:1�%;C : IR [0, 0.065 ± 0.0161] [0, 0.075 ± 0.0364]

N : 12; I : 12; €G : ½0;0:1�%;C : TP [0, 0.048 ± 0.0080] [0, 0.053 ± 0.0010]

Macro-Spread N : 7; I : 12; €G : ½0;1�%;C : IR [0, 0.097 ± 0.0033] [0, 0.12 ± 0.0047]

N : 7; I : 12; €G : ½0;1�%;C : TP [0, 0.092 ± 0.0031] [0, 0.10 ± 0.0032]

Wave N : 8; I : 12; €G : ½0;0:3�%;C : IR [0, 0.16 ± 0.02] [0, 0.16 ± 0.02]

N : 8; I : 12; €G : ½0;0:3�%;C : TP [0, 0.15 ± 0.02] [0, 0.16 ± 0.02]

Fig. 7. The Salary dataset.

Table 4
Salary dataset, interval-valued error €E on training and testing sets, produced by different
interval MLPs, generated by GA-IE after the same number of fitness evaluations, using different
combinations of parameters and the intermediate recombination operator.

Parameters Training set Testing set

N : 5; I : 12; €G : ½0;1�% [0, 0.108 ± 0.014] [0, 0.108 ± 0.051]

N : 5; I : 12; €G : ½0;4�% [0, 0.100 ± 0.007] [0, 0.103 ± 0.045]

N : 5; I : 12; €G : ½0;7�% [0, 0.115 ± 0.021] [0, 0.121 ± 0.052]

N : 2; I : 12; €G : ½0;4�% [0, 0.118 ± 0.049] [0, 0.121 ± 0.067]

N : 5; I : 12; €G : ½0;4�% [0, 0.100 ± 0.007] [0, 0.103 ± 0.045]

N : 8; I : 12; €G : ½0;4�% [0, 0.095 ± 0.023] [0, 0.203 ± 0.075]

N : 5; I : 12; €G : ½0;4�% [0, 0.100 ± 0.007] [0, 0.103 ± 0.045]

N : 5; I : 15; €G : ½0;4�% [0, 0.102 ± 0.009] [0, 0.113 ± 0.067]

N : 5; I : 18; €G : ½0;4�% [0, 0.108 ± 0.007] [0, 0.115 ± 0.055]
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7.4. The Spread dataset

The Spread dataset represents the spread Germany–Portugal in the last decade.1 As most macroeconomic indicators, the
original data samples are subject to local uncertainty. Typically, monthly general economic statistics are more volatile and sub-
ject to higher revisions than lower frequency data. For instance, quarterly rates are usually quite stable, with low revisions in
terms of percentage points.

Fig. 9. Salary dataset: weights and biases in the hidden (a) and output (b) layers of an interval MLP obtained in a trial of GA-IE.

Fig. 8. Salary dataset: the function fit for the conventional MLP trained with the midpoints.

Table 6
The Salary dataset: interval-valued error €E on training and testing sets.

GA Training set Testing set

GA-NE [0, 0.17 ± 0.029] [0, 0.167 ± 0.049]
GA-IE [0, 0.097 ± 0.017] [0, 0.098 ± 0.037]

1 www.bloomberg.com.
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We performed the same granulation process employed for the Salary dataset, generating two interval-valued datasets
with different resolutions: (a) the Micro-Spread dataset, using 50 clusters and alpha-cut equal to 0.4; (b) the Macro-Spread
dataset, using 20 clusters and alpha-cut equal to 0.3. Both datasets are shown in Fig. 16. The granularity intervals used to
observe the mapping are €Ga ¼ ½0; 0:1�% and €Gb ¼ ½0;1�% for the Micro-Spread and the Macro-Spread datasets, respectively.
We also determined a different number N of neurons in the hidden layer, 12 and 7 neurons, respectively, according to the
complexity of the mapping.

Tables 8 and 9 show the mean values ± the standard deviations of the interval-valued error €E on training and testing sets,
for the Micro-Spread and Macro-Spread datasets, respectively. We can observe that GA-IE outperforms GA-NE in terms of
interval-valued error €E.

Fig. 17a and b shows the granular outputs of two MLPs trained by using GA-IE.

7.5. The Heart dataset

The c5nn Heart dataset [12] comes from a time series of heartbeats of a 61-year-old man with congestive heart failure
(CHF), whose chaotic signature is known in the literature [33]. We performed the same granulation process employed for
the Salary and the Spread datasets. Fig. 18 shows 650 samples of the original dataset, with a granulation process made

Fig. 10. Salary dataset: outputs of an interval MLP obtained in a trial of GA-IE versus the target outputs.

Fig. 11. The Peak dataset.
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by using 90 clusters and alpha-cut equals to 0.15. These values are adequate for hiding the micro fluctuations, so as to allow
the analysis to focus on the macro heart rate variability.

We determined €G ¼ ½0;3�%; N ¼ 8 neurons in the hidden layer, and I = 12 individuals in the GA population. Table 10
shows the mean values ± the standard deviation of the interval-valued error €E on training and testing sets. We can observe
that GA-IE outperforms GA-NE in terms of interval-valued error €E.

Fig. 19 shows the granular outputs of an interval MLP trained using GA-IE. We note that the MLP approximates well the
target output intervals.

7.6. The Wave dataset

The Wave dataset shown in Fig. 20 consists of 400 synthetic interval-valued samples in the three-dimensional space, gen-
erated from a noisy sampling of the function K0 + K1sin(x1)cos(x2). We use this dataset for analyzing the differences between
the mappings with different granularity intervals on the same dataset.

Fig. 13. Peak dataset: numeric-valued training error versus number of generations in a trial for GA-NE.

Fig. 12. Peak dataset: MSE on the training set versus the number of epochs for the conventional MLP trained with the midpoints.

Table 7
The Peak dataset: interval-valued error €E on training and testing sets.

GA Training set Testing set

GA-NE [0, 0.045 ± 0.0024] [0, 0.049 ± 0.0028]
GA-IE [0, 0.037 ± 0.0027] [0, 0.035 ± 0.0025]
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Fig. 21 shows a high resolution mapping of an MLP obtained in a trial of GA-IE. The MLP contains 8 neurons in the hidden
layer and is trained with €G ¼ ½0;0:3�% in 30 generations. For this scenario, the final upper bounds of the interval-valued error
€E on training and test sets are 0.15561 and 0.15714, respectively. Table 11 shows the mean values ± the standard deviations
of the interval-valued error €E on training and testing sets. We can observe that GA-IE considerably outperforms GA-NE.

Fig. 15. Peak dataset: outputs of an interval MLP obtained in a trial of GA-IE versus the target outputs.

Fig. 16. The Micro-Spread (a) and the Macro-Spread (b) datasets.

Fig. 14. Peak dataset: interval-valued training error versus number of generations in a trial for GA-IE.
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Fig. 22 shows a low resolution mapping of an MLP, obtained in a trial of GA-IE by raising the granularity interval with
respect to the high resolution model. The MLP contains 5 neurons and is trained with €G ¼ ½0:3;0:6�% for 10 generations.
For this scenario, the final upper bounds of the interval-valued error €E on training and testing sets are 0.25189 and

Fig. 18. The Heart dataset.

Table 8
The Micro-Spread dataset: interval-valued error €E on training and testing sets.

GA Training set Testing set

GA-NE [0, 0.063 ± 0.0080] [0, 0.080 ± 0.0027]
GA-IE [0, 0.048 ± 0.0080] [0, 0.053 ± 0.0010]

Fig. 17. Outputs of an interval MLP obtained in a trial of GA-IE versus the target output: (a) Micro-Spread dataset and (b) Macro-Spread dataset.

Table 9
The Macro-Spread dataset: interval-valued error €E on training and testing sets.

GA Training set Testing set

GA-NE [0, 0.11 ± 0.0029] [0, 0.11 ± 0.0041]
GA-IE [0, 0.092 ± 0.0031] [0, 0.10 ± 0.0032]
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0.26489, respectively. We can observe that, due to the lower complexity, the low resolution mapping can be efficiently
achieved by reducing the number of neurons and the number of generations with respect to the high resolution mapping.

8. Conclusions and future work

We have proposed a new learning method based on genetic algorithms for a general interval-valued MLP architecture.
The training process is mainly managed by a user-centric granulation process and by an interval-valued objective function.
In particular, we have introduced the notion of granularity interval, which specifies the resolution of the mapping with re-
spect to the granularity level of the information, and have designed the GA according to the constraints fixed by this user
parameter. In the design of the GA, we have also compared two different exploitation strategies. Further, we have introduced
a new interval-valued network error, which allows us to perform an optimization coherent with the interval semantics. Fi-
nally, we have introduced an order relation between intervals to be used by the genetic algorithm. The effectiveness of the
approach, in terms of generalization capabilities and multi-resolution mapping, has been quantified by reporting a numeric-
valued and an interval-valued network error on six datasets.

Fig. 20. The Wave dataset.

Fig. 19. The Heart dataset: outputs of an interval MLP obtained in a trial of GA-IE versus the target output.

Table 10
The Heart dataset: interval-valued error €E on training and testing sets.

GA Training set Testing set

GA-NE [0, 0.186 ± 0.071] [0, 0.194 ± 0.063]
GA-IE [0, 0.124 ± 0.033] [0, 0.129 ± 0.038]
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Although the experimental results have shown that the GA has been an adequate choice, other evolutionary strategies
may be effective in solving the type of optimization problem tackled in this work. Thus, as future research, we plan to inves-
tigate the use of differential evolution and particle swarm optimization strategies, and to make a comparative analysis with
the use of GA. Further, we are going to experiment other order relations between intervals in the computation of the fitness
function, so as to take different decision maker’s points of view into account. Finally, we would like to extend the interval-
valued input–output mapping approach to other neural network architectures.
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