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a b s t r a c t

Testing of FPGAs is gaining more and more interest because of the application of FPGA devices in many
safety-critical systems. We propose GABES, a tool for the generation of test patterns for application-
dependent testing of SEUs in SRAM-FPGAs, based on a genetic algorithm. Test patterns are generated
and selected by the algorithm according to their fault coverage: Faults are injected in a simulated model
of the circuit, the model is executed for each test pattern and the respective fault coverage is computed.
We focus on SEUs in configuration bits affecting logic resources of the FPGA. This makes our fault model
much more accurate than the classical stuck-at model. Results from the application of the tool to some
circuits from the ITC’99 benchmarks are reported. These results suggest that this approach may be effec-
tive in the inspection of safety-critical components of control systems implemented on FPGAs.

� 2013 Published by Elsevier B.V.

1. Introduction

Radiations in the atmosphere are responsible for introducing
Single Event Upsets (SEU) in digital devices [1]. SEUs have
particularly adverse effects on FPGAs using SRAM technology, as
they may permanently corrupt a bit in the configuration memory
(correctable only with a reconfiguration of the device) [2].

In the last years FPGAs have increasingly been employed in
safety-related and safety-critical applications such as railway
signaling [3], radar systems for automotive applications [4] and
wireless sensor networks for aerospace [5].

The industrial use of electronic devices in safety-critical
systems is regulated by application-related safety standards that
impose strict safety requirements on the system. In particular,
safety standards such as ISO 26262-5 [6], CENELEC 50129 [7],
and IAEA NS-G-1.3 [8], require in-service testing activities for
safety-related systems. It is therefore vital that the tests be able
to detect the largest number of faults that may occur in the system.

Automated test generation aims at finding input values (struc-
tured in test vectors, test patterns, or sets of test patterns) that
can detect a large number of faults, while minimizing testing time.

Two main families of test methods for FPGA circuits exist:
application-independent and application-dependent. Application-

independent methods [9–11] aim at detecting structural defects
due to the manufacturing process in the whole FPGA chip.
Conversely, application-dependent methods [12,13] address only
the resources of the FPGA chip actually used by the implemented
system.

A common way to obtain an efficient set of test patterns is to gen-
erate many patterns randomly, computing their fault coverage by
simulation, and selecting a set that covers all the detectable faults.
This process, however, is time-consuming and may not yield optimal
test sets with respect to the conflicting requirements of high fault
coverage and short testing time. Techniques based on evolutionary
search may then be used to improve the selection process [14–17].

Many works addressing the problem of automatic test pattern
generation (ATPG) for digital circuits have been published [18],
but very few of these works specifically address FPGAs. Test meth-
ods devised for ASIC circuits could be effective when used for test-
ing structural defects in the FPGA chip, but they are not satisfactory
when used for testing SEUs in the configuration memory of FPGAs
[19]. In particular, it has been demonstrated [20] that test pattern
generation methods based on the stuck-at fault model for ASIC cir-
cuits obtain too optimistic results when applied to SRAM-FPGAs.
The stuck-at fault model considers permanent faults at the input
and output terminals of the logical components. More accurate
fault models, keeping into account faults in the configuration bits
of the FPGA chip, should be considered.

In this work, the model proposed in [20] has been adopted. In
this model, an SEU in the configuration bit of a component causes
a faulty output of the same component if and only if the input val-
ues of the component are exactly those associated with the faulty
configuration bit. Such faults are more difficult to detect than
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stuck-at faults, since they are excited or not, depending on the in-
put of the component.

Genetic algorithms (GA) have been shown to be effective as test
pattern generation engines compared to deterministic methods
[21,22].

In this work, we propose GABES (Genetic Algorithm Based Envi-
ronment for SEU testing), a tool for automatic test pattern genera-
tion based on a GA for application-dependent testing of SEUs in
SRAM-FPGAs, that takes into account SEUs in configuration bits
of the FPGA. Modern FPGAs are very large and complex chips,
and thus it is unfeasible for a test generation method to target
every possible fault [19]. We focus on SEUs affecting logic compo-
nents of the FPGA, leaving out SEUs affecting the routing structure,
which will be object of further work. Dealing with the routing
structure separately from the logic components is motivated by
the complexity of the former [19] and by the fine granularity of
the adopted fault model. However, the GA does not need any
knowledge of the circuit internals and is therefore agnostic with
respect to the nature and location of faults. The presented method-
ology can then be applied also to the testing of routing faults.

The proposed GA uses the simulation-based fault injection tool
for FPGAs presented in [23] to calculate the fault coverage obtained
by each generated test pattern. Before this work the tool was used
for fault observability and failure probability estimation with ran-
domly generated test vectors [24,25].

A design choice in the development of the tool was to use a rel-
atively lightweight GA. Other proposals in the literature have dif-
ferent approaches, where the GA has access to details of the
circuit structure and functionality [14], whereas in the present
work the GA relies only on the externally observable behavior of
the simulated circuit. This choice is motivated by the purpose of
reducing the design complexity of the test pattern generator. In
particular, this choice leads to a simpler and faster evaluation of
the fitness function, and to a modular TP generation process, where
knowledge of circuit internals is needed only by the simulator. Re-
course to heuristics depending on the circuit’s internals, instead,
could produce better TPs, but it would make the process more
cumbersome and less flexible.

The main goal of this work is producing efficient sets of test pat-
terns for in-service testing, that can be optimized with respect either
to fault coverage or to test speed, according to the specific applica-
tion requirements. Another goal is optimizing the test pattern gener-
ation itself: Even if the off-service process of test pattern generation
is not subject to the stringent constraints of in-service testing, exces-
sive computation times can make the method impractical. We note
that our methodology is oriented to application-dependent testing
and does not address application-independent testing, due to the
abstraction level of the adopted circuit and fault models.

The remainder of the paper is organized as follows: Section 2 is a
brief survey of works addressing test pattern generation in digital
circuits; in Section 3 the considered fault model is presented, fault
simulation is briefly discussed and basic concepts of evolutionary
approaches to problem solving are introduced; in Section 4 the
main characteristics of the proposed GA are discussed; Section 5
briefly presents the structure of the test pattern generation tool;
Section 6 presents the results of the proposed algorithm for some
circuits from the ITC’99 benchmarks; Section 7 concludes the paper.

2. Related work

The main approaches to counteracting the effects of SEUs are
analysis and fault tolerance techniques. Analysis activities include
accelerated ground radiation testing [26], fault injection boards
[27], analytical computation [28], and fault simulation [29]. Fault
tolerance [30] is achieved either by design e.g, time, information

or hardware redundancy, or by use of robust technologies e.g, radi-
ation hardening [31] and error detection and correcting codes [32].
Analysis-based approaches are a valid complement to approaches
relying on robust design or technology.

Many approaches to automatic test generation for digital circuits
[18] are found in the literature. A broad classification can be made
between deterministic and random test generation methods. Deter-
ministic methods are based on algorithms, such as the D-algorithm
[33], PODEM [34], or FAN [35], that rely on knowledge of the circuit
structure to compute sets of test vectors that can detect all possible
stuck-at faults. These techniques are generally able to generate test
patterns with a high fault coverage and an optimized length, but
they suffer from long execution times. Random methods [36] pro-
duce test vectors as pseudo-randomly generated n-tuples of input
values, thus requiring no knowledge of circuit structure. Random
methods generate test vectors more quickly than deterministic
methods, but need a large number of vectors to ensure a high prob-
ability of detecting all faults. Newer pseudo-random techniques use
re-seeding and bit changing to improve fault coverage [37,38].
Some algorithms, such as RAPS [39] and SMART [40], combine ran-
dom techniques with structural information in order to improve the
efficiency of randomly generated test sets.

Another way to improve the quality of randomly generated test
sets is using coverage-directed generation [41,42]. This is an itera-
tive and evolutionary approach, where at each step the fault cover-
age of a group of tests is evaluated by simulation, and at the next
step the group is transformed in order to improve fault coverage
and other desirable properties. Many techniques and criteria can
be used to generate new tests at each step. In particular, genetic
algorithms [43–45] have proven to be effective.

Early applications of genetic algorithms to test pattern genera-
tion were presented by Saab et al. [46], Rudnick et al. [47], and Cor-
no et al. [14]. In the last twenty years, genetic algorithms have
been proposed for many tasks in validation and testing of digital
circuits. Genetic algorithms have been used for test pattern gener-
ation addressing hardware defects in digital circuits [48,49], for
test program generation addressing microprocessor defects
[50,51] and microprocessor functional validation [52].

In the area of FPGA testing, two families of methods may be dis-
tinguished: application-independent and application-dependent
methods. Application-independent methods, such as those re-
ported by Huang et al. [9], Renovell et al. [10], and Stroud et al.
[11], aim at detecting structural defects due to the manufacturing
process of the chip. These techniques are mainly performed by the
chip manufacturer, and thus they are also known as manufacturer-
oriented techniques. These methods are called application-inde-
pendent because they target every possible fault in the device
without any consideration of which parts of the chip are actually
used by the given design and which parts are not.

Conversely, application-dependent methods [12,13] address
only those resources of the FPGA chip actually used by the imple-
mented system. Since these techniques are applied by the user
after the system design has been defined, they are also known as
user-oriented. The basic idea behind this family of techniques is
that very often an FPGA-based system uses only a subset of the re-
sources provided by the FPGA chip. Therefore, demonstrating that
the resources used by the implemented system are fault-free is
sufficient to guarantee the correct operation of the system itself.
Application-dependent methods have been proposed for in-service
testing of both structural defects [12,13] and SEUs [23].

3. Background

This section provides some background information about the
effects of SEUs in the configuration memory of an FPGA, about
SEU simulation and about genetic algorithms.
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3.1. The fault model

An FPGA [53] is a prefabricated array of programmable blocks,
interconnected by a programmable routing architecture and
surrounded by programmable input/output blocks.

Programming an SRAM-FPGA device consists in downloading a
programming code, called a bitstream, into its configuration
memory. The bitstream determines the functionality of logic
blocks, the internal connections among logic blocks and the exter-
nal connections among logic blocks and I/O pads. Interconnections
are realized internally by routing switches and externally by I/O
buffers. The commonest programmable logic blocks are lookup
tables (LUT), small memories whose contents are defined by config-
uration bits.

This work adopts a circuit simulation model corresponding to
the detail level of the netlist representation of FPGAs, produced
in the synthesis phase before the place and route phase. At this
level, the elements visible in the model are I/O buffers, LUTs, flip-
flops, and multiplexers. Since the latter two are not configurable,
only SEUs in the configuration memory of I/O buffers and LUTs
need be considered.

In the stuck-at fault model, an SEU in the configuration memory
of a component causes the output of the component to be stuck at
a given value, thus the fault is always active. In our approach, in-
stead, SEUs are modeled at a finer detail, since, in this fault model,
an SEU in the configuration memory of a LUT causes an alteration
of the functionality performed by the LUT and the fault is active
only when the configuration of the inputs to the LUT is the one
associated with the faulty configuration bit. Fig. 1(a) shows an
SEU causing a bit flip in the configuration bit associated with input
ð0000Þ. In this case the logic function implemented by the LUT
changes from y ¼ x1 � x2 þ x3 � x4 to yf ¼ x1 � x2 þ x3 � x4þ
x1 � x2 � x3 � x4. In the example, when the input values are ð0000Þ
the faulty LUT behaves like yf , meaning that the fault has been acti-
vated, otherwise it behaves like y. We observe that an n-input LUT
has 2n possible faults in the configuration bits.

An SEU in the configuration bit of a buffer causes an undesired con-
nection or disconnection between two wires, as shown in Fig. 1(b).

Fig. 2 shows LUT L from Fig. 1(a) in the context of its device D,
where C represents the rest of the device, and the i’s and z’s repre-
sent the n primary inputs and the m primary outputs, respectively.

A fault in L may be detected by applying a test pattern, i.e., a se-
quence of n-tuples of values (test vectors) to the primary inputs. A
test vector applied to D activates a fault if network C applies to L
the input configuration that selects the faulty configuration bit,
in this case ð0000Þ. This may be possible or not, depending on
the structure and current state of C: For example, if C is such that
two input pins of L (say, x1 and x2) will always have complemen-
tary values, that fault is unexcitable.

If a fault is activated, the resulting erroneous value produced by
the component may propagate to the primary outputs. Again, error
propagation depends on the structure and state of C.

A fault is detected by a given test pattern if the test pattern acti-
vates the fault and propagates an erroneous value to one or more
primary outputs.

3.2. Fault simulation

Simulation enables designers to study a system’s behavior in
presence of faults by exercising a software model of the system.
In a simulation context, fault injection consists in modeling the
possible faults, and the type and number of faults that can be in-
jected is closely related to the level of abstraction of the system’s
model.

Fault simulation may be done for different purposes, such as
finding efficient tests for production testing or in-service testing,
or assessing the system’s robustness, or its testability [24]. This
work is focused on generating sets of tests that strike a balance be-
tween a high fault coverage and a short test execution time.

With reference to Fig. 2, LUT fault simulation consists in the
execution of a series of simulation runs. At each run, a new test
pattern is repeatedly applied to the system’s model, once for each
possible fault. Each fault is then tested independently, under the
single-fault hypothesis. More precisely, for each test pattern the
following steps take place:

1. A bit flip in a configuration bit k of L is injected in the model.
2. The test pattern is applied to the primary inputs.
3. If the input configuration (x1; . . . ; x4) to L selects configuration

bit k, an error is found at node y.
4. If for at least one clock cycle one or more primary outputs take

an erroneous value, a failure has occurred and the fault is
marked as detected.

5. If more faults are still to be injected, the run re-starts from step
1 with the injection of a new fault, otherwise the run
terminates.

The same steps are executed when considering SEUs in the config-
uration bits associated with I/O buffers, with the only difference
that the output of a faulty I/O buffer remains stuck at its last value
before the fault occurred.

At the end of the run, the fault coverage of the test pattern is
computed as the ratio of detected faults to injected faults.

3.3. Evolutionary approaches

Many complex problems may be solved by search methods, i.e.,
procedures that look for a solution by trying out many attempts
until a satisfactory result is obtained. Such an attempt might be,
e.g., a sequence of moves in a game, a set of variable assignments
to solve an equation, or a set of parameter values to optimize a
function. Often more than one solution exists, and some solution
may be better than others according to given criteria [44].

A GA is a search method based on the analogy with the
mechanisms of biological evolution. GAs require that any solution
to a given problem be encoded, i.e., represented as a sequence of
symbols, that stands for a chromosome (a sequence of genes) in

(a) Lookup table failure
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Fig. 1. Failure modes of various resources of the FPGA chip.
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the biological analogy. A GA starts from an initial set (a population)
of tentative solutions (called chromosomes), selects the best ones
according to a problem-specific fitness function, and the selected
chromosomes are combined and mutated to produce a new popula-
tion. These operations have a degree of randomness, depending on
probability distributions whose parameters can be tuned. The pro-
cess is repeated until a termination criterion is met.

More precisely, for a given optimization problem, an initializa-
tion process provides a set of randomly generated approximated
solutions. Each solution is then evaluated, using an appropriate
measure of fitness. If the termination criteria are satisfied, a solu-
tion is then elected as (sub)optimal for the problem. If not, each
solution is encoded as a chromosome. The chromosomes evolve
through successive generations, i.e., iterations of the GA. During
each generation, a set of new chromosomes, called an offspring, is
formed by: (i) selection of a mating pool, i.e., a quota of parent chro-
mosomes from the current population, according to the fitness val-
ues; (ii) combination of pairs of parents via the crossover genetic
operator; (iii) modification of offspring chromosomes via the muta-
tion genetic operator. The new chromosomes are then decoded in
terms of domain solutions. Finally, a new generation is formed
by reinserting, according to their fitness, some of the parents and
offspring, and rejecting the remaining individuals so as to keep
the population size constant.

The design of a GA for a given domain problem requires the
specification of the following major elements: (i) a genetic coding
of a solution; (ii) a choice of genetic operators and parameters; (iii)
a fitness function, to evaluate a solution.

4. The genetic algorithm

The tool presented in this work produces a test set (TS), i.e., a set
of test patterns, each one selected from the population generated
at some step of a GA. More precisely, the GA maintains a Dynamic
Global Record Table (DGRT) [54] containing a list of test patterns
with the respective sets of detected faults. At each generation,
the fitness of each individual from the population is evaluated.
Then the individuals are examined in descending order of fitness
and an individual is inserted in the DGRT if it detects faults that
have not yet been found by previously inserted individuals. The
construction of the DGRT is completed when its entries cover all
faults (or a preset number of iterations has been reached), and
the test patterns in the table are the final TS.

The information in the DGRT is also used to compute the fitness
function, as explained in Section 4.4.

4.1. The genetic coding

Single test patterns are considered as individuals (or chromo-
somes) in the GA. Their genetic coding, described below, is a matrix
of logic values.

Let Vi be an input vector at clock cycle i, i.e., Vi ¼ ½v1; . . . ;vn�,
where n is the number of input signals of the circuit, and the v’s
are the respective values. A test pattern (TP) is a sequence
½V1; . . . ;Vl� of consecutive input vectors, where l is the number of
clock cycles (or length) of the test pattern. Therefore, a test pattern
is represented by a matrix of size l� n, as shown in Fig. 3.

The i-th row of the matrix represents the gene corresponding to
the input vector Vi applied at the i-th clock cycle. The j-th column
corresponds to the sequence of values on the j-th input pin.

It may be noted that the number of genes in chromosomes is
not assumed to be constant, since the number of clock cycles can
take a different value for each test pattern.

4.2. The genetic operators and parameters

Crossover is the main genetic operator. It consists in splitting
two chromosomes in two or more sub-sequences and obtaining
two new chromosomes by exchanging gene sub-sequences be-
tween the two original chromosomes. The place where a sub-se-
quence starts is called a cut-point. More specifically, we adopt a
single-point crossover (Fig. 4) by choosing a non-uniform cut-point
for each parent and generating the descendants by swapping the
segments containing the ending clock cycles. The rationale for this
choice is summarized in the following considerations.

With sequential logic, the output of a circuit depends on both
the current input values and the previous inputs, starting from
the initial state. Therefore, in order to take advantage of the added
benefit of a gene sequence, in terms of number of recognized faults,
we should take into account the state of the circuit, which is a re-
sult of all previous inputs, i.e., the previous gene sequence. Hence,
it is generally more efficient to have a new generation chromosome
retain a large fraction of the previous sequence.

In order to achieve this behavior, we added the following crite-
rion in the crossover operation: Random cut-points are generated
via the probability density function of an exponential distribution,
i.e., f ðx; kÞ ¼ ke�kx, where x is the distance of the cut point from the
end of the sequence. This distribution implies that a large initial
segment is kept unchanged from parent to child. Consequently,
the end segments that are swapped are relatively short. The level
of exploitation of the previous gene sequences can be adjusted
via parameter k.

The fraction of chromosomes to undergo the crossover opera-
tion is the crossover rate (pc). The crossover operator is applied with
a probability pc on the selected pair of individuals. When the oper-
ator is not applied, the offspring is a pair of identical copies, or
clones, of the parents.

A higher crossover rate allows a better exploration of the space
of solutions. However, too high a crossover rate causes unpromis-
ing regions of the search space to be explored. Typical values are in
the order of 10�1 [44].

Mutation is an operator that produces a random alteration in a
single bit of a gene. Mutation is randomly applied. The mutation
rate, pl, is defined as the probability that an arbitrary bit of an arbi-
trary gene is complemented. If it is too low, many genes that would
have been useful are never discovered, but if it is too high, there
will be much random perturbation, the offspring lose their resem-
blance to the parents, and the GA loses the efficiency in learning
from the search history. Typical values of pl are in the order of
10�2 [43]. We control the mutation operator by a dynamic pl
which decreases linearly between an initial value pl, and a value
pl at the final generation.

With a linearly decreasing pl, the early generations have a high
probability of mutation and solutions are spread all over the solu-
tions space, so that most of them have a chance to be tried. Later
generations have a lower mutation probability, so that the search

v1,1 · · · v1,j · · · v1,n
...

vi,1 · · · vi,j · · · vi,n

...
vl,1 · · · vl,j · · · vl,n

← i -th gene

Fig. 3. Genetic coding of a test pattern.
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is focused on the regions of the solution space where fitter individ-
uals are found.

4.3. Selection method

A selection operator chooses a subset of chromosomes from the
current population. Various stochastic selection techniques are
available. In this work the roulette wheel method [55] is used. With
this method, an individual is selected with a probability that is di-
rectly proportional to its fitness. Each individual is mapped to an
arc of a circle whose length equals the individual’s fitness. The cir-
cumference is then equal to the sum of the fitnesses. Selection is
made by choosing a random number with a uniform distribution
between 0 and the circumference. The selected individual is the
one mapped to the arc containing the chosen point. This ensures
that better fit individuals have a greater probability of being se-
lected, however all individuals have a chance.

4.4. The fitness function

The fitness function measures the quality of the solution, and is
always problem dependent. In our approach, fitness takes into ac-
count the fault coverage achieved by each TP, its length, and its
effectiveness in finding hard faults.

The fitness function adopted in this work relies on a DGRT to
evaluate each TP with respect to the performance of previously
generated TPs.

The fitness function of a test pattern i is defined in terms of a
value ci that we call the relative efficiency of the TP:

ci ¼
Xni

j ¼ 1

ðnij þ 1Þ�k
;

where ni is the number of faults detected by the i-th test pattern; nij

is the number of test patterns, generated before the i-th one, that
detect fault j; k is is a configurable parameter of the algorithm, rang-
ing in ½0;1�.

The fitness function is then

f ðiÞ ¼ ci

N
�M

li

L
;

where N is the number of injected faults and M is a configurable
parameter of the algorithm, ranging in ½0;1�, which represents the
relative cost per clock cycle. For M equal to zero, the optimization
process tends towards a maximum coverage. For increasing values
of M, the fitness function penalizes also large test patterns. Param-
eter li is the length of the i-th test pattern; L is the maximum length
of the test patterns. This parameter is chosen heuristically, depend-
ing on the size and complexity of the circuit.

Table 1 summarizes the parameters of the fitness function,
together with those occurring in the TP generation algorithm
(Section 4.5). The table also reports the values assigned to the
parameters in the experiments discussed in Section 6.

The fitness function increases with an individual’s relative effi-
ciency ci. This value increases with the number of faults detected
by individual i, but the weight of each detected fault j decreases
with the number nij of other individuals that have been shown to
detect the fault before i. The number nij is obtained from the DGRT
and indicates how easily a fault can be detected (statistically, easy
faults are detected earlier and more often). In this way, individuals
that detect harder-to-find faults are rewarded. With higher values
of parameter k, easy faults detected by a test pattern add a smaller
contribution to its fitness.

4.5. Producing the test set

The final TS is obtained by an overall algorithm that iteratively
evaluates a population of test patterns, inserts the best ones in the
DGRT, and calls the GA proper to improve the population. The GA,
in turn, uses the DGRT to compute the fitness function, as shown in
the previous subsection. This is described more formally in Algo-
rithm 1, where s identifies the iterations of the algorithm (up to
a limit of smax iterations), D is the DGRT, and Ps is the test pattern
population at iteration s. The size of the population is S, and N is
the number of possible faults. Parameter S is chosen so as to guar-
antee adequate diversity among individuals while limiting the
computational cost of fitness evaluation. Predicate improveðmÞ is
false when a stall condition occurs, i.e., when no improvement in
the fitness of the best individual of each generation is achieved
over the last m iterations.

Algorithm 1. The overall algorithm.

s  0; D  ;; D0  ;
P0  ðS randomly generated test patternsÞ
while coverageðDÞ < N ^ improveðmÞ ^ s < smax do

for i ¼ 1 to S do
for j ¼ 1 to N do

if detectsði; jÞ then
detectedðiÞ  detectedðiÞ [ fjg

end if
end for
if findsði; �n;DÞ then

D  D [ newði; �n;DÞ
end if

end for
s  s þ 1; Ps  gaðPs�1;DÞ

end while
D0  compactðDÞ
return testsetðD0Þ

Fig. 4. A scenario for the crossover operator.

Table 1
Parameters.

Parameter Description Value

k Rate parameter for cut-point distribution 1
pc Crossover rate 0:8
pl Maximum mutation rate 0:15
pl Minimum mutation rate 0:05
N Number of possible faults –
M Penalty coefficient for TP length 0:5
L Maximum length for TPs 10000
k Penalty exponent for easy-to-detect faults 0:75
smax Maximum number of iterations 2000
S TP population size 200
m Number of iterations considered for stall condition 20
�n Threshold for acceptance into DGRT 20
md Number of iterations considered for �n adaptation 20
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For ease of notation, we assume that test patterns and faults are
identified by natural numbers. The DGRT is represented as a set of
pairs ði; jÞ, such that test pattern i detects fault j. Function
coverageðDÞ is the number of faults detected by the test patterns
recorded in the DGRT, and detectsði; jÞ is true if and only if test
pattern i detects fault j. The set of faults detectedðiÞ found by test
pattern i is updated in the course of the simulation. Predicate
findsði; �n;DÞ is true if and only if test pattern i detects a set of at
least �n faults not yet recorded in the DGRT, and newði; �n;DÞ returns
the pairs ði; j1Þ; . . . ; ði; j�nÞ such that test pattern i detects a fault in
that set. The value of �n is set initially at 20. When the number of
new detected faults drops below the current value of �n for md con-
secutive iterations, the value is decreased gradually. More pre-
cisely, �n is set equal to the highest number of new faults found
by a single individual in the current generation.

The GA gaðPs�1;DÞ produces the new generation Ps from the
previous one, using the DGRT to compute the fitness. On exit from
the outermost loop, function compactðDÞ produces a new DGRT by
removing individuals, or terminal segments thereof, whose faults
are covered by other ones. Finally, testsetðDÞ returns the test pat-
terns contained in the DGRT.

The algorithm stops when one of the following conditions holds:
(i) total fault coverage is achieved, or (ii) a stall condition is met, or
(iii) the maximum allowed number of iterations smax is reached.

Algorithm 2. The genetic algorithm.

PM  ;; A  ;; B  ;
for i ¼ 1 to Q do

x  selectðPÞ; PM  PM [ fxg
end for
for i ¼ 1 to Q=2 do
ðx; yÞ  pairðPMÞ;ðx0; y0Þ  crossoverðx; y; kÞ
x00  mutateðx0; plÞ;y00  mutateðy0; plÞ

A  A [ fx00; y00g
end for
for i ¼ 1 to S� Q do

x  selectðP; pcÞ;
B  B [ fxg

end for
P  A [ B
return P

In Algorithm 2, P is the current population, PM is the mating pool,
A is the offspring, i.e., the set of individuals resulting from crossover
and mutation, B is the set of individuals passed unchanged to the
next generation, and Q is the size of the mating pool (Section 3.3).

Function selectðPÞ returns an individual from P, selected with
the roulette wheel method, and function pairðPMÞ returns a pair
of parents from PM , selected with the roulette wheel method. Func-
tion crossoverðx; y; kÞ returns the offspring of a pair of parents, with
k as the level of exploitation parameter for cut point selection (Sec-
tion 4.2). Mutation is then applied to the selected parents with
probability pl, and the mutated individuals are added to set A.

Finally, a set B is built, with cardinality S� Q , with individuals
drawn from the population P passed to the algorithm. The new
generation is then obtained by replacing P by the union of A and B.

It may be observed that all sets used in the algorithm may con-
tain pairs of identical individuals, due to the random character of
the various operators. However, each individual is identifiable even
when it is structurally identical to another one, therefore all sets
are proper sets (not multisets). As a consequence, the cardinality
of P is a constant.

4.6. The parameter tuning process

The parameter values shown in Table 1 have been set according
to a generic optimization strategy, for a set of circuits from the
ITC’99 benchmark [56], often used in the field (Section 6). In this
subsection, we will summarize the methodology used for parame-
ter tuning.

In evolutionary techniques, a number of application constraints
narrow down the choice of parameter values [57]. Such constraints
are, in our case, the relative cost per clock cycle, the maximum
length allowed for a test pattern, the maximum time allowed for
generating a test pattern per circuit (related to the maximum num-
ber of generations), the available computation resources for test
pattern generation (related to the population size), and so on.
Moreover, parameters that cannot be chosen from application con-
straints can be tuned by using sensitivity analysis. Sensitivity is
informally defined as the effect of uncertainty in the parameter
on the final results [58].

For the purposes of this paper, application dependent parame-
ters (such as M; L; smax; S) have been set to some prototypical value.
Let us consider the parameters intrinsically related to the genetic
algorithm. When the parameter sensitivity is low, as for pc and k,
its value has been set to values commonly adopted in the litera-
ture. When the parameter sensitivity is higher, some adaptation
technique has been introduced, meaning that the parameter value
is dynamically established with the support of a semi-automatic
tuning process. Adaptation helps reducing the sensitivity, because
it can compensate deviations of a parameter’s initial value, chosen
within an initial range, from its optimal value.

For example, the value of the mutation rate varies adaptively
within a range whose extremes, �pl and pl, have been set to values
commonly adopted in the literature.

Table 2 shows examples of how variations of two GA parameter
affect TP length (len) and TP generation length, in number of gen-
erations (gen) and time (in minutes), for a 100% coverage.

Twenty-four simulations of circuits b01, b02, and b06 (Sec-
tion 6) have been grouped in six sessions of four trials. In each ses-
sion, only one parameter varies while the other one is fixed. The
best performance of a session in terms of TP length and completion
time is emphasized with a rectangular box. The best performance
over the whole set of twenty-four simulations is further empha-
sized with boldface style.

It may be observed that: (i) the TP length does not increase for
increasing �n, thanks to the adaptation mechanism; (ii) a fast con-
vergence can be guaranteed with a low �n; (iii) however, when �n
is very low, the TP length sensibly increases, because the adapta-
tion mechanism is not able to increase �n; (iv) lower values of md

allow a better performance in time.
The parameter values adopted for the experiences reported in

Section 6 can be applied to benchmarks of different size and com-
plexity, given the intrinsic adaptivity of the GAs. Obviously a finer
tuning can be made, relying on application constraints and on sen-
sitivity analysis [58].

With regard to genetic operators, many alternatives are avail-
able in the literature. Most of them are used for very specific pur-
poses, unrelated to the aims of this paper. Two general-purpose
selection operators, namely, the roulette wheel and rank selection
operators [59] has been considered. The former leads to a better
exploitation of previous useful mutations, while the latter leads
to a wider-range exploration of the solution space. More specifi-
cally, rank selection prevents too quick a convergence and differs
from roulette wheel selection in terms of selection pressure. Rank
selection overcomes problems like stagnation or premature con-
vergence [59]. The GABES choice of using the roulette wheel is
due to the considerable amount of exploration already performed
by the crossover and mutation operators.
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5. The test pattern generation tool

The GA discussed above is coupled with the simulation-based
fault injection tool for FPGAs presented in [23]. In this tool, the
netlist of a digital circuit is modeled with the Stochastic Activity
Networks (SAN) [60] formalism using the Möbius [61] modeling
and analysis tool. Faults are injected into the model and their prop-
agation is traced to the output pins, using a four-valued logic [23]
that enables faulty logical signals to be tagged and recognized
without recurring to a comparison with the expected output
values.

The test pattern generation process is shown in Fig. 5. In the
figure, the block labeled ‘‘FPGA Design Process’’ is performed by
an external tool that produces a netlist described in the EDIF lan-
guage [62]. This description is parsed by a tool developed alongside
the simulator, which extracts information on topology and LUT
functions, and encodes it into a simpler textual format used by
the simulator. In this way, GABES can seamlessly interact with
the standard design process of an FPGA application.

The GA feeds the fault simulator with the current population of
test patterns and then it waits for the fault coverage values
produced as output of the simulations. These values are then used
to update the DGRT and compute the fitness functions of the test
patterns, leading to the next generation of the GA.

This GA is an efficient pattern generator thanks to the iterative
processing of blocks of test patterns, which appreciably reduces
the search space. It may be noted that its genetic operators have
the following properties: (i) At each generation, selection chooses
test patterns that are better than average; (ii) crossover creates
groups of similar patterns to avoid worsening the quality of the
selected patterns; and (iii) mutation creates dissimilar patterns
without interfering with the result of crossover, especially in the
later generations.

6. Experimental results

The GABES test pattern generator has been applied to some
circuits from the ITC’99 suite [56]. The VHDL code of the circuits
was synthesized for the Virtex-6 target device using the Xilinx
ISE tool [63]. Only the b13 circuit has been synthesized for the Vir-
tex-4 family, due to simulation time constraints. We note that this
limitation is not due to the GA but to the simulator, which is still a
prototype. This simulator is currently the only one capable to mod-
el faults at the desired level of detail.

The characteristics of the netlists, in terms of the number of
LUTs, flip-flops (FFs), multiplexers (MUXs) and input and output
buffers (IBufs and OBufs), are summarized in Table 3. The table also
shows the number of possible faults (Faults) and of excitable faults
(Ex), calculated with the SEU-X tool [64]. The function of the cir-
cuits, as reported in Corno et al. [56], is shown in Table 4. This
selection includes typical applications of embedded systems. The
values of the parameters for the experiments are shown in Table 1
of Section 4.4.

The results were obtained on a computer with Intel Core i5
(QuadCore) 2.67 GHz, 256 KB L1 Cache, 1 MB L2 Cache, 8MB L3
Cache, 4 GB RAM.

Table 2
Genetic parameters and related performance (boldface highlights best performance
values).

Behavioural
Description

Genetic Algorithm

Test
Pattern Generation Fitness Evaluation

Logic Synthesis

EDIF
Netlist
Description Parser

FPGA Design 
    Process

Fault Injector

Simulator Faults
Detected

Fault Simulation

Test Pattern

Netlist
Description

Fig. 5. The test pattern generation process.

Table 3
Circuit characteristics.

Circuit LUTs FFs MUXs IBufs OBufs Faults Ex

b01 15 10 1 3 2 141 141
b02 4 4 0 2 1 55 49
b03 90 35 1 5 4 687 269
b06 9 8 0 3 6 153 133
b08 47 21 1 10 4 970 546
b09 47 29 2 2 1 1067 347
b10 55 24 0 12 6 702 348
b13 95 75 15 11 10 1094 485
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In all experiments, only the excitable faults were injected. The
unexcitability analysis of SEUs in the configuration memory was
carried out with the SEU-X tool [64].

The GA uses an adaptive DGRT admittance threshold policy,
with DGRT compaction. The GA terminates if there is no improve-
ment in the best fitness of the population over a predetermined
number of generations, or when the preset maximum number of
generations is reached.

To show the behavior of the optimization process performed by
the GA, we report in Fig. 6, for the ITC’99 b09 circuit, the fault cov-
erage of the whole DGRT (i.e., the cardinality of the union of the
faults detected by each DGRT entry) at each generation versus
the number of generations. Here the optimization process has been
tuned so as to maximize coverage, at the cost of greater test length.
The figure shows how a high coverage is achieved after a small
number of generations.

For the same trial considered in Fig. 6, Fig. 7 represents the
number of individuals in the DGRT that detect a fault, for each gen-
eration and for each fault, before DGRT compaction. This plot
shows the degree of detectability of different faults, from easily
detectable (with ID’s between 0 and 100 and between 250 and
347) to rarely detected or undetected ones (in the central area).

In Fig. 8, the final status of the DGRT in terms of fault coverage is
shown: for each individual in DGRT and for each fault, white and
black dots represents covered and uncovered faults, respectively.
Black vertical lines represent undetected faults. It may be observed
that many individuals are very similar in terms of detected faults.

Table 4
Circuit functions.

Circuit Function

b01 Compare serial flows
b02 Recognize binary coded decimal numbers
b03 Resource arbiter
b06 Interrupt handler
b08 Find inclusions in sequences of numbers
b09 Serial-to-serial converter
b10 Voting system
b13 Interface to meteo sensors
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Fig. 6. DGRT coverage vs. number of generations for b09.

Fig. 7. Detection of faults by GA generation.
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It has been experienced that this phenomenon occurs particularly
when the fitness function is tuned to maximize coverage by loos-
ening constraints on test length (choosing low or null values of
M) and on the threshold for acceptance in the DGRT (choosing
low values of �n). New individuals added in the DGRT may also de-
tect faults already detected by other individuals, thus making the
latter redundant. As an example, in the reported trial the compact-
ing process reduced the length of the test set by 40:3%.

Results for the considered circuits are shown in Table 5. For
each circuit, Columns Cov, Length, Gen, and Time report the mea-
sured coverage with respect to excitable faults, the test length
(cumulative number of clock cycles of the test set, plus one reset
cycle for each TP), the number of generations, and the simulation
time, respectively. Column Tgen reports the average time needed
to process a generation, and Column Comp reports the average
compaction ratio, i.e., the gain in TP length achieved by the DGRT
compaction algorithm.

In order to compare the genetic-based approach to other tech-
niques, let us first consider the results presented in Table 6. Here,
both random and deterministic TP generation have been per-
formed on three different circuits. With both methods, a coverage
of 100% was achieved, by progressively increasing TP length (in
steps of 10000) for random generation, and by using a model-

checking based method [64] for deterministic generation. It may
be noted that the length of the generated TPs is consistently much
greater than the one obtained with the GA, with a number of gen-
erations lower than forty. Moreover, neither the random nor the
deterministic method are scalable, because they require much
longer times when applied to more complex circuits than those
presented in Table 6.

Let us now consider Table 7, which compares the results for the
test patterns generated by GABES with GA (GA columns) with those
obtained by the same tool with random testing (Random and Ran-
dom* columns). Times are in minutes.

Two different random testing trials were performed: In the first
one (Random columns) a random test pattern of fixed length (10
thousand clock cycles) was used; in the second one (Random*
columns) a random test pattern with the same length as the one
produced with the GA was used.

It may be observed that results obtained by the GA are much
better than the ones obtained by random testing in terms of fault
coverage. The time to generate the TPs is much longer with the
GA, and this is due to the simulation times. The simulator
performance is expected to improve with a forthcoming optimized
version.

Comparing the values of Cov in the GA column in Table 7 with
the Random* column, the improvement, computed as the differ-
ence between GA and Random* coverage, ranges between 60:28
(b03) and 87:30 (b08).

With respect to the Random Cov column, the improvement
ranges between 0:7 (b06) and 86:9 (b08), and the solution gener-
ated by the genetic algorithm has always a shorter length.

Table 8 reports the number of stuck-at faults and the fault
coverage for the considered circuits, obtained by simulation. As ob-
served in Section 3.1, the number of faults is much smaller than in

Fig. 8. Final DGRT coverage.

Table 5
Experimental results.

Circuit Cov (%) Length Gen Tgen (min) Comp (%) Time (min)

b01 100.0 94 35 0.22 43.89 7.73
b02 100.0 61 22 0.05 32.39 1.10
b03 94.8 1148 66 10.18 50.69 672.00
b06 100.0 69 13 0.41 33.10 5.38
b08 87.5 1835 94 19.19 69.15 1804.00
b09 91.9 4661 79 82.68 67.18 6532.10
b10 98.6 362 11 17.45 68.55 192.33
b13 83.3 550 18 259.83 72.38 4677.62

Table 6
Random and deterministic TP generation (100% coverage).

Circuit Random generation Deterministic generation

Length Time (min) Length Time (min)

b01 100000 0.7 630 0.7
b02 10000 0.1 68 0.4
b06 100000 0.6 891 0.8
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the model adopted by GABES, but in spite of this, our tool achieves
better coverage for this set of circuits.

Finally, Fig. 9 shows the use of GABES with b03 for different
optimization strategies. Here, two trials have been carried out,
with different unit cost per clock cycle (M). More specifically, the
solid and dotted curves represent the coverage versus the number
of generations for M = 0 and M = 1, respectively. It can be noticed
that, using M = 0, the generator is able to increase the fault

coverage from 94.8% to 96.3%, although producing longer test
patterns, i.e., from 1148 to 3513 clock cycles.

6.1. Guided test pattern injection

In order to improve scalability of TP generation, i.e., the ability
of the GA to achieve high coverage for larger circuits, the applica-
tion of partial supervision [65] has been explored, using the circuit

Table 7
Comparison with random TP generation.

Circuit GA Random Random⁄
Cov (%) Time Cov (%) Time Cov (%) Time

b01 100.0 7.73 95.70 0.30 23.40 0.020
b02 100.0 1.10 100.00 0.10 30.60 0.003
b03 94.8 672.00 50.90 33.50 33.80 5.220
b06 100.0 5.38 99.30 0.30 34.30 0.030
b08 87.5 1804.00 0.60 87.30 0.20 16.900
b09 91.9 6532.10 11.00 59.50 6.36 28.400
b10 98.6 192.33 40.00 144.42 35.05 6.160
b13 83.3 4677.62 14.22 1182.66 11.95 55.110
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Fig. 9. Two optimization strategies for b03, in terms of unit cost per clock cycle (M).
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Fig. 10. Guided TP injection for b03.
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b03 as a test case. Partial supervision is a concept from the field of
machine learning, and in the context of our work it consists in
injecting fresh individuals in the current generation, when the fault
coverage does not improve over a small number of generations (a
local stall). The fresh individuals are TPs that the GA is not likely to
generate, and in our case they have been obtained from results of
previous experiences on fault unexcitability [64]. Fig. 10 shows the
simulation results for this method (solid line), compared to those
obtained without TP injection (dashed line), with circles marking
the points where fresh TP have been injected, after three consecu-
tive generations without improvement in coverage. This promising
technique will be object of further work.

7. Conclusions and future work

We have presented GABES, a tool for automatic test pattern
generation for application-dependent testing of SEUs in FPGAs
based on a GA. Test patterns generated by the proposed tool can
be used for in-service testing of critical components of FPGA-based
systems. The approach of targeting SEUs in any configuration bit of
the logic resources makes our fault model very accurate. Our GA
does not rely on any knowledge on the FPGA topology. Results
for some circuits from the ITC’99 benchmarks have been presented.
The GA shows good scalability and efficiency in terms of both fault
coverage and length of test pattern.

In order to improve scalability with a genetic-based generator
guided by the external behavior of the circuit, we will evaluate a
guidance mechanism using pre-computed test patterns chosen
by the analyst and used to stimulate the genetic exploration in
unknown areas of the search space.

As further work, faults in the routing resources should be con-
sidered. We also consider enhancing the fitness function by taking
into account information on error propagation in the circuit, to im-
prove the effectiveness of the GA.
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