
DIDA
MATICA
ttica

infor
“Se ascolto dimentico, se vedo ricordo, se faccio capisco”

27a DIDAMATICA 2013
Tecnologie e Metodi
per la Didattica

del Futuro

ATTI
Pisa, 7-8-9 Maggio 2013
Area della Ricerca CNR

Please export an up-to-date reference from
http://www.iet.unipi.it/m.cimino/pub

Atti del Convegno Didamatica 2013

978-88-98091-10-2

MINISTERO DELL’ISTRUZIONE DELL‘UNIVERSITA’ E DELLA RICERCA

Organizzato da

Iit
Istituto di

Informatica
e Telematica

In collaborazione con

	
ISBN 978-88-98091-10-2	 349

Using Web-CAT to improve
the teaching of programming
to large university classes,
Mario G.C.A. Cimino, Giuseppe
Lettieri and Giovanni Stea,
Università di Pisa

DIDAMATICA 2013

Using Web-CAT to improve the teaching of
programming to large university classes

Mario G.C.A. Cimino, Giuseppe Lettieri, Giovanni Stea
Dipartimento di Ingegneria dell’Informazione, University of Pisa

Largo Lucio Lazzarino 1, 56122 Pisa, Italy
{m.cimino, g.lettieri, g.stea}@iet.unipi.it

Recent staff cuts for the Italian university system reduced
the teaching manpower, making face-to-face student/teacher
interaction all but impossible in large classes (e.g., 100-150
students). On the other hand, new generations of students
call for evolved self-learning instruments, and teaching prac-
tices need to meet this demand by adopting systems that al-
low for short-loop feedback and scalable class management.
This paper discusses the adoption of Web-CAT, an open-
source computer-assisted teaching software, within the BSc
in Computer Engineering at the university of Pisa. We pre-
sent in detail the motivations for adopting it, the customiza-
tion effort and the expected benefits.

1. Introduction
The recent (2010-) reformation of the Italian university system has had

a negative impact on the teaching activity within universities. First of all, by cut-
ting PhD scholarship funds and setting near-impossible pre-requisites for get-
ting a research position, it has discouraged graduate and PhD students to pur-
sue academic careers (at least careers in Italy). This has led, quite predictably,
to a massive reduction in junior research personnel, normally doubling as teach-
ing assistants and/or tutors [Repubblica 2012]. Furthermore, the new norms on
academic career progression only evaluate research throughput and completely
neglect the teaching (let alone the teaching quality), thus orienting researchers
to the former in lieu of the latter. Last, but not least, the reduced turnover forbids
universities to even balance the retirement rate with new recruitments. The net
result is that fewer senior researcher and professors are left alone to face larger
and larger classes (the most recent norm setting the limit for a first-year Engi-
neering or Computer Science degree to 150 students per class [DM47]), una-
ble to provide an effective level of interaction with individual students.

On the other hand, the trend for heterogeneous classes at the under-
graduate level is still on the rise: while most freshmen can run basic PC applica-
tions, their background on programming and algorithmic reasoning is highly
heterogeneous, and largely depends on their secondary school and/or personal
interests. This, if anything, calls for individual, focused and customized learning
programs, which the current, scarce teaching manpower is unable to provide at
such large scales.

	 DIDAMATICA 2013
350	 Pisa, 7-8-9 Maggio - Area della Ricerca CNR

DIDAMATICA 2013

The effects are easily recognizable in the “Darwinian” bimodal distribu-
tion of student performance: those who start with a lead (good scientific sec-
ondary school, previous exposure to programming) get on well, whereas those
who do not end up either dropping out or swelling the ranks of long-term under-
achievers who get their BSc very late and with poor marks. This last phenome-
non, endemic in Italian universities in general and in ours in particular, is being
actively punished by the government through further funding reductions, which
acts as a fairly obvious incentive for the universities to lower the bar so as to
boost the pass rates.

In this scenario, programs in Computer Engineering (as well as many
others which require a solid background in Computer Science, e.g. other Engi-
neering, Science and possibly Management programs) could partially compen-
sate for the lack of manpower by using computer-assisted teaching software.
Although a large stream of literature on these systems is already available (see,
e.g., [Ihantola et al. 2010]), no trial on the field has been done in our university,
and their importance and benefits are often underestimated.

This paper presents the work done by teachers of the Computer Engi-
neering program of the University of Pisa on one such system, namely Web-
CAT [Web-CAT], [Edwards and Pugh 2006], which is being adopted as a teach-
ing aid to first-year undergraduates as of this year. We discuss the motivations
that led to its adoption, which are possibly common to similar programs in other
Italian universities. We then describe the modifications and extensions to the
Web-CAT platform that we have already implemented, which enhance its effec-
tiveness. Finally, we outline the roadmap for further development.

2. Web-CAT Overview
Web-CAT is an automated grading system for programming exercises

licensed under the terms of the GNU General Public License. It is highly
customizable and extensible, and supports virtually any model of program
grading, assessment, and feedback generation. The system is implemented as
a web application with a plug-in-style architecture, hence can be extended to
provide additional services. At a high level, Web-CAT hosts several courses
(e.g., programming, software engineering), and allows their teacher or teaching
assistant to enroll students and administer programming homework to them.
Furthermore, it automatically verifies and tests programs uploaded by the
students, and it grades them based on pre-set grading schemes. Therefore, all
a teacher has to do is to design assignments, tests and related grading
schemes, while the system automates testing and grading. Web-CAT also
tracks the submission epoch and the number of failed attempts, and allows for
grading bonuses based on these. Obviously, automatically generated grades
can be manually overridden, which grants teachers the maximum freedom.

Web-CAT already comes with two plugins for Java and C++ [Shah
2003], [Vastani 2004]. With the Java plugin, static analysis of source code is
performed using PMD [PMD 2013] and Checkstyle. PMD is a code analyzer
which finds unused variables, empty catch blocks, unnecessary object creation,
dead code, and so on. Checkstyle ensures that code conforms to particular

Using Web-CAT to improve the teaching of programming to large university classes
conventions of documentation and style (coding standard), thus sparing the
teacher a boring, though important task. Teachers can write test cases and
code coverage via JUnit [JUnit 2013] and Clover [Clover 2013]. JUnit is a unit
testing framework for test-driven development, and is one of a family of unit
testing frameworks which is collectively known as xUnit. Clover identifies the
riskiest code in a project, to guide the coder in the testing. These tools ensure
that the solution is valid (passes instructor tests), correct (passes student-
written tests), and complete (all functionality is exercised by the tests).

Fig. 1 shows an example of static analysis performed by Web-CAT, by
pointing out a duplicated import statement and an unused member, and a
summary of test results. Note that the system reports memory leaks, memory
usage statistics, and several other useful metrics. A grading report is instead
shown in Fig. 2. The design/readability score is manually generated, while
style/coding and correctness/testing scores are automatic. The bottom part
reports detailed feedback on the execution of methods for each class.

Fig.1 – Example of static analysis (left) and summary of test results (right)

Fig. 2 – The grading report of Web-CAT

	
ISBN 978-88-98091-10-2	 351

DIDAMATICA 2013

The effects are easily recognizable in the “Darwinian” bimodal distribu-
tion of student performance: those who start with a lead (good scientific sec-
ondary school, previous exposure to programming) get on well, whereas those
who do not end up either dropping out or swelling the ranks of long-term under-
achievers who get their BSc very late and with poor marks. This last phenome-
non, endemic in Italian universities in general and in ours in particular, is being
actively punished by the government through further funding reductions, which
acts as a fairly obvious incentive for the universities to lower the bar so as to
boost the pass rates.

In this scenario, programs in Computer Engineering (as well as many
others which require a solid background in Computer Science, e.g. other Engi-
neering, Science and possibly Management programs) could partially compen-
sate for the lack of manpower by using computer-assisted teaching software.
Although a large stream of literature on these systems is already available (see,
e.g., [Ihantola et al. 2010]), no trial on the field has been done in our university,
and their importance and benefits are often underestimated.

This paper presents the work done by teachers of the Computer Engi-
neering program of the University of Pisa on one such system, namely Web-
CAT [Web-CAT], [Edwards and Pugh 2006], which is being adopted as a teach-
ing aid to first-year undergraduates as of this year. We discuss the motivations
that led to its adoption, which are possibly common to similar programs in other
Italian universities. We then describe the modifications and extensions to the
Web-CAT platform that we have already implemented, which enhance its effec-
tiveness. Finally, we outline the roadmap for further development.

2. Web-CAT Overview
Web-CAT is an automated grading system for programming exercises

licensed under the terms of the GNU General Public License. It is highly
customizable and extensible, and supports virtually any model of program
grading, assessment, and feedback generation. The system is implemented as
a web application with a plug-in-style architecture, hence can be extended to
provide additional services. At a high level, Web-CAT hosts several courses
(e.g., programming, software engineering), and allows their teacher or teaching
assistant to enroll students and administer programming homework to them.
Furthermore, it automatically verifies and tests programs uploaded by the
students, and it grades them based on pre-set grading schemes. Therefore, all
a teacher has to do is to design assignments, tests and related grading
schemes, while the system automates testing and grading. Web-CAT also
tracks the submission epoch and the number of failed attempts, and allows for
grading bonuses based on these. Obviously, automatically generated grades
can be manually overridden, which grants teachers the maximum freedom.

Web-CAT already comes with two plugins for Java and C++ [Shah
2003], [Vastani 2004]. With the Java plugin, static analysis of source code is
performed using PMD [PMD 2013] and Checkstyle. PMD is a code analyzer
which finds unused variables, empty catch blocks, unnecessary object creation,
dead code, and so on. Checkstyle ensures that code conforms to particular

Using Web-CAT to improve the teaching of programming to large university classes
conventions of documentation and style (coding standard), thus sparing the
teacher a boring, though important task. Teachers can write test cases and
code coverage via JUnit [JUnit 2013] and Clover [Clover 2013]. JUnit is a unit
testing framework for test-driven development, and is one of a family of unit
testing frameworks which is collectively known as xUnit. Clover identifies the
riskiest code in a project, to guide the coder in the testing. These tools ensure
that the solution is valid (passes instructor tests), correct (passes student-
written tests), and complete (all functionality is exercised by the tests).

Fig. 1 shows an example of static analysis performed by Web-CAT, by
pointing out a duplicated import statement and an unused member, and a
summary of test results. Note that the system reports memory leaks, memory
usage statistics, and several other useful metrics. A grading report is instead
shown in Fig. 2. The design/readability score is manually generated, while
style/coding and correctness/testing scores are automatic. The bottom part
reports detailed feedback on the execution of methods for each class.

Fig.1 – Example of static analysis (left) and summary of test results (right)

Fig. 2 – The grading report of Web-CAT

	 DIDAMATICA 2013
352	 Pisa, 7-8-9 Maggio - Area della Ricerca CNR

DIDAMATICA 2013

As far as the C++ plugin is concerned, testing is based on the Cxx
framework, [Cxx 2013], which requires teachers to write a test class with the
related methods. The plugin allows students to submit test plans as well as
code, and it can evaluate test coverage besides code correctness.

Web-CAT is implemented in Java using the WebObjects framework
[WebObjects, 2013]. From an architectural standpoint, it consists of three tiers:
the client tier (i.e., the web browser); the server tier, where the logic resides,
and java classes that support the generation of dynamic web pages are
managed; the database tier, which manages information related to courses,
students and assignments.

3. Contributions
We are about to experiment Web-CAT in the first year of the BSc in

Computer Engineering at our university, after testing with it and finding it fit for
our purposes [Del Vigna 2012][Salvini 2012][Formichelli 2012]. Web-CAT can
be used for in-term homework assignment. In this role, its purpose is a) to
present students with personalized self-assessment feedback, and b) provide
instructors with aggregate, class-wise performance metrics in real time.
Furthermore, Web-CAT acts as a database that can be mined by teachers to
infer relationships between in-term performance (i.e., the learning process) and
end-term exam results. We believe that this is the real enabler for long-term
improvement of teaching practices. Finally Web-CAT can be used to manage
end-term exams (whose grades actually matter), helping teachers to manage
large classes. We now describe the motivations and expectations, the
extensions that we have already developed, and those that are on the agenda.

3.1 Motivations, expectations and difficulties
For historical reasons, our teaching practice is based on the following

philosophy: “ignore the process, grade the results”. Teachers do not normally
intervene in the learning process of their students, which are expected to be
autonomous, and they only grade exam papers. It is our belief that this
philosophy is now counterproductive. Many students who fail (at least at first)
might have succeeded if advised on their learning process early enough (i.e.,
during the first term). First of all, students should be presented with clear
requirements right from the start. A widespread cause of failure is the
misunderstanding that they will only be required to talk about programming
principles (much like in a secondary school oral exam) rather than to get
programs to work. A test-oriented approach to programming is part of the
background of experienced programmers, but is completely new (and certainly
not obvious) for first year undergraduates. Second, student lack instruments for
self-assessment. Used as they are to constant, personalized tutoring by high
school teachers, in their first university year they are abruptly confronted with
impersonal teaching and long-term objectives, which they are expected to reach
unsupervised. This implies that sometimes they just fail to see the problems
they are facing until it is too late to solve them. We believe that administering

Using Web-CAT to improve the teaching of programming to large university classes
regular programming homework, with machine-generated feedback, can
alleviate both the above problems.

On the other hand, the above teaching philosophy leaves teachers in
the dark about their classes during the term, when corrective actions may have
the highest impact. Mid-term exams are banned or discouraged due to cramped
term schedules. Individual students can still go to weekly consultation meetings
with teachers, of course, but very few actually do (partly because of the lack of
feedback, as discussed above), and those who do hardly represent a
statistically significant sample. Therefore, teachers lack the required feedback,
and cannot direct more effort to those students for whom extra effort makes the
difference (i.e., set up supplementary labs or classes for students who lack
background, correct frequent programming mistakes etc.). By using Web-CAT
during the term, teachers can identify deficiencies in real time, and devise
specific and focused corrective actions.

Last, but not least, deans and department directors should be able to
peer review the teaching activity. This may be required for several reasons:
collective evaluation of department performance by national bodies (see again
[DM47]), evaluating individuals for career advancement, coordinating and/or
sharing best practices among teachers of similar subjects, identifying the
causes of poor or unusual performance (on either side). As of today, the only
reliable data gathered in our university are exam grades. Failures are not
recorded, which makes it hard to infer pass rates, and we cannot correlate
exam performance and in-term homework performance either (because there is
no record of the latter). Web-CAT, by recording the performance of individual
students, allows for extracting aggregate performance indexes.

The above-mentioned expected benefits cannot be reaped unless the
majority of the students, possibly all, use Web-CAT routinely. Let us analyze
possible reasons why they might not. The first one is that, unlike in American
universities, here students cannot – and will not – be judged based on their in-
term homework. This is because basing end-term marks on in-term homework
grades would encourage cheating, since it is impossible to verify students’
identity in a remote environment. Lacking a clear reinforcement, students may
be discouraged to use the system, because this requires an immediate effort
and pays off only in the long run. The second one is that today’s students are
privacy-conscious. They might perceive that, by using Web-CAT during their
learning, they are exposing more of themselves than they really want to, and
that their possible mistakes may negatively bias the teacher. The first issue can
be mitigated by enriching the feedback that Web-CAT provides (which is
already quite detailed) and by using it for the end-term exams as well.
Anonymized student access (e.g., through untraceable credentials during the
term) is an easy cure for the second issue.

Moreover, students are often too much result-oriented. Especially when
lacking previous exposure to programming (e.g., in the first year), there is an
actual risk that a positive machine-generated feedback (i.e., a 100% test
compliance) will be mistaken for the true objective (i.e., writing good, correct
programs). Worse yet, a high rate of compliance (e.g., 80%) might be mistaken
for a positive feedback, whereas it may instead indicate that only the obvious
tests were passed, and that the program does nothing significant in the general

	
ISBN 978-88-98091-10-2	 353

DIDAMATICA 2013

As far as the C++ plugin is concerned, testing is based on the Cxx
framework, [Cxx 2013], which requires teachers to write a test class with the
related methods. The plugin allows students to submit test plans as well as
code, and it can evaluate test coverage besides code correctness.

Web-CAT is implemented in Java using the WebObjects framework
[WebObjects, 2013]. From an architectural standpoint, it consists of three tiers:
the client tier (i.e., the web browser); the server tier, where the logic resides,
and java classes that support the generation of dynamic web pages are
managed; the database tier, which manages information related to courses,
students and assignments.

3. Contributions
We are about to experiment Web-CAT in the first year of the BSc in

Computer Engineering at our university, after testing with it and finding it fit for
our purposes [Del Vigna 2012][Salvini 2012][Formichelli 2012]. Web-CAT can
be used for in-term homework assignment. In this role, its purpose is a) to
present students with personalized self-assessment feedback, and b) provide
instructors with aggregate, class-wise performance metrics in real time.
Furthermore, Web-CAT acts as a database that can be mined by teachers to
infer relationships between in-term performance (i.e., the learning process) and
end-term exam results. We believe that this is the real enabler for long-term
improvement of teaching practices. Finally Web-CAT can be used to manage
end-term exams (whose grades actually matter), helping teachers to manage
large classes. We now describe the motivations and expectations, the
extensions that we have already developed, and those that are on the agenda.

3.1 Motivations, expectations and difficulties
For historical reasons, our teaching practice is based on the following

philosophy: “ignore the process, grade the results”. Teachers do not normally
intervene in the learning process of their students, which are expected to be
autonomous, and they only grade exam papers. It is our belief that this
philosophy is now counterproductive. Many students who fail (at least at first)
might have succeeded if advised on their learning process early enough (i.e.,
during the first term). First of all, students should be presented with clear
requirements right from the start. A widespread cause of failure is the
misunderstanding that they will only be required to talk about programming
principles (much like in a secondary school oral exam) rather than to get
programs to work. A test-oriented approach to programming is part of the
background of experienced programmers, but is completely new (and certainly
not obvious) for first year undergraduates. Second, student lack instruments for
self-assessment. Used as they are to constant, personalized tutoring by high
school teachers, in their first university year they are abruptly confronted with
impersonal teaching and long-term objectives, which they are expected to reach
unsupervised. This implies that sometimes they just fail to see the problems
they are facing until it is too late to solve them. We believe that administering

Using Web-CAT to improve the teaching of programming to large university classes
regular programming homework, with machine-generated feedback, can
alleviate both the above problems.

On the other hand, the above teaching philosophy leaves teachers in
the dark about their classes during the term, when corrective actions may have
the highest impact. Mid-term exams are banned or discouraged due to cramped
term schedules. Individual students can still go to weekly consultation meetings
with teachers, of course, but very few actually do (partly because of the lack of
feedback, as discussed above), and those who do hardly represent a
statistically significant sample. Therefore, teachers lack the required feedback,
and cannot direct more effort to those students for whom extra effort makes the
difference (i.e., set up supplementary labs or classes for students who lack
background, correct frequent programming mistakes etc.). By using Web-CAT
during the term, teachers can identify deficiencies in real time, and devise
specific and focused corrective actions.

Last, but not least, deans and department directors should be able to
peer review the teaching activity. This may be required for several reasons:
collective evaluation of department performance by national bodies (see again
[DM47]), evaluating individuals for career advancement, coordinating and/or
sharing best practices among teachers of similar subjects, identifying the
causes of poor or unusual performance (on either side). As of today, the only
reliable data gathered in our university are exam grades. Failures are not
recorded, which makes it hard to infer pass rates, and we cannot correlate
exam performance and in-term homework performance either (because there is
no record of the latter). Web-CAT, by recording the performance of individual
students, allows for extracting aggregate performance indexes.

The above-mentioned expected benefits cannot be reaped unless the
majority of the students, possibly all, use Web-CAT routinely. Let us analyze
possible reasons why they might not. The first one is that, unlike in American
universities, here students cannot – and will not – be judged based on their in-
term homework. This is because basing end-term marks on in-term homework
grades would encourage cheating, since it is impossible to verify students’
identity in a remote environment. Lacking a clear reinforcement, students may
be discouraged to use the system, because this requires an immediate effort
and pays off only in the long run. The second one is that today’s students are
privacy-conscious. They might perceive that, by using Web-CAT during their
learning, they are exposing more of themselves than they really want to, and
that their possible mistakes may negatively bias the teacher. The first issue can
be mitigated by enriching the feedback that Web-CAT provides (which is
already quite detailed) and by using it for the end-term exams as well.
Anonymized student access (e.g., through untraceable credentials during the
term) is an easy cure for the second issue.

Moreover, students are often too much result-oriented. Especially when
lacking previous exposure to programming (e.g., in the first year), there is an
actual risk that a positive machine-generated feedback (i.e., a 100% test
compliance) will be mistaken for the true objective (i.e., writing good, correct
programs). Worse yet, a high rate of compliance (e.g., 80%) might be mistaken
for a positive feedback, whereas it may instead indicate that only the obvious
tests were passed, and that the program does nothing significant in the general

	 DIDAMATICA 2013
354	 Pisa, 7-8-9 Maggio - Area della Ricerca CNR

DIDAMATICA 2013

case. We believe that this risk can only be mitigated by repeatedly stressing
that (full) test compliance is a necessary, but by no means a sufficient condition
for program correctness. This burden clearly rests on the teachers themselves.

3.2 Extensions of Web-CAT functionalities
Our first use of Web-CAT will be as a learning aid. Hence we have

concentrated our first extension efforts in the direction of making it more useful
as that. We plan to extend it to include the exam part later, and we will provide a
roadmap for the planned extensions at the end of this section.

Our first extension is to integrate an interface to tag programming
assignments. Tags are semantic contents (e.g., “pointers”, “list”, “recursion”,
etc.) associated to individual assignments [Formichelli 2012][Salvini 2012]. The
Tagging interface includes support for inserting, editing and removing tags by
teachers. Tags are permanently stored in the database, with exercises and
related assessments. This allows one to perform a-posteriori analyses by using
tags as categories of filtering. To perform customizable analyses, we added an
analytics subsystem by integrating with the Web-CAT database a
JasperReports Server [JasperSoft 2013], a stand-alone and embeddable
reporting server. JasperReports provides reporting and analytics that can be
embedded into a web application, in a variety of file formats, to share reports
and analytic views. The client application, iReport, supports a web-based, drag-
and-drop report designer to create interactive reports for dashboards, as well as
a Query designer to create customized report templates. Fig. 3 shows an
overall picture of the tagging and analytics process. Teachers tag exercises via
the Web-CAT teacher interface, as part of the preparation of exercises. When
exams are graded, Second, the grading process is accomplished, once the
exam is finished. Third, customized reports are made via JasperReports, to
support the assessment process. The assessment process, in turn, may lead to
new analyses/tags. Fig. 4 shows an excerpt of a customized analytics report
made with iReport. Here, the tags assigned by the teacher are represented with
different colors, defined in the legend on the bottom. The report shows the
number of passed assignments for each student, and it is aimed at discovering
possible problems related to specific topics.

As second extension we devised a language-independent plugin
[Amadio 2013]. While the testing frameworks for Java and C++ is language-
dependent and requires teachers to become familiar with specific testing
frameworks, a test campaign may just rely on comparing the actual and
expected program outputs obtained with a given input, whatever the language.
To use this plugin, a teacher only needs to provide a link to the compiler and to
a directory of matching input and output files. Obviously, input-output testing
can be less accurate or insightful than the testing done using the Java and C++
plugins, but requires no extra effort on the part of the teachers, which makes it
useful for specific purposes (e.g., a short Assembly language course, or
learning the ropes of algorithms and functional programming before getting to
use object-oriented languages). The new plugin has been tested with a C
compiler. Part of the side benefits of this extension has been to acquire know-
how on coding new plugins and getting an idea of the required effort.

Using Web-CAT to improve the teaching of programming to large university classes

Fig. 3 – Tagging and analytics process via Web-CAT and JasperReports

Fig. 4 – An excerpt of a customized analytics report made with iReport

3.3 Ongoing efforts
We have already argued that Web-CAT should be used for end-term

exams as well. While automated grading (if taken with a grain of salt) is useful
as an in-term feedback for both students and teachers, end-term grading should
really be manually generated by the teachers themselves. On one hand, this
poses problems of scale: grading 100+ complex assignments several times per
year is time-consuming. Add to this the widespread student practice of “ten-
percenting”, i.e. carelessly tackling all the exam opportunities (as many as eight
times per year), in the hope to compensate for a poor chance of success (note
that our students get no career penalties for failing exams serially). A back-of-
the envelope computation shows that a mere 20% of ten-percenters in a class
of 150 succeeds in doubling the annual grading load of a teacher. On the other
hand, and more importantly, when manual grading is required, the relevant
question is: how do you grade a program that does not do what required? It is,
in fact, far easier to grade a program which meets the specifications, e.g. based
on efficiency, neatness or readability. The answer to the above question

	
ISBN 978-88-98091-10-2	 355

DIDAMATICA 2013

case. We believe that this risk can only be mitigated by repeatedly stressing
that (full) test compliance is a necessary, but by no means a sufficient condition
for program correctness. This burden clearly rests on the teachers themselves.

3.2 Extensions of Web-CAT functionalities
Our first use of Web-CAT will be as a learning aid. Hence we have

concentrated our first extension efforts in the direction of making it more useful
as that. We plan to extend it to include the exam part later, and we will provide a
roadmap for the planned extensions at the end of this section.

Our first extension is to integrate an interface to tag programming
assignments. Tags are semantic contents (e.g., “pointers”, “list”, “recursion”,
etc.) associated to individual assignments [Formichelli 2012][Salvini 2012]. The
Tagging interface includes support for inserting, editing and removing tags by
teachers. Tags are permanently stored in the database, with exercises and
related assessments. This allows one to perform a-posteriori analyses by using
tags as categories of filtering. To perform customizable analyses, we added an
analytics subsystem by integrating with the Web-CAT database a
JasperReports Server [JasperSoft 2013], a stand-alone and embeddable
reporting server. JasperReports provides reporting and analytics that can be
embedded into a web application, in a variety of file formats, to share reports
and analytic views. The client application, iReport, supports a web-based, drag-
and-drop report designer to create interactive reports for dashboards, as well as
a Query designer to create customized report templates. Fig. 3 shows an
overall picture of the tagging and analytics process. Teachers tag exercises via
the Web-CAT teacher interface, as part of the preparation of exercises. When
exams are graded, Second, the grading process is accomplished, once the
exam is finished. Third, customized reports are made via JasperReports, to
support the assessment process. The assessment process, in turn, may lead to
new analyses/tags. Fig. 4 shows an excerpt of a customized analytics report
made with iReport. Here, the tags assigned by the teacher are represented with
different colors, defined in the legend on the bottom. The report shows the
number of passed assignments for each student, and it is aimed at discovering
possible problems related to specific topics.

As second extension we devised a language-independent plugin
[Amadio 2013]. While the testing frameworks for Java and C++ is language-
dependent and requires teachers to become familiar with specific testing
frameworks, a test campaign may just rely on comparing the actual and
expected program outputs obtained with a given input, whatever the language.
To use this plugin, a teacher only needs to provide a link to the compiler and to
a directory of matching input and output files. Obviously, input-output testing
can be less accurate or insightful than the testing done using the Java and C++
plugins, but requires no extra effort on the part of the teachers, which makes it
useful for specific purposes (e.g., a short Assembly language course, or
learning the ropes of algorithms and functional programming before getting to
use object-oriented languages). The new plugin has been tested with a C
compiler. Part of the side benefits of this extension has been to acquire know-
how on coding new plugins and getting an idea of the required effort.

Using Web-CAT to improve the teaching of programming to large university classes

Fig. 3 – Tagging and analytics process via Web-CAT and JasperReports

Fig. 4 – An excerpt of a customized analytics report made with iReport

3.3 Ongoing efforts
We have already argued that Web-CAT should be used for end-term

exams as well. While automated grading (if taken with a grain of salt) is useful
as an in-term feedback for both students and teachers, end-term grading should
really be manually generated by the teachers themselves. On one hand, this
poses problems of scale: grading 100+ complex assignments several times per
year is time-consuming. Add to this the widespread student practice of “ten-
percenting”, i.e. carelessly tackling all the exam opportunities (as many as eight
times per year), in the hope to compensate for a poor chance of success (note
that our students get no career penalties for failing exams serially). A back-of-
the envelope computation shows that a mere 20% of ten-percenters in a class
of 150 succeeds in doubling the annual grading load of a teacher. On the other
hand, and more importantly, when manual grading is required, the relevant
question is: how do you grade a program that does not do what required? It is,
in fact, far easier to grade a program which meets the specifications, e.g. based
on efficiency, neatness or readability. The answer to the above question

	 DIDAMATICA 2013
356	 Pisa, 7-8-9 Maggio - Area della Ricerca CNR

DIDAMATICA 2013

depends pretty much on the teacher. We refuse to take the draconian shortcut
and grade every bugged program as a no-pass, for the fairly obvious reason
that a 200-line program may fail one test for very trivial reasons, which one
more minute of debugging would have revealed to any student. On the other
hand, our belief is that, whatever the choice a teacher makes, it should not rely
on trying to divine the students’ intention from their code, i.e., to figure out what
the student might have meant to do, if only because it is a time-consuming
exercise, whose results are almost inevitably wrong and biased by the teacher’s
mindset.

Both the above problems can be alleviated, if not entirely solved, by
extending Web-CAT to incorporate self-correction, an alternative approach that
has already been successfully experimented at our university (see [Lettieri
2013]). Students submit their assignment by uploading it on a server, and then
are given a correct program to compare theirs against. Their code is still
automatically tested using a number of predefined tests (which the students
may or may not know beforehand), and students are given the opportunity to
correct their assignment at home, until it passes all the tests. Corrections are
recorded and visualized in the form of differential submission (i.e., lines
inserted, deleted and modified), and the teacher can compare the initial and
final code, see what and how many modifications were required to correct it,
easily identify the bugs in the original submission and clearly follow (instead of
trying to guess) the students’ reasoning. Students cannot request a grade until
their program passes all the tests. Obviously, they know their grade will be
based on their initial submission (which takes place in a controlled
environment), and it is in their best interest to show that only minimum
modifications are required for their code to pass all the tests.

Scalability problems are alleviated because students are required to do
most of the time-consuming work of bug fixing and correction, and teachers are
left with grading. This, in turn, allows teachers to broaden the scope and/or
increase the amount of code that students are required to submit for an exam
test, thus making the exam more accurate: a typical case is exercises on lists-
based data structures, which are often avoided by teachers (especially with
large classes) because they require longer code and are generally harder to
grade when wrong. Besides this, there are benefits for students as well: in fact,
they are requested to correctly accomplish an assignment before they can even
request a grade. Tough as it may seem, it is something with which aspiring
computer engineers must learn to come to terms. Integrating self-correction in
Web-CAT is in fact the next item on the agenda.

Finally, using a web-based system at the exams incurs the risk of
cheating. While some precautions can be taken to prevent students from getting
external aid (e.g., firewalling, diskless systems with limited permits), students’
code should still be cross-checked pairwise to spot suspect similarities. This
can easily be done by using one or more web-based services such as [Moss
2013] to which exam papers of a whole class can be submitted for cross-
checking. At the time of writing, this service is being integrated into Web-CAT.

	
ISBN 978-88-98091-10-2	 357

DIDAMATICA 2013

depends pretty much on the teacher. We refuse to take the draconian shortcut
and grade every bugged program as a no-pass, for the fairly obvious reason
that a 200-line program may fail one test for very trivial reasons, which one
more minute of debugging would have revealed to any student. On the other
hand, our belief is that, whatever the choice a teacher makes, it should not rely
on trying to divine the students’ intention from their code, i.e., to figure out what
the student might have meant to do, if only because it is a time-consuming
exercise, whose results are almost inevitably wrong and biased by the teacher’s
mindset.

Both the above problems can be alleviated, if not entirely solved, by
extending Web-CAT to incorporate self-correction, an alternative approach that
has already been successfully experimented at our university (see [Lettieri
2013]). Students submit their assignment by uploading it on a server, and then
are given a correct program to compare theirs against. Their code is still
automatically tested using a number of predefined tests (which the students
may or may not know beforehand), and students are given the opportunity to
correct their assignment at home, until it passes all the tests. Corrections are
recorded and visualized in the form of differential submission (i.e., lines
inserted, deleted and modified), and the teacher can compare the initial and
final code, see what and how many modifications were required to correct it,
easily identify the bugs in the original submission and clearly follow (instead of
trying to guess) the students’ reasoning. Students cannot request a grade until
their program passes all the tests. Obviously, they know their grade will be
based on their initial submission (which takes place in a controlled
environment), and it is in their best interest to show that only minimum
modifications are required for their code to pass all the tests.

Scalability problems are alleviated because students are required to do
most of the time-consuming work of bug fixing and correction, and teachers are
left with grading. This, in turn, allows teachers to broaden the scope and/or
increase the amount of code that students are required to submit for an exam
test, thus making the exam more accurate: a typical case is exercises on lists-
based data structures, which are often avoided by teachers (especially with
large classes) because they require longer code and are generally harder to
grade when wrong. Besides this, there are benefits for students as well: in fact,
they are requested to correctly accomplish an assignment before they can even
request a grade. Tough as it may seem, it is something with which aspiring
computer engineers must learn to come to terms. Integrating self-correction in
Web-CAT is in fact the next item on the agenda.

Finally, using a web-based system at the exams incurs the risk of
cheating. While some precautions can be taken to prevent students from getting
external aid (e.g., firewalling, diskless systems with limited permits), students’
code should still be cross-checked pairwise to spot suspect similarities. This
can easily be done by using one or more web-based services such as [Moss
2013] to which exam papers of a whole class can be submitted for cross-
checking. At the time of writing, this service is being integrated into Web-CAT.

Using Web-CAT to improve the teaching of programming to large university classes
4. Conclusions and future work

This work has presented the motivations for adopting Computer
Assisted Teaching software in Italian Universities. It has outlined the efforts in
this sense made within the Computer Engineering program of the University of
Pisa, which is adopting Web-CAT as of this term. In order to make the software
more useful, we have customized it, adding functionalities that allow it to be
used by teachers to manage large classes. As we write this paper, we are
beginning on-field trials at the first year of the BSc. Our intention is to get a
feedback from students as for usefulness, usability, possible modifications or
extensions. Assuming positive feedback, our next step will be to increase the
range of course offerings, extending it beyond the programming field. For in-
stance, a logic circuits exam consisting in writing and simulating Verilog micro-
code can be ported on Web-CAT. So can an exam on database systems con-
sisting in writing SQL queries. Our intention is also to use this system, and the
large amount of data it provides, as a case study for research in several fields:
artificial intelligence, for automatic grading of exams; security and privacy, to
allow for anonymized student access during the course; data mining, to discov-
er correlations between objective data (e.g., the number of exam tests solved
before sitting for the exams) and exam performance.

Acknowledgements
We gratefully acknowledge the contribution of several people, without

whom this work would not have been possible. Pericle Perazzo is experiment-
ing Web-CAT within the “Algorithms” course at the BSc Degree in Computer
Engineering, and has provided several assignments and the related tests. We
are also indebted to Rudy Amadio, Gabriele Del Vigna, Daniele Formichelli,
Tommaso Salvini, BScs in Computer Engineering at the University of Pisa, who
have worked on coding/adapting plugins, and have installed, configured, docu-
mented and tested the system.

References
[Amadio, 2013], R. Amadio, “Progettazione e realizzazione di un plugin per la corre-

zione assistita di esercizi in linguaggio C in ambiente Tomcat”, BSc Thesis in Computer
Engineering, University of Pisa, 2013.

[Auffhart et al. 2008] B. Auffarth, M. López-Sánchez, J. Campos i Miralles, A. Puig,
“System for Automated Assistance in Correction of Programming Exercises”, Proc.
CIDUI 2008.

[Checkstyle 2013], Checkstyle, Java code checker, http://checkstyle.sourceforge.net

[Clover 2013], Java and Groovy Code Coverage, http://www.cenqua.com/clover

[Cxx 2013] Yet another C++ test framework, http://cxxtest.com

[Del Vigna 2012], G. Del Vigna, “Sistemi di ausilio per la correzione di esercizi di pro-
grammazione, C.d.L. Ing. Informatica”, BSc Thesis in Computer Engineering, University
of Pisa, 2012.

	 DIDAMATICA 2013
358	 Pisa, 7-8-9 Maggio - Area della Ricerca CNR

DIDAMATICA 2013

[DM47] “Decreto autovalutazione, accreditamento iniziale e periodico delle sedi e dei
corsi di studio e valutazione periodica”, Italian Ministry for University and Research
(MIUR), DM47/2013, available online at http://tinyurl.com/buv4e8p

[Edwards and Pugh 2006] S. H. Edwards and W. Pugh, “Toward a common auto-
mated grading platform,” in SIGCSE ’06: Proceedings of the 37th SIGCSE technical
symposium on Computer science education, (New York, NY, USA), ACM, 2006.

[Formichelli 2012], D. Formichelli, Integrazione di un modulo di reportistica in una
piattaforma web per la correzione assistita di esercizi in linguaggio Java, BSc Thesis in
Computer Engineering, University of Pisa, 2012.

[Ihantola et al. 2010] P. Ihantola, T. Ahoniemi, V. Karavirta, O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments”, Proc. 10th Koli
Calling Int. Conf. on Computing Education Research, pp. 86-93, 2010

[JasperSoft 2013] JasperReports Server, Reporting and Analysis Server,
http://community.jaspersoft.com

 [JUnit 2013], Framework to write repeatable tests in java, http://junit.sourceforge.net

[Lettieri 2013] Giuseppe Lettieri, “Grading faulty programming assignments via stu-
dent-submitted corrections”, proceedings of Didamatica 2013, Pisa, 2013.

[Moss 2013] Moss, a System for Detecting Software Plagiarism, Stanford University,
CA, USA. http://theory.stanford.edu/~aiken/moss/

[PMD 2013] PMD, source code analyzer, http://pmd.sourceforge.net

[Repubblica 2012] M. Massimo, “All’università il precariato è strutturale: la ricerca
senza borsa e senza futuro”, online article, http://www.repubblica.it, 28/3/2012

[Salvini 2012], T. Salvini, “Progettazione e integrazione di funzionalita' migliorative in
una piattaforma web per la correzione assistita di esercizi in linguaggio C++” BSc Thesis
in Computer Engineering, University of Pisa, 2012.

[Schwieren et al. 2006] J. Schwieren, G. Vossen, P. Westerkamp, “Using Software
Testing Techniques for Efficient Handling of Programming Exercises in an e-Learning
Platform”, University of Muenster, Germany, 2006

[Shah 2003] A. Shah, Web-CAT: A Web-based Center for Automated Testing, MSc
Thesis in Computer Science and Applications, faculty of Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA, 2003

[Vastani 2004] H. Vastani, Supporting Direct Markup and Evaluation of Students’
Projects On-line, MSc Thesis in Computer Science and Applications, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, 2004

[Web-CAT] Web-CAT, the Web based Center for Automated Testing, available online
at: http://www.web-cat.org

[WebObjects 2004], Official WebObjects Community Website,
http://www.wocommunity.org

