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a b s t r a c t

Situation awareness is a powerful paradigm that can efficiently exploit the increasing capabilities of
handheld devices, such as smart phones and PDAs. Indeed, accurate understanding of the current situa-
tion can allow the device to proactively provide information and propose services to users in mobility. Of
course, to recognize the situation is a challenging task, due to such factors as the variety of possible sit-
uations, uncertain and imprecise data, and different user’s preferences and behavior.

In this framework, we propose a robust and general rule-based approach to manage situation aware-
ness. We adopt Semantic Web reasoning, fuzzy logic modeling, and genetic algorithms to handle, respec-
tively, situational/contextual inference, uncertain input processing, and adaptation to the user’s behavior.
We exploit an agent-oriented architecture so as to provide both functional and structural interoperability
in an open environment. The system is evaluated by means of a real-world case study concerning
resource recommendation. Experimental results show the effectiveness of the proposed approach.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Situation-awareness (SAW) is a computing paradigm by which
applications can sense and comprehend the user’s situation in
order to anticipate or predict her/his demand (Weißenberg,
Gartmann, & Voisard, 2006).

The fundamental means to achieve situation awareness is the
context, i.e., all relevant data and information (e.g., the user’s posi-
tion in space and time, the surrounding things and events, etc.)
that help the decision maker to understand what is happening in
the environment and then take more informed decisions (Anagnos-
topoulos & Hadjiefthymiades, 2008; Coutaz, Crowley, Dobson, &
Garlan, 2005; Dey, 2001).

The various approaches available in the literature on context
and situation awareness have produced a plethora of domain-
specific frameworks, each characterized by proper sensors and
databases (Gu & Pung, 2005). Usually, contextual data sources
are provided via Service-Oriented Architecture (SOA) interfaces,
and enriched with a domain context ontology, which is a powerful
formalism to model context information, enabling context
reasoning and context knowledge sharing among several, different
applications (Bettini et al., 2010; Gu & Pung, 2005).

Of course, gathering appropriate and easily understandable
information is particularly challenging in a mobile context where

the workspace dynamically and rapidly changes, and data from
multiple and heterogeneous sources may be uncertain and par-
tially true (Korpipää, Mantyjarvi, Kela, Keranen, & Malm, 2003).

To this aim, Korpipää et al. (2003) have proposed a framework for
managing uncertainty in raw data and inferring higher-level con-
text abstractions with a related probability. The framework uses
the shared blackboard metaphor to enable communications among
entities in the system. All context sources publish their data in the
blackboard, which acts as a centralized module to process contex-
tual data and deliver high-level information, i.e., the user’s situation,
to the application. Fuzzy sets are employed to convert unstructured
raw data into a representation defined in a context ontology by
means of predefined fuzzy labels. A confidence value is associated
with contextual data to describe the context uncertainty. Situations
are recognized by means of a basic Bayes classifier, which learns
conditional probabilities from training data for each situation.
Mäntyjärvia and Seppänen (2003) have proposed a system to repre-
sent context information by applying fuzzy membership functions.
In particular, raw data from sensors are converted into context
information by means of fuzzy quantization. Such information is
then employed as input to fuzzy rule-based controllers to adapt
applications according to the context. However, no semantic
description of context is considered. Ranganathan, Al-Muhtadi,
and Campbell (2004) have modeled uncertainty in situation aware-
ness by associating a confidence value with all pieces of contextual
information. The authors adopt three methods to infer the user’s
situation, (i) probabilistic logic, (ii) fuzzy logic, and (iii) Bayesian
networks. In the probabilistic and fuzzy approaches, developers
have to write down their own rules to infer situations, whereas in
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the Bayesian approach developers have to define the network spec-
ifying the relations among contextual information. Gu, Pung, and
Zhang (2004) have proposed a context-aware middleware to sup-
port context reasoning in order to derive the user’s situation. Uncer-
tainty is faced in two manners. First, the context ontology is
extended to allow additional probabilistic markups. Second, Bayes-
ian networks are adopted to support the inference process of the
user’s situation. In Cao, Xing, Chan, Yulin, and Jin (2005), the user’s
situation is assessed as a combination of context information which
is expressed by fuzzy linguistic variables. More specifically, a situa-
tion is represented by a set of three-element tuples, where each tu-
ple contains certain contextual information (e.g., the current
network rate), a linguistic value that characterizes that situation
(e.g., high), and finally the fuzzy membership degree of the contex-
tual information to the linguistic value. Thus, the recognized situa-
tions contain a list of fuzzy degrees referred to several linguistic
values and it is difficult to compare situations with each other and
to rank them. Haghighi, Krishnaswamy, Zaslavsky, and Gaber
(2008) have proposed an approach for situation modeling and
reasoning under uncertainty based on fuzzy theory. Situations are
expressed by multiple contextual conditions joined in a fuzzy rule,
where the consequent represents the degree of confidence in the
occurrence of a situation. Moreover, developers can specify weights
to represent the relative importance of each contextual condition
for inferring a situation.

One of the main problems with the above approaches is that the
relationship between contextual information and situations is sta-
tic, and cannot be adapted to the changing user’s behavior. Indeed,
as formerly pointed out by Byun and Cheverst (2003), when context
awareness is reached by means of predefined rules, users have to
reconfigure the system when their behavior changes, resulting in
a frustrating and annoying task. In order to automatically recognize
the user’s situation related to the user’s behavior, the authors pro-
pose to exploit context history. Adaption is provided by fuzzy deci-
sion trees, which take uncertainty in the raw data into account.
More recently, Hagras, Doctor, Callaghan, and Lopez (2007) have
proposed a novel learning technique to adapt the system to the con-
tinuous changing in the user’s behavior. The technique is an unsu-
pervised data-driven one-pass approach for extracting type-2
fuzzy membership functions and rules from the context history of
the user. However, the authors do not separate the situation determi-
nation phase from the system response phase, on the basis of the in-
ferred situation. Indeed, the sensed contextual information is
immediately employed to adapt the system to the user’s needs,
which are application-specific. For instance, a particular configura-
tion of some sensor values such as internal light level, bed pressure,
and internal temperature can lead to activate the window blinds.
Thus, the concept of situation is lacking in the system. Anagnostopo-
ulos and Hadjiefthymiades (2010) have introduced advanced
semantics in the context representation, combining the fuzzy logic
approach with the semantic one. In particular, advanced represen-
tation schemes concern specialization, mereonomy, mutual exclu-
sion and compatibility. By means of a neuro-fuzzy classification
engine, the system learns to map sets of contextual information to
particular situations, and builds the corresponding fuzzy rules.
However, the proposed system is capable of dealing with physical
contextual information only, such as orientation of the mobile
device, illumination level, humidity. It does not deal with other indi-
rect contextual information, such as user calendars or geographical
maps. Finally, explicit means of representing user’s situations are
also lacking. The logical mapping between contextual information
and situations should be accessible at the knowledge level, to be
easily inspected and edited by the user or by an analyst.

This paper tries to address the question of how to provide a
robust and general approach to situation awareness, in which both
system architecture and behavioral knowledge can be easily

integrated in an open environment, by supporting a variety of con-
textual, possibly uncertain, inputs and providing situational
knowledge to multiple applications. To guarantee such structural
and functional interoperability, the proposed system has been de-
signed in compliance with an agent-oriented approach (Green-
wood, Lyell, Mallya, & Suguri, 2007), which operates at the
knowledge level, shows flexible behavior, easy maintenance, reus-
ability and platform independence. This is achieved thanks to the
use of highly standardized technologies, such as Semantic Web
and Approximate (Fuzzy) Reasoning (Wang, Ma, Yan, & Meng,
2008), as well as architectural patterns such as the Event-Con-
trol-Action (ECA, Costa, Pires, & Sinderen, 2005; Etter, Costa, & Bro-
ens, 2006).

More specifically, the basic behavioral model of the proposed
situation agent is expressed in terms of condition rules. The ante-
cedent part of each rule is made of a logical combination of contex-
tual conditions, referred to as an event in ECA pattern. The
corresponding consequent part models a reaction to the event,
assessing the new user’s current situation and delivering the re-
lated results to an external service. Hence, the transitions of the
user’s current situations are established by the rule base, which
represents the control of the situation-aware system.

Of course, automated context reasoning has to deal with events
that may occur gradually and conditions that are inherently vague
and imprecise. To this aim, fuzzy logic has been adopted in order to
associate a truth degree with each context condition. If more than
one situation is inferred from a given condition, a certainty degree
for each such situation is computed based on the truth degrees of
the condition. In this way the inferred situations can be ranked on
the basis of their certainty degrees. Finally, situations are associ-
ated with a set of relevant tasks that the user would perform in
the specific situation (Luther, Fukazawa, Wagner, & Kurakake,
2008), by means of domain knowledge expressed through task
ontologies.

In general, context awareness and situation awareness rely on a
distributed system. Hence, knowledge portability, integration and
extensibility are key features since context reasoning implies col-
laboration among software agents that manage their own contex-
tual sources. For this purpose, our proposal employs web
knowledge standards such as Semantic Web Rule Language (SWRL,
Horrocks & Patel-Schneider, 2004) and Fuzzy Markup Language
(FML, Acampora & Loia, 2005).

Finally, rule bases are usually created by domain experts that
model the situations in which the average user can be involved,
and her/his behavior. However, users have different habits that
may affect the way in which situations arise. Thus, an appropriate
tuning aimed at adapting the situation model to the specific user is
desirable. In our approach, this can be automatically achieved by
using the context history and exploiting genetic algorithms.

The paper is structured as follows. In Section 2 we present the
adopted architectural pattern (called ECAA in the following); Sec-
tion 3 provides a detailed description of the structure of the pro-
posed general-purpose situation reasoner (called GEPSIR in the
following). Section 4 concerns the design of the Fuzzy Context
Ontology. Section 5 discusses the representation languages em-
ployed in the model. Sections 6–8 are devoted to describe in detail
the modules of the proposed architectural pattern. Section 9 pre-
sents an evaluation case study and, finally, Section 10 draws some
conclusions.

2. The extended architectural pattern ECAA

According to the ECA pattern (Costa et al., 2005), the basic
situational model can be expressed in terms of condition rules,
which have the form
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if < context conditions > then < situation > :

The antecedent part is made by a logical combination of condi-
tions expressed in terms of contextual variables which represent
basic data or sensor samples. For instance, a sensor that detects
whether a person enters a laboratory, a recognition card that the
person carries with her/him. Such combined conditions model
some happening of interest in the application domain or in its
environment. This happening is referred to as an event of interest
in the ECA pattern. For instance, an occurrence of the above men-
tioned context conditions can mean that ‘‘Tom enters the labora-
tory’’. It is worth nothing that the same event could be
alternatively represented in terms of other context conditions,
e.g. based on the output of a facial recognition system.

In our approach, a user’s new situation can be possible only
when new events occur, according to the condition rules. Hence,
the transitions of the user’s current situations are established by
the rule base, representing the control of the situation-aware
system.

Finally, the consequent part of each rule models a reaction to
context information changes, assessing the user’s new current sit-
uation and delivering the related results. In terms of the ECA pat-
tern, this part is referred to as an action, because it is responsible
for an outcome which affects an external module (e.g., a situa-
tion-aware actuator or service). In our system, the action is made
of both the generation and the delivery of a notification. The gen-
eration of the notification is a knowledge-level task, modeled via
the assessment of the user’s situation, as established in the conse-
quent part of the transition rule. The delivery of the notification is a
transport-level task, modeled in a domain-independent manner
according to service oriented architecture standards. Thus, the
ECA pattern can reflect the inferential nature of context-aware pro-
cessing, whose behavior can be entirely expressed through modu-
lar rules with a high interoperability.

In this paper we propose an extension of the ECA architectural
pattern. The extended pattern, named ECAA (Event Control Action
Adaptation), provides a high-level structure that helps in the de-
sign of situation-aware applications, solving recurring problems
associated with the management of situation information upon
context changes. As previously stated, in our approach an applica-
tion model defines the behavior via condition rules. Fig. 1 shows
the structure of the ECAA pattern, its top modules and the relation-
ships among them. Here, solid and dashed boxes represent func-
tional modules and information, respectively. The fundamental
components are the Context Processing, the Reasoning Engine, the
Situation Assessment, and the Behavior Tuning modules. The pattern
reflects the proactive nature of context-aware applications as well
as the necessary customization to fit user’s characteristics. The
Context Processing module detects events that occur in the context

source and are significant to fire one or more rules; the Reasoning
Engine module monitors rule conditions and triggers update ac-
tions when a condition is satisfied; this module is provided with
high-level behavior descriptions (condition rules); the Situation
Assessment module implements the actions for the situation rank-
ing, identification, and notification.

Each rule in the Behavior Description knowledge base is ex-
pressed by using linguistic variables. For each linguistic variable,
we define a set of linguistic values and associate a fuzzy set with
each value. The fuzzy sets describe the meaning of the linguistic
values. This meaning is generally fixed by considering a generic
user in the domain ontology. Actually, different users may have dif-
ferent behaviors. Thus, in order to take the specificity of each user
into account, we use the context history of the specific user and
adopt a genetic algorithm for adapting the meaning of the linguis-
tic values used in the rules. This process is managed by the Behav-
ior Tuning module.

3. The software architecture of GEPSIR

Fig. 2 presents a generic software architecture for managing sit-
uation awareness. The application controller of a situation-aware
service (represented with a gray box) accesses the user’s current
situation/context via the Situation Reasoner (SR) module, a do-
main-independent web service which steers the control flow of
the reasoning, based on the ECAA pattern. More specifically, the
SR (i) gathers data coming from contextual sources, available via
a generic SOA interface, (ii) loads the knowledge base (domain
ontologies, rules and linguistic variables), (iii) infers the situation
once contextual conditions are assessed, (iv) updates the situa-
tion/context history for the tuning of linguistic variables.

Raw contextual sources are processed by specialized modules
(represented on the right in the figure). This low-level processing
is abstracted by the Context Source (CS) module. The activities pro-
vided by the specialized CS module include: (i) sensing: gathering
source information from sensor devices, e.g., location information
(latitude, longitude, speed) from a GPS device; (ii) aggregating (or
fusion): observing, collecting and composing context information
from various providers, e.g., combining location information from
GPS and RFID devices, for outdoor and indoor sensing, respectively.
The activities provided by the SR module include: (i) inferring:
interpretation of context information in order to derive another
type of context information, the situation information; (ii) focus-
ing/instantiation: the projection of context information on given
instances and on given situations, e.g., focusing on the temporal
window represented by the next appointment in the user’s agenda.

The above architecture can be used as a modular engine for
open environments. We can chain multiple instances of it in a

Fig. 1. ECAA, an extension of the Event-Control-Action pattern for situation awareness.

10798 M.G.C.A. Cimino et al. / Expert Systems with Applications 39 (2012) 10796–10811



hierarchy of SRs. Indeed, there could be many inference levels in
situation processing. Thus, one can envision many abstraction lev-
els, each supported by an inference level. As shown in Fig. 3, in this
chain of situation processing, the outcome of an SR unit becomes
input to a higher level SR unit in the hierarchy, until a top (appli-
cation) level is reached. The two types of components, CS and SR,
follow a hierarchy pattern defined by Costa et al. (2005). CS com-
ponents encapsulate single domain sensors, such as time, position,
speed. Hierarchical chains of CS and SR can be represented as a di-
rected acyclic graph, in which a CS can be only an initial vertex of
the graph, whereas an SR can be only an intermediate or final ver-
tex. In Fig. 3, the directed edges of the graph, concerning context
and situation information flows between units, are represented
with dashed and solid lines, respectively. Hence, multiple levels
of inference can be realized by connecting reasoners with a single
level of inference, according to a knowledge distributed (agent-
based) approach.

Let us consider more specifically the components of the SR
module, as depicted in Fig. 4. The Situation Observer is responsible
for observing context changes sensed by CS components and, as a
consequence of these changes, for triggering actions that produce
the situation assessment, according to the behavior description.
The behavior description consists of Ontology, Linguistic Variables
and Rules that describe the situation in terms of context rules. A
rule engine (or reasoner) is able to process the knowledge base
and fire the rules. In Fig. 4, two different reasoners have been in-
cluded, namely the Semantic reasoner and the Fuzzy reasoner,
whose activities are coordinated by the Situation Observer. More
specifically, upon the occurrence of context conditions sensed via
the Context Source, the Situation Observer has the capability to
check the knowledge base for rules which are fired by these
changes, and to coordinate the execution of both engines.

The produced situations are then used by a situation-aware
application to adapt its services, and recorded by the Context
History Sampler. Context History is employed to adapt to the specific
user the meaning associated with the linguistic terms used in the
linguistic variables, via the Linguistic Tuner.

The above architectural view is introductory for a detailed view
of the functional modules, discussed in the next sections and aimed
at proposing a generic scheme for the solution of situation
awareness problems. The scheme contains components, their
responsibilities, their relationship, as well as exhibits some desir-
able properties, such as: (i) to provide a common vocabulary and
understanding for design principles; (ii) to offer a means for speci-
fying situation-aware architectures; (iii) to support the construc-
tion of software agents with defined properties; (iv) to build
complex and heterogeneous situation-aware middlewares; (v) to
help managing software complexity. The solution has been devised
to decouple contextual management issues, such as context sensing
and processing, from situational reasoning upon context changes.

4. The design of the knowledge base via the Fuzzy Context
Ontology

Building a domain ontology is an expensive task, since it is dif-
ficult to extract relevant knowledge from the problem domain and
to express it in a proper manner. Generally, an initial prototype is
developed based on explanatory text and/or interviews with do-
main experts. Then the prototype is refined, by testing and modi-
fying it in collaboration with the experts and the potential users
of the system.

The context ontology is located at the core of the SR, allowing
connecting contextual information to situations. In the design of
the context ontology, we faced with two main issues: (i) to repre-
sent both general and specific information in the knowledge base
of the system; (ii) to represent fuzzy information within the Web
Ontology Language. The first issue has been tackled according to
a design pattern suggested by Gu, Pung, and Zhang (2005). More
specifically, the context ontology has been split into an upper
ontology, valid for general concepts, and a set of lower (domain-
specific) ontologies, which detail the upper ontology describing
low-level concepts and their properties. In this way, the upper
ontology is valid for many application scenarios and can be consid-
ered as a stable reference to be specialized for the different do-
mains. Fig. 5 shows the upper context ontology employed in the
system. Here, ovals and arrows represent classes and properties,
respectively. The upper ontology has been designed in a bottom-
up manner, starting from the basic domain concepts and their rela-
tionships as highlighted via interviews to domain experts. For a
more detailed description of the process followed in the ontology

Fig. 2. Architectural support for a general purpose situation reasoner.

Fig. 3. A hierarchy of context sources (CSs) and situation reasoners (SRs).
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design, refer to Ciaramella, Cimino, Lazzerini, and Marcelloni
(2010a).

For the upper context ontology, the following entities have been
identified:

� A User is a person who owns a mobile Device and a Calendar.
Spatial relationships among other Users (such as is-close-to
and is-far-from) and Places (such as is-close-to, is-far-from, and
is-located-in) are defined.
� A User has a name and he/she can be still or moving. Users also

have a current time and can be in one or more situations.
� A Calendar contains Appointments, which are organized by Users

and count participants in (i.e., has-participant).
� An Appointment is located in a Place and is scheduled at an Inter-

val, which has a start-time (i.e., is-started-at) and an end-time
(i.e., is-ended-at).
� Finally, time relationships among Time Instants are defined,

such as is-after, is-before, is-close-to, and is-far-from.

Very general concepts such as Time and Place are inherited from
publicly available ontologies (Ding, Chen, Kagal, & Finin, 2011;
Hobbs & Pan, 2006), according to the best practices of reusing

domain ontologies. In Fig. 5, these concepts have been included
in a dashed rectangle.

Domain-specific ontologies are bound to the upper ontology
when necessary, narrowing down the scale of the semantic
database (Gu & Pung, 2005) and enabling an easy transition of
the system from an application domain to another.

In the Semantic Web domain, the Web Ontology Language
(OWL, Bechhofer et al., 2004) is the basic language traditionally
employed to author ontologies. OWL is a W3C standard, well-sup-
ported by semantic engines. In order to manage fuzzy information
in an OWL compliant ontology, we used a representation pattern
proposed in (Ciaramella, Cimino, Marcelloni, & Straccia, 2010c).
The pattern, named Fuzzy Ontology Representation (FOR), consid-
ers a fuzzy property as a relation between two concepts, represent-
ing additional attributes to describe each relation instance. It is
applicable to properties that are related to the same base variable
and to the same pair of concepts. As an example, let us consider
the base variable distance, and the concepts User and Place. Depend-
ing on the actual value of the distance, and considering a prefixed
set of distance intervals, we can establish properties like User
is-located-in a Place, User is-close-to a Place, and User is-far-from a
Place, related to spatial proximity. The presence of each property
depends on the membership of the distance value to a prefixed
interval. Fig. 6a shows a representation of such example, with the
three aforementioned properties and corresponding truth intervals.
For instance, in a specific application domain it could be said that a
User is-close-to a Place when the distance between the user and the
place belongs to the interval close-to ([30,90] m), more formally is-
close-to|close-to. Fig. 6b shows an abstract representation of this
mechanism, for a series of n properties and related n intervals. In or-
der to capture vagueness in this representation, in Fig. 6c the FOR
version is shown. Here, an OWL group of properties is transformed
into a concept, which includes a specification of the degree for each
property. In other words, we assert that there is a property with a
certain degree. Each degree is the membership level of the base var-
iable to a specific fuzzy set. It is worth noting that this scheme can
be used also in case of a property related to a single concept. In such
case, the concept property corresponds to the concept itself. As an
example, Fig. 6d shows the representation of the aforementioned
fuzzy properties concerning the spatial proximity.

The FOR pattern is RDF and OWL compliant. Indeed, it follows
other solutions in the literature, which represent a relation as a
class rather than a property.1 As a result, it is possible to extend

Fig. 4. Component diagram of the proposed general purpose situation reasoner.

Fig. 5. The upper context ontology. 1 http://www.w3.org/TR/swbp-n-aryRelations/#pattern1.
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any property with fuzzy characters using conventional RDF/OWL en-
gines. Fig. 7 shows the upper context ontology expanded with fuzzy
properties using the FOR pattern.

5. Representation languages for situation reasoning

However, it has been recognized in the literature that OWL has
expressive limitations, particularly with respect to the representa-
tion of properties (Horrocks & Patel-Schneider, 2004). Thus, exten-
sions of OWL based on rule languages have been proposed in the
literature. Horrocks and Patel-Schneider (2004) have introduced
the OWL Rules Language (ORL), adding rules as a new kind of ax-
iom in OWL. However, using such rules can lead to undecidability.
Motik, Sattler, and Studer (2004) have proposed a decidable exten-
sion of OWL with rules, where each variable in the rule is required
to occur in a non-DL-atom in the rule body. Starting from 2004, a
proposal (Horrocks et al., 2004) for an extension of OWL with rules
has been submitted to the W3C. The proposed language has been
named the Semantic Web Rule Language (SWRL) and it combines
the OWL Language with the Rule Markup Language, a markup lan-
guage to express rules in XML.

To deal with uncertainty in the Semantic Web, several exten-
sions of OWL have been proposed, as reported in Stoilos, Simou,

Stamou, and Kollias (2006). Actually, a mechanism to represent va-
gue and imprecise knowledge and information is highly desirable.
In the literature, rule languages that take uncertainty into account
have been introduced. Pan, Stoilos, Stamou, Tzouvaras, and Hor-
rocks (2006) have proposed f-SWRL that extends SWRL enabling
fuzzy rules. More specifically, condition atoms in a rule can include
a weight that represents the importance of the atom in the rule it-
self. Wang et al. (2008) have enhanced f-SWRL enabling the repre-
sentation of the importance of membership degrees. Recently, a
Rule Interchange Format (RIF, Boley et al., 2010) has become a
W3C candidate recommendation to enable an interchange format
among existing rule systems. The working group has designed a
family of languages, called dialects, in order to cover the broad cat-
egories of rule systems: first-order logic, logic-programming, and
action rules (Kifer & Boley, 2005). However, no dialects of RIF pro-
vide a support to manage fuzzy rules (Wang, Ma, Yan, & Zhao,
2010). Some non-standard extensions have been proposed, such
as RIF Fuzzy Rule Dialect (FRD) based on fuzzy sets (Wang et al.,
2010) or RIF Uncertainty Rule Dialect (URD) to represent directly
uncertain knowledge (Zhao & Boley, 2008).

In our system we used standardized Semantic Web formalisms
(Ding et al., 2005), i.e., the Web Ontology Language (OWL) and the
Semantic Web Rule Language (SWRL), to express the semantic data-
base and the semantic rule base, respectively. More specifically, the

Fig. 6. (a) Concrete representation of three properties related to the spatial proximity, with corresponding truth intervals; (b) abstract representation of interval-related
properties; (c) abstract representation of fuzzy set-related properties with the FOR pattern; (d) concrete representation of the fuzzy property spatial proximity with the FOR
pattern.
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semantic database is formed by the context ontology that allows
connecting contextual information to situations. The upper context
ontology has been shown in Fig. 5. The context ontology is mainly
devoted to maintain contextual conditions that hold in the system,
providing the antecedents to fire the semantic rules. The semantic
rules are the core of the situation reasoning process, enabling the
inference of current user’s situations. Fig. 8a shows an example of
a SWRL rule expressed in the human readable syntax, commonly
employed in rule editor GUI.2 In Fig. 8b the same rule is also ex-
pressed in natural language. We point out that there are two types
of antecedent conditions, i.e., crisp (binary) and fuzzy, represented
in Fig. 8b in bold and italic bold, respectively. The condition ‘‘is a par-
ticipant’’ is derived from the user’s calendar, and is inherently crisp,
whereas the other conditions can be assessed only with vagueness.
This implies that also the conclusion inferred from the rule is charac-
terized by vagueness.

With respect to XML and RDF serializations, which are rather
verbose and not particularly easy to read, the human readable form
is very usable by designers (Lim, Dey, & Avrahami, 2009).

The fuzzy knowledge base has been represented by using the
Fuzzy Markup Language (FML, Acampora & Loia, 2005). FML is an
XML-based language used to model fuzzy controllers. It provides
a platform-independent grammar over shared resources. FML is
particularly suitable for: (i) distributing the fuzzy control flow, in
order to minimize the global deduction time and to better exploit
the natural distributed knowledge repositories; (ii) acquiring, on-
line, the user’s behavior and environment status, in order to apply
context-aware adaptivity (FML, Acampora & Loia, 2005). A brief
example of FML fuzzy knowledge base, with a unique linguistic
variable (i.e., the Spatial Proximity) is shown in Fig. 9. Here,
Fig. 9a shows the definition of the membership functions associ-
ated with the linguistic terms ‘‘located-in’’, ‘‘close-to’’, and ‘‘far-
from’’, expressed in the usual graphical representation; Fig. 9b is
the corresponding FML serialization.

In order to describe how the above representations are pro-
cessed by the system, the main modules are illustrated in the fol-
lowing, starting from the context sources.

6. The context sources

In the system, raw contextual data are processed by specialized
modules. This low-level processing is represented by the Context
Source module. Fig. 10 shows how the contextual information is
gathered in our application domain.

We would like to point out that the user’s position is detected by
a Positioning System at the client side. Location estimation can be
based on a GPS signal reader, or can be computed by means of other
technologies, such as GSM and Wi-Fi (Sun, Chen, Guo, & Liu, 2005).
Whatever the positioning mechanism employed, the server is ex-
pected to receive the location of the user, in order to start the infer-
ence process. Such information is represented using an interchange
standard, the GPX (GPS eXchange format),3 an open and widely-
used XML format that allows describing waypoints, tracks and routes.
An example of a GPX waypoint sent to the server is shown in Fig. 11.

Fig. 7. The upper context ontology expanded with fuzzy properties via the FOR pattern.

Fig. 8. An example of a rule expressed in SWRL: (a) human readable syntax and (b)
natural language.

2 In out setting, we used Pellet API to support SWRL rules, http://clarkparsia.com/
pellet. 3 http://www.topografix.com/gpx.asp, accessed on September 2011.
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Hence, the Location Detector module is fed with the user’s posi-
tion. By means of a local database, the Location Detector maintains
the recent history of the user’s positions in order to estimate the
user’s speed. Speed is computed considering the last three
positions of the user. Indeed, experiments have shown that the
accuracy of the GPS receiver of common mobile devices is very
low in evaluating the user’s speed, and then more reliable values
could be derived via positions. In our system, the GPX waypoint
sent by the client is enriched with the information about user’s
speed as shown in Fig. 12.

The Calendaring Interface module provides a generalized interface
for accessing user’s personal calendars. An XML-based exchange
schema for representing the user’s calendar and the related appoint-
ments has been designed, as shown in Fig. 13. The schema comes from
an abstraction of the XML feed representation of Google Calendar.4 In

this way, information about user events can be loaded into the system
regardless the specific software for calendaring.

The Geocoding Interface module allows a mapping between geo-
graphic data (expressed in a mnemonic manner, such as street ad-
dress or city name) and geographic coordinates (i.e., latitude and
longitude). Moreover, it provides a list of the geographically near-
est stores or service locations, such as schools, hospitals, bus stops,
etc. The exchange format for this module has been directly derived
from the Google Maps API,5 a free web mapping service.

By exploiting this module, the system is able to locate exactly a
user’s appointment, to compare that location with the user’s posi-
tion, and to find some points of interest in the user’s area. Such
information is used to execute the situation assessment rules.

7. The architectural core of the Situation Reasoner

The Situation Reasoner encapsulates the knowledge processing,
coordinating the communication of internal engines, via the Obser-
ver design pattern (Gamma, Helm, Johnson, & Vlissides, 1995). This
allows using independently fully standard-compliant mechanisms
to manage web semantic and fuzzy engines, i.e., OWL/SWRL and
FML based, respectively. Fig. 14 shows a detailed view of the three
modules involved in the situation reasoning process.

In the SituationObserver package, the Observer module steers the
execution flow of the other modules. The Observer acts as a bridge
between the fuzzy and semantic reasoners. It takes the context
sources via the ContextGathering module, which is responsible for
collecting online input data related to the context (e.g., the user’s
current position). Such data are used by the ContextMaintainer
module to handle a collection of ActualConditions. An ActualCondi-
tion is an object model representing an instance of a possibly fuzzy
ontologic relation, i.e., a quadruple

Fig. 11. A fragment of a GPX waypoint containing the user position.

Fig. 12. A fragment of a GPX waypoint enriched with the user speed.

Fig. 9. (a) Classical visual definition of fuzzy linguistic variable Spatial Proximity and (b) its FML serialization.

Fig. 10. The context sources.

4 www.google.com/calendar/, accessed on September 2011. 5 code.google.com/apis/maps/index.html, accessed on September, 2011.
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hsubject;predicate; object; fuzzyMembershipi:

This model extends RDF canonical triples with fuzzy member-
ship, providing an optional fuzzy membership value. The extension
is compliant with the foundational specification of the Semantic
Web technology stack.6

An ActualCondition instance is created/updated by the Context-
Maintainer by means of both the formal ontology and the current
context sources. More specifically, this is done in the two-step pro-
cess shown in Fig. 15. First, an instance of FormalCondition is cre-
ated via the formalization process, which takes as input the
knowledge base. A formal condition can be used for multiple indi-
viduals (e.g., users). For example, let us consider the (formal)
condition A is-close-to B. There can be a number of occurrences of

this condition in the knowledge base. Hence, the corresponding
FormalCondition instance encapsulates only the structural parame-
ters of such condition, via the formalization process. For example, a
trapezoidal fuzzy set defined by the vertexes 0, 200, 400 and 800,
can represent the semantics of the fuzzy property is-close-to.
Subsequently, many ActualConditions can be derived, considering
the contextual inputs. For example, the position of the user u1

and the location l1, on Friday, 20 October 2011, at 5.03 pm can rep-
resent a context input. We call actualization the process of connect-
ing input sources to the parameters of the formal conditions. In the
case of fuzzy formal condition the actualization process also deter-
mines the corresponding membership degree. The formalization–
actualization process can be an important design pattern in any
knowledge-based context-aware setting.

The Observer module uses the ContextMaintainer, the semantic
and fuzzy reasoners to process the user’s current situations. An in-

Fig. 13. An excerpt of the exchange format for representing calendar information.

Fig. 14. Decomposition of the situation reasoning.

Fig. 15. The formalization–actualization process.

6 See, for instance, N-Quads: Extending N-Triples with Context, http://sw.deri.org/
2008/07/n-quads/.
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stance of SituationsRegister encapsulates the current situations
related to a specific user, as processed by the reasoners.

Let us consider the right side of Fig. 14. In the SemanticReasoner
package, the SemanticEngine module represents a wrapper for a
standard OWL/SWRL compliant engine,7 with augmented interfac-
ing capabilities related to fuzzy semantic rules. In particular, the
SemanticRule is an object model of a (possibly) fuzzy rule (as the
one in Fig. 8), made of semantic classes (ClassAtom) and semantic
properties (PropertyAtom). This object model extends the conven-
tional model available in the SemanticEngine. In the FuzzyReasoner
package, the fundamental modules are related to the fuzzy operators
(e.g., logic connectives) and to the fuzzy membership processing,8

implemented in the FuzzyLogicUnit and the FuzzyLinguisticValue
modules, respectively. It is worth noting that a FuzzyLinguisticValue
instance is made of ActualCondition instances, processed via context
sources in the SituationObserver package.

In order to show a dynamic view of the system, Fig. 16 repre-
sents a scenario of communication among the most important
modules, by using the UML communication diagram.

The interaction starts with the Observer (1–2), which reads the
ActualCondition objects (by the ContextMaintainer) as canonical onto-
logical statements, decoupling the (possibly) fuzzy extension. More
specifically, if the ActualCondition object consists of fuzzy conditions,
the Observer asks the FuzzyLogicUnit for their evaluation (3.a). The
FuzzyLogicUnit returns a certainty value in [0,1] for each uncertain
condition. If the certainty value is larger than zero, the condition will
be considered to be true in the semantic inference. Otherwise the
condition will be considered to be false. Once the fuzzy extension
has been decoupled, the Observer loads the ontological statements
into the ontological model (4), handled by the SemanticEngine. The
Observer runs the SemanticEngine (5). The semantic rules are then
executed, and the ontological properties internal to the SemanticEn-
gine are updated. At that time, the resulting user’s situations can be
derived from such ontological properties. If more than one situation
has become true, the Observer will ask the FuzzyReasoner for the
corresponding membership degree. To this aim, the SemanticEngine
performs a tracing-back (6.a) of the ontological predicates related to
those situations, returning the SemanticRule objects (7.a) correspond-
ing to the user’s current situations. It is worth noting that, since the
crisp (binary) conditions have been already evaluated as true for

those situations, the membership degree of each recognized situation
can be calculated considering only the fuzzy conditions. Such fuzzy
conditions have been already calculated in step 3. Hence, first the
SemanticEngine updates the SituationsRegister (8.a), and then the Ob-
server triggers the FuzzyLogicUnit to deduce the fuzzy membership
degrees for each of the user’s current situations (9.a). The FuzzyLogic-
Unit gets the fuzzy statements (10.a), and returns the membership
degree of each involved situation (11.a), in order to allow the Observer
to update the SituationsRegister (12.a). Basically, a fuzzy situation is
defined as a logical conjunction of contextual conditions; in our set-
tings the certainty degree of a situation is computed as the minimum
of the truth degrees of all the fuzzy contextual conditions.

8. The Behavior Tuning module

As already described, contextual conditions in each semantic rule
are expressed via linguistic variables. In particular, each linguistic
variable comprises a set of linguistic values, each defined by a fuzzy
set, and describes one or more contextual conditions. In general,
such fuzzy sets would be user-dependent, because different users
have different behaviors. For instance, a latecomer user would as-
sign a different meaning to the contextual condition is-close-to, with
respect to a punctual user. In order to recognize properly the current
situation, the system should take the user’s behavior into account.
This personalization allows timely rule firing. In order to show a
method to derive the user’s behavior, let us refer again to the late-
comer user as an example: the situation on-going-meeting has to
be recognized by taking into account some delay scenarios of the
user, and adapting accordingly shape and position of the fuzzy sets.
This process can be done employing the context history.

In the literature, the use of the context history has been ana-
lyzed and proved as extremely effective in enabling personaliza-
tion and adaptation, by discovering recurrent patterns in the data
(Byun & Cheverst, 2003). More specifically, the relevant data to col-
lect about user context history concern the state of context sources
and the related situations. To this aim, the user is supposed to ex-
presses an explicit feedback by signaling the beginning/end of each
occurred situation, holding this process up to collect a sufficient
amount of training data.

Once collected, the context history is employed as training set
for a genetic algorithm (GA). The GA aims to adapt fuzzy sets to
the actual behavior and habit of the user, increasing the accuracy
and responsiveness of the situation assessment. Indeed, GAs have

Fig. 16. Communication diagram for the situation reasoning process.

7 In our setting we used the Jena API, http://jena.sourceforge.net.
8 In our setting, we used the JfuzzyLogic API, http://jfuzzylogic.sourceforge.net.
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been widely used to tune membership functions of linguistic
values in fuzzy rule-based systems. For such methods a specific
term, genetic fuzzy systems, has been coined in the literature
(Herrera, 2008). Although in the last years different algorithms
and procedures have been proposed to learn membership func-
tions from data (Cordón, 2011; Kaya & Alhajj, 2005), in this paper
we refer to the method used in Ciaramella, Cimino, Lazzerini, and
Marcelloni (2010b).

Let us consider a generic linguistic variable Xj shown in Fig. 17.
We assume that each linguistic value is represented by a trapezoi-
dal membership function, Aj,t, whose support is [aj,t,dj,t] and whose
core is [bj,t,cj,t]. Further, for each fuzzy set Aj,t, t = 1, . . . ,Tj � 1, we
suppose that cj,t = aj,t+1 and dj,t = bj,t+1. Finally, aj,1 = bj,1 and
cj;Tj
¼ dj;Tj

coincide with the left and right extremes of the universe,
respectively. Thus, the strong partitions made of these member-
ship functions can be represented by Tj � 1 pairs (aj,t,bj,t), with
t = 2, . . . ,Tj. Let M be the number of linguistic variables that have
to be tuned. The overall database can be defined by the chromo-
some shown in Fig. 18.

We aim to tune the membership functions so as to increase the
capability of the system to recognize the desired situation. To this
aim, we maximize the following fitness function f. Let s1, . . . ,sS be
the possible situations the system can recognize. Let st be the tar-
get situation. Then, f is defined as:

f ¼
P

k
ðlst
ðkÞ �max

r–t
ðlsr
ðkÞÞÞ ð1Þ

where lst
and lsr

are the certainty degrees with which the fuzzy en-
gine recognizes the target situation st and each situation sr different
from st for the sample k in the training set. The training set is built
on the basis of samples of the context history. Each sample is made
of the contextual variables that allow inferring the situation, to-
gether with the user’s situation itself. To give a glimpse of the
context history, let us consider again the semantic rule reported
in Fig. 8.

Here, the context history is made of: (i) the temporal proximity
of the user1 time to the meeting start time; (ii) the spatial proxim-
ity of the user1 position to the place of the meeting; (iii) the spatial
user-proximity of the user1 position to the user2 position. These
contextual values are periodically recorded and associated to the
respective user’s situations. Once the training set is large enough
(a few hundreds of samples for each situation), the GA can be
executed.

We would like to highlight some parameters of our setting. For
each observed situation, we store approximately an average of
400–450 samples (about one per minute). The initial population
of the GA is made of 50 chromosomes. Each individual of the pop-
ulation is randomly generated within the universe of the base vari-
ables. We adopt a BLX-a crossover operator with a = 0.5 (Eshelman
& Schaffer, 1993), an adaptive feasible mutation operator (Vasant &
Barsoum, 2009) and stochastic uniform selection (Baker, 1987).
The algorithm stops when the average fitness of the population,
over 2000 generations, varies less than 10�6. At the end of the
GA execution, the membership function parameters are tuned by
using the values of the chromosome with the highest fitness value.

9. Evaluation case study: service recommendation

In order to show the effectiveness of the proposed approach for
situation awareness, we implemented the overall method in the
field of resource recommendation. In general, recommenders aim
to suggest the most relevant items to the user, usually based on
information about the item ( content-based approach) or on the
user’s relationships with other users of the system (collaborative fil-
tering approach). Indeed, the use of context in recommendation
systems is a recent introduction. The vast majority of the recom-
menders in the literature do not take any additional contextual
information into account (Adomavicius & Tuzhilin, 2011). In the
following, we first introduce a brief literature review about con-
text-aware recommenders, and after we describe our solution
based on the proposed GEPSIR design approach. Finally, we show
simulation results on a case study.

9.1. Context-aware recommenders in the literature

One of the first approaches that acknowledged the importance
of context in recommendation comes from Herlocker and Konstan
(2001). Here task-specific recommendations have been proposed.
A task is identified by a set of sample items related to the task it-
self. For instance, if the user provides a hammer as example item
in a shopping recommender, the system can recommend buying
nails. Such associations can be easily identified automatically by
the system, via association rules. Naganuma and Kurakake (2005)
have proposed a task-oriented service navigation system that sup-
ports users in finding appropriate services by browsing a rich task
ontology. Such ontology contains a variety of real-world structured
tasks and related services. In Luther et al. (2008), the authors have
extended this system by taking the user’s situation into account, in
order to suggest tasks and services actively, without the need for
initial user input. However, this approach does not consider the
uncertainty that affects contextual data in order to infer the user’s
correct situation. Indeed, situations are recognized by applying dy-
namic assertional classification of contextual entities such as the
location, the time and the neighboring people.

Weißenberg et al. (2006) have proposed a system that exploits
situation awareness to provide the user with the desired informa-
tion and services. In this approach, a situation describes a user de-
mand that occurs at a certain time and is formed by a sequence of
contexts defined as a logical expression, such as LocationOfTheUs-
er(stadium) or TypeOfMovement(fast). Both situation inference and
service selection are based on ontologies, to infer first a set of sit-
uations and then a set of services which may be relevant in such
situations. However, no uncertainty issue is considered. Moreover,
the user may be in none, one or many situations in parallel, but no
ranking is given to help the user choose the best fitting situation, or
to list the recommended services in a suitable order. Recently, Pet-
ry, Tedesco, Vieira, and Salgado (2008) proposed ICARE, a recom-
mendation system that returns references to experts in a
requested domain using contextual information. More specifically,
the system improves its recommendations by using the user’s and
expert’s context, privileging those experts who best fit the user’s
current needs. Examples of contextual information are expert’s
availability, approachability, and social distance. Contextual rules
are defined to set appropriate weights in order to decide, given a
context, which contextual information should be favored. Hence,Fig. 17. A generic partition of a linguistic variable.

Fig. 18. The chromosome coding.
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the recommendations are different from one user to another,
according to her/his context. However, ICARE does not consider
uncertainty aspects in the contextual information. Moreover, the
system does not act proactively but waits for the user’s requests
in order to provide the desired recommendations.

Fuzzy logic has been proved to be a promising approach to man-
age the natural uncertainty that affects contextual data. Cena et al.
(2006) have employed fuzzy logic in a context-aware tourism rec-
ommender. The system exploits personalization rules to suggest
services (e.g., restaurants, places to visit, etc.) tailored to the user’s
profile and context. User’s profile is a very important piece of the
system, built by: (i) explicit user’s data, such as age, gender, gen-
eral interests, etc.; (ii) data inferred via fuzzy rules based on do-
main knowledge, such as propensity to spend, specific interests,
etc; (iii) current user’s needs and wishes, by observing the se-
quence of interactions of the user with the system, such as printed
pages, on-line booking, etc. Based on the user’s interests, main-
tained in the profile, and the user’s position, the system computes
an overall score for each service and recommends services in an or-
der depending on the score. Thus, the context is limited mainly to
the user’s location, which acts as a filter to recommend services
close to the user. Moreover, here proactivity of the recommenda-
tions is not provided, but only envisioned as future work. Park,
Yoo, and Cho (2006) have proposed a context-aware music recom-
mendation system that employs fuzzy Bayesian networks and util-
ity theory. In particular, a fuzzy system is exploited to preprocess
contextual data from various sensors and the Internet, in order to
have quantized inputs for the Bayesian network. Based on these in-
puts, the network can infer the user context and assign a probabil-
ity. Finally, recommendations are proposed depending on a final
score, which is computed taking the inferred context and user’s
preferences into account. In this approach, no semantic aspects
of the contextual information are considered. Moreover, the infer-
ence process is entirely based on the Bayesian networks, resulting
in a not easily accessible mechanism for average users.

9.2. The GEPSIR approach for context-aware resource recommender

From the user perspective, a resource recommender shows the
set of the most relevant resources depending on the user’s current
situation. To this aim, the situations inferred by GEPSIR have been
connected by means of domain knowledge expressed by task
ontologies to a set of relevant tasks that, given the situation, the
user would do (Luther et al., 2008). Hence, the current tasks to-
gether with the contextual information are used to recommend re-
sources, in an order that depends on the fuzzy membership
degrees associated with the situation. Further, the recommender
can automatically parameterize services by using the context.
The upper task ontology employed in the recommender is shown
in Fig. 19.

9.3. A real-world case study

The resource recommender has been applied to a real-world
business case, in order to show the effectiveness of the proposed
approach. The business case concerns a pharmaceutical consultant
in typical business situations.

By means of a series of interviews with domain experts, a
knowledge model for the business case has been developed. In par-
ticular, the upper context ontology has been extended with do-
main-specific ontologies, identifying the concepts and relations
among concepts that better describe the business case. Fig. 20
shows the comprehensive context ontology defined for this case
study. The domain-specific context ontology contains specific con-
cepts such as Hospital, Doctor, Meeting, etc. Sub-concepts are repre-

sented by white oval shapes and white directed edges indicate
inheritance.

Moreover, different situations have been identified, and the re-
lated semantic rules have been defined. The situations of interest
are: (i) Meeting Planning, when the user is planning the calendar
of business appointments; (ii) Pre-Meeting On Movement, when
the user is going to have a meeting; (iii) Ongoing Meeting, when
the user is involved in a meeting; (iv) Post Meeting, when the user
has just finished a meeting; (v) Hospital Conference, when the user
is giving a scientific talk in a hospital; (vi) Call for Tenders, when the
user is attending a public auction; (vii) Meal, when the user is hav-
ing a meal during the lunch break.

Afterwards, for each situation, a set of possible tasks and related
resources have been identified, starting from the actual demands of
interviewed experts. Thus, the upper task ontology has been ex-
tended with domain-specific concepts and relations. Fig. 21 illus-
trates a simplified excerpt of the comprehensive task ontology
for the pharmaceutical consultant case study.

In order to tune the linguistic variables of each semantic rule,
the GEPSIR genetic approach has been employed. Firstly, starting
from five real tracks, 21 training tracks have been generated. Each
track contains the user movements for a whole day and the related
context history, as explained in the previous section.

To produce real tracks, we used an Apple iPhone 2G smart phone,
permanently connected to the Internet and to the GPS signal, and
equipped with InstaMapper,9 a free service that enables to track a
phone in real time. To assess the system properties (e.g., the robust-
ness), we simulated other tracks by means of an auxiliary web appli-
cation based on Google Maps API.10 The simulator generates new
tracks based on instructions provided by the user, such as the geo-
graphical coordinates of the starting and end points, the number of
appointments during the day, the distance between each appoint-
ment, etc. Moreover, it can simulate user movements under different
circumstances, such as different means of transportation (walking,
by bicycle or by car), different traffic conditions (without/with traffic
jam), or different weather conditions (sunny day, cloudy, rainy, etc).
Noise has been also introduced to make contextual sources very
close to real world signals. Fig. 22 shows the user interface of the
simulator during a batch generation of the tracks. In particular, some
conditions can be noted in the configuration area, such as weather:
‘calm’ and transportation: ‘by car’.

Starting from the fuzzy linguistic variables in the upper context
ontology, a domain expert defined the set of linguistic terms to be
tuned by the GA. The linguistic variables involved in the tuning
process are: (i) spatial proximity, which represents the distance of
the user from a place, expressed linguistically as close-to and far-
from; (ii) temporal position, which denotes the order between two

Fig. 19. The upper task ontology that connects situations with resources.

9 InstaMapper, http://www.instamapper.com/, accessed January 2011.
10 Google Maps API, http://code.google.com/apis/maps/, accessed January 2011.
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instants of time, and is expressed linguistically as before and after;
(iii) temporal inclusion, which assesses whether an instant of time

belongs to a temporal interval and is expressed linguistically as in-
cluded-in and not-included-in; and (iv) user mobility, which repre-

Fig. 20. The comprehensive context ontology for a pharmaceutical consultant.

Fig. 21. An excerpt of the task ontology defined for the situation Pre-Meeting On Movement.
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sents the speed of the user and is expressed linguistically as still
and moving. Fig. 23a and b shows the linguistic variables defined
by the domain expert and tuned by the GA, respectively.

After the tuning process, the system has been tested by a user,
considering a weekly timetable consisting of 77 appointments. To
assess the reliability and timeliness of the recommender, we
employed the responsiveness as a performance index. Such index
is defined as the average of the differences between the step in
which a situation Si starts/ends for a user and the step in which
the system detects the start/end of the same situation for the same
user. Formally, let Ni be the number of occurrences oi,p of start and
end of a situation Si. For the pth occurrence oi,p, we record the in-
stant of time ti,p at which that occurrence occurs, and the time
t0i;p at which the recommender recognizes the occurrence. Let us
define the responsiveness of the recommender to the situation Si

as:

RespðSiÞ ¼
PNi

p¼1jt0i;p � ti;pj
Ni

: ð2Þ

Table 1 shows the responsiveness of the recommender for each of
the situations occurred during the testing.

We can observe that, as expected, the recommenders that use
partitions tuned by the GA on average outperform appreciably
the recommender with partitions defined by the domain expert.
This result proves the effectiveness of the tuning process.

We have also tested the user acceptance of the recommender
tuned by the GA. In particular, five pharmaceutical consultants
have been asked to evaluate the recommender. To this aim, an
auxiliary web application, based on Google Maps API, has been

Fig. 22. The client-side simulator to generate tracks.

Fig. 23. Linguistic variable partitions for the pharmaceutical consultant case study: (a) defined by a domain expert and (b) tuned by the GA.

Table 1
Responsiveness of the system for the pharmaceutical consultant case study.

Situation (start/
end)

Responsiveness (s)

Recommender defined by the
domain expert

Recommender
tuned by GA

Pre-Meeting (start) 50.519 36.008
Pre-Meeting (end) 86.898 48.238
Ongoing-Meeting

(start)
111.796 84.830

Ongoing-Meeting
(end)

32.171 23.285

Post-Meeting (end) 27.533 23.148
Hospital-

Conference
(start)

117.450 68.857

Hospital-
Conference
(end)

41.610 35.786

Meal (start) 102.746 69.253
Meal (end) 59.298 49.294
Average 70.002 48.744
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developed and used. The application provides an online simulation
interface that is used by the user himself, as shown in Fig. 24.

The user can choose her/his position in the map and provide
information about her/his speed and the current date. The test is
composed by two phases, which comprise a predefined number
of recommendations, i.e., 10 iterations. First, after the user has in-
put the data about her/his position, the application proposes a list
of all resources in the smart phone, without a particular order and
relation with the user’s situation. Thus, the user is invited to
choose the resource that she/he needs, given the figured situation.
In the second phase, the recommender is enabled and, after the
user has input the data about her/his position, the application ex-
ploits the inferred situation to filter the recommended resources.
Hence, the user is invited to choose the desired resource, guided
by the predefined task ontology of the case study. The times re-
quired for the selections of both phases are registered and com-
pared. Results of the tests are reported in Table 2. It is worth
noting that the selection time of a resource is sensibly reduced.
Moreover, in the interviews, users have asserted that they selected
resources that were not foreseen.

Finally, we have evaluated the response time of the system for
each recommendation. In a system equipped with an Intel Core 2
Duo Processor 2.2 GHz, with 3 GB DDR2 of RAM, the average re-
sponse time of the system is 0.932 s, which guarantees a soft real
time response to the user needs.

10. Conclusions

To recognize a situation in which a user is involved leads to bet-
ter identify her/his demand at a certain time. In this paper, a rule-

based, robust and general approach for managing situation aware-
ness is proposed. In the approach, situation is derived from a logi-
cal conjunction of contextual conditions. Domain knowledge is
expressed by means of ontologies and semantic rules, in order to
guarantee portability, integration and extensibility. In this way,
software agents can administrate their own contextual sources,
easily communicating with each other. The overall system can rely
on a formal representation avoiding inconsistency of the knowl-
edge base. Contextual conditions can be affected by uncertainty,
e.g., due to inaccurate sensor measurements or imprecise human
expression concepts. Fuzzy logic theory is employed to effectively
manage the uncertainty, enabling a richer processing of the con-
textual conditions. Thus, a rule base approach with fuzzy and
semantic technologies has been developed.

Using predefined rules to infer situations can lead to unsatisfac-
tory results. Indeed, users have different habits that may affect the
way in which situations arise. Further, the same user can change
her/his behavior over time. In our approach, context history is con-
sidered as a powerful source of information on user’s behavior. By
means of a genetic algorithm, the rule base can be automatically
tuned to fit the actual behavior of the user, increasing the accuracy
and responsiveness of the situation assessment.

Finally, a real evaluation case study concerning resource recom-
mendation has been provided. The study has been focused on a
pharmaceutical consultant in typical business situations. Simula-
tion results assess the reliability and effectiveness of the proposed
approach. Moreover, the user acceptance of the system has been
tested, thus confirming that the GEPSIR approach significantly im-
proves the user interaction.
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