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a b s t r a c t

Tracing items in a supply chain, across different enterprises and through the full processes
scope, is today an inherently complex design task. Enterprises are typically comprised of
hundreds of applications that are custom built at different times, acquired from third
parties and parts of legacy systems, and also operating in multiple tiers of different man-
ufacturing and information system platforms. Further, traceability is characterized by a
goal-oriented approach, in which business-process analyses are driven by goal achieve-
ments rather than by systematic engineering processes. The use of a classical enterprise
integration approach mostly needs tailoring to different applications. Due to the number
and diversity of the systems and of their interactions, and to their dynamicity, it is difficult,
costly, and therefore often not convenient to develop in large scale distributed systems.

To overcome these issues, a supply chain traceability system with a high level of automa-
tion is discussed in this paper. In particular, the system adopts an agent-based approach, in
which cooperative software agents find solutions to back-end tracing problems by self-
organization. Such cooperative agents are based on a business process aware traceability
model, and on a service-oriented composition paradigm. Furthermore, an interface agent
assists each user to carry out the front-end tracking activities. Interface agents rely on
the context-awareness paradigm to gain self-configurability and self-adaptation of the user
interface, and on ubiquitous computing technology, i.e., mobile devices and radio-
frequency identification, to perform agile and automatic lot identification. The paper com-
prises real-world experiences on the fashion supply chain.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In the last decade, several factors have determined an increasing demand for supply chain transparency [7]. Businesses,
consumers and authorities in a variety of markets have today a great interest in establishing systems to trace the history of
products in the supply chain. This shared interest has never been more evident than for food, beverage and pharmaceutical
products [47], but the key motivations have been expressed in other industry sectors, such as manufacturing and fashion
[12,31]. Trading partners in a supply chain can use product traceability to enable different business needs, such as to reduce
business risks about legal compliance, to achieve a greater degree of precision and efficiency in product recall or withdrawal,
and to comply with specifications of each partner. Further, traceability can be considered also for an efficient logistics and an
effective quality management, as well as for supporting product safety, providing information to consumers and partners,
verifying the presence or absence of product attributes, such as in the organic food production. Finally, traceability is a fun-
damental tool for brand protection, product authentication and anti-counterfeit policies [55].
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Traceability related to products has become to be introduced since the 1990s [9,28] and is still under investigation by
scientific and industrial bodies [5,12,20,29]. In [39], a concise characterization of traceability in the batch production indus-
try is provided, together with the notions of chain and internal traceability. More specifically, traceability is defined as the
ability to follow a product batch and its history through the whole, or part, of a production chain from raw materials through
transport, storage, processing, distribution and sales (called chain traceability) or internally in one of the steps of the chain,
for example the production step (called internal traceability). In [9], traceability in manufacturing systems enables the history
of events to be followed and compared with scheduled plans and predefined goals. In particular, tracing techniques can be
used in three forms, i.e., to detect system status (status tracing), to analyze system performance (performance tracing) and to
support decision making (goal tracing). Each level in which a manufacturing system can be conceptualized, that is, strategy,
planning and design, and operation, requires all the three forms of traceability.

In [12,20], the importance of traceability with regard to consumers’ perceptions is studied. Traditional determining fac-
tors such as price and salary are less important today, and other qualities, called ‘‘credence attributes’’ are becoming relevant
to consumers. An example is the increased demand for products labeled with ‘‘organic’’ or ‘‘fair trade’’. Consumers’ concern
over the safety and ethicality of products has grown in the sequel of contaminations, recalls, and sometimes contradictory
research on product health. Supply chains are becoming increasingly complex, since companies generally outsource opera-
tions and leverage global sourcing. The key business paradigms to integrate traceability with supply chain management pro-
cesses have been analyzed in [62]. In particular, traceability has been related to production efficiency, to a better process
control, and to the risk assessment models, for identifying various factors that cause quality and safety problems. Further-
more, traceability can play important roles in promotion management and dynamic pricing, with more dynamic and agile
planning approaches. Traceability data can also provide instantaneous decision-making responses to variations in the supply
chain.

A number of traceability systems, technologies and standards have been developed to carry out chain traceability and
internal traceability, with different business objectives [3,6,14,24,31,40,53]. Large enterprises are characterized by a tightly
aligned supply chain and typically supported by a considerable use of information and communication technology. Usually,
these enterprises already use a traceability system, which typically is very efficient and fully automated [20]. On the con-
trary, the small enterprises only rarely implement traceability and, when they do, they add the traceability management
to their normal operation, decreasing the efficiency and increasing the costs. Indeed, the lack of assets and the difficulty
to assess the benefits bring these small enterprises to implement the traceability management in the simplest way, which
is often manual or semiautomatic. The characteristics of a traceability system, and mainly its automation level, strongly af-
fect its cost and accuracy [20]. Today, a considerable challenge is to develop agile and automated traceability technology for
communities of small-scale enterprises [41].

To fully enable traceability at different manufacturing system levels, for different businesses goals and company sizes,
this paper discusses how a chain traceability system with a high level of automation can be developed based on the agent
paradigm. Here, cooperative software agents find solutions to back-end tracing problems by self-organization. There are a
number of factors which point to the appropriateness of an agent-based approach for supply chain traceability. First, the
environment is open, or at least highly dynamic. In such environments, systems capable of flexible autonomous action
are often the only solution. Second, trading partners need to work collaboratively in order to achieve the required level of
traceability across the entire supply chain, and then agents, known as cooperative agents, are a natural metaphor where envi-
ronments can be modeled as societies of autonomous individuals, cooperating with each other to solve composite problems
[23,33,42]. Third, each trading partner in the supply chain has its own objectives in terms of the use of the traceability sys-
tem, of the level of the smallest traceable item and consequently of data to manage, relative to their trading environment and
strategy. This heterogeneity can be faced with an appropriate kind of agents, denoted as user (or interface) agents [65], that
simplify the nature of the interaction between user and device, avoiding the configuration of every step that needs to be per-
formed to trace a lot, down to the smallest level of detail, thanks to a certain awareness of the business processes [13]. The
idea here is that of considering the agents as assistants of a user in some task [11,34]. The rationale is that current interfaces
are in no sense pro-active: activities are only performed when a user initiates a task. Interface agents rely on the context-
awareness paradigm so as to gain self-configurability and self-adaptation of the user interface, and on ubiquitous computing
technology, i.e., mobile devices and radio-frequency identification, so as to perform agile and automatic lot identification
[49]. Fourth, the distribution of data, control and expertise lead to distributed semi-autonomous components [32,65].

The rest of the paper is organized as follows. Section 2 presents a background of the concepts that are relevant to the
development of an agent-based infrastructure for traceability. Section 3 details the basic requirements of the traceability sys-
tem. In Section 4 an architectural view of the agent-based traceability system is provided. Sections 5 and 6 describe the
behavioral models of the cooperative and the user agents, respectively. Section 7 is devoted to the application of the system
to two real-world supply chains in the fashion sector. Finally, Section 8 draws some conclusion.

2. Agent-based infrastructure for traceability

In an agent-based system, the communication involves high-level messaging in contrast to the low-level messaging
typical of a simple distributed computing. The use of high-level messaging leads to a lower communication cost, easy
e-implementability and concurrency, and a higher level of autonomy. To this aim, the proposed system relies on a

936 M.G.C.A. Cimino, F. Marcelloni / Information Sciences 181 (2011) 935–953



well-established model of process traceability [3] and on a service-oriented architecture [15]. More specifically, setting up an
infrastructure for chain traceability requires working at three different levels. The first level, namely interconnectivity level,
allows simple data acquisition and transfer with no semantic. This level is covered by technologies such as Radio-Frequency
IDentification (RFID) [2], devices such as Personal Digital Assistants (PDA), data format standards such as Electronic Product
Code (EPC) Tag Data Specification [14] and data transfer protocols such as HTTP. The second level, namely integration level,
involves information exchange protocols such as Simple Object Access Protocol (SOAP) [54], messaging technology such as
ISO-15000-2 [3] and service composition paradigm such as Service-Oriented Architecture (SOA) [15]. This level enables the
agents to exchange information and to request mutually their services. Hence, working at the integration level is not enough,
particularly if different enterprises have to compose or expand their business processes. Therefore, the third level, the inter-
operability level, is crucial to a common understanding of semantics about entities and activities. This level represents the top
of the traceability infrastructure, and is powered by a model of the business activities of each chain segment, that allow
agents to understand and act according to appropriate policies. The integration level reduces the ‘‘friction’’ of interactions
between elements belonging to different work cells, whereas the interoperability level enables cooperation allowing the ele-
ments to find the solution of a global problem by themselves, coming out as a self-organizing system [21,25]. Hence, agents
can represent a powerful tool for traceability, a problem that can be partitioned into a number of smaller and simpler activ-
ities, in which each agent is specialized in solving a constituent sub-problem [32]. Structural reuse in different fields is guar-
anteed by the abstraction level of the process traceability, which addresses a wide range of problems. In the following, we
will discuss the interconnectivity and integration levels. The interpretability level will be widely analyzed in Section 3.

2.1. Interconnectivity level

Whenever possible, traceability data should be collected without human intervention. Indeed, humans are typically poor
data collectors. Several techniques have been proposed to collect data in a cost-effective manner without interrupting or
slowing down the workflow. A widely accepted technique is to associate a tag with each lot: the tag contains the data nec-
essary to identify the lot. These data can be automatically read by appropriate readers.

The most used tags are barcodes and RFID tags. RFID tags consist of a chip that can be attached onto or implanted into any
surface of an item [50]. As regards their employment for traceability issues, RFID technology looks very promising [66]. Un-
like barcodes technology, e.g., RFID allows acquiring information at a rate of thousand tags per second. Thus, it is reasonable
to expect a growing acceptance of RFID technologies in the next years as basic components within traceability information
systems [57].

Indeed, RFID technology should significantly reduce both the time and effort needed to execute every-day transactions, in
terms of several person-months per year, and the rate of errors that are currently caused by replicated data entries and man-
ual interventions. Retail and manufacturing sectors have considerably benefited from the use of RFID technology in effi-
ciently managing their processes [22,30]. In particular, a number of recent studies indicate that UHF is the dominant
frequency used in these sectors [4,10,56]. Further, the integration between a distributed multi-agent system and the RFID
technology allows reducing the maintenance effort requested for coping with issues of information asymmetry, decentral-
ized and distributed decision-making, and different data management policies.

On the other hand, RFID is considered a key sensing technology in the vision of ‘‘The Internet of Things’’ [27], promoted by
the Auto-ID Labs network [1], together with the Electronic Product Code (EPC) global (EPCglobal) [14], as a paradigm for the
supply chain of the future. In this vision, a global application of RFID allows all goods (books, shoes, parts of cars, etc.) to be
equipped with tiny identifying devices [19]. Also, a globally distributed information system, made of networked databases
and discovery services, allows managing an ‘‘Internet of Physical Objects’’ to automatically identify ‘‘any good anywhere’’.
Hence, events like running out of stock or wasted products will be easily detected, since it can be exactly known what is
being consumed on the other side of the globe by any customer.

The need to share information in this globally distributed information system requires the adoption of some coding
standard which is agreed by all parties and allows them to communicate with each other, so as to ensure the continuity
of the traceability throughout the chain. To this aim, the most promising coding system is certainly the GS1 (formerly
EAN.UCC) system [24,52], a specification compliant with the EPCglobal Architecture Framework (EPC-AF) [14]. The EPC-
AF is a collection of interrelated standards for hardware, software, and data interfaces (EPCglobal Standards), together
with core services (EPCglobal Core Services). The EPC-AF neither defines a system architecture which end users must
implement nor dictates particular hardware and software components which end users must deploy. EPC-AF only defines
interfaces that the end user components have to implement. Thus, EPC-AF makes the end users free to design system
architectures according to their own preferences and goals, while defining interface standards ensures that systems de-
ployed by different end users can interoperate and that end users have a wide marketplace of vendor-provided compo-
nents [14].

Although standardized identification technologies and data carrier middleware are today mature, tracing items in a pro-
duction chain, across different-scaled enterprises and through the full process scope, is still an inherently expensive design
task. Several frameworks have been made available to aid software engineers in storing and retrieving the information flow
within a supply chain [5]. The various approaches in the literature are often designed for specific good categories, and are
characterized by the need of a top-down design approach for each supply chain. This approach usually produces some
specific form of application middleware. Most integration vendors provide methodologies and best practices, but these
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instructions tend to be very much geared towards the vendor-provided tool set and often lack treatment of the bigger pic-
ture, including underlying guidelines, principles and best practices. In this context, reuse is difficult to attain unless devel-
opment is undertaken for a close knit range of problems with similar characteristics. General enterprise solutions are more
difficult and more costly to develop, because they often need to be tailored to different applications.

2.2. Integration level: from service-oriented composition to multi-agent cooperation

A new phase in enterprise application integration started with the emergence of web services based on XML, a family
of interrelated standards which allow program functionalities in different languages and on different platforms to inter-
operate [3]. Web services are based on a standardized transport protocol (typically HTTP), in which XML structured
information are embedded by using standardized messaging protocols, such as SOAP [60]. Web services can communi-
cate with each other in a very robust fashion. Furthermore, each web service is described in a standardized XML schema
(WSDL) [61], which can be stored in a repository based on the UDDI standard specification. Web services offer a solution
to the challenge of connecting several enterprise applications in a common way, preserving reuse thanks to a mecha-
nism of dynamic search and binding. An innovative paradigm, called SOA, has recently emerged from the concept of
web services and other models (such as CORBA [45] DCOM [38], EDI [58]). SOA has rapidly become the blueprint for
new forms of automatically composite applications. Composite applications promised a way to use services from a vari-
ety of different applications that are exposed through web services. Also, since composite applications reuse parts of
other applications, it was possible to separate the process logic from the systems which implement it, thus making pos-
sible changes and optimizations of the orchestrated process easier, and helping reduce technology as bottleneck [64].
Further, user interfaces were separated from the application logic, thus allowing composite applications to have user
interfaces tailored for different process automation roles. For example, one person might need to see the process from
end to end, and another person might need to see one step of the process only. This simple vision of automatically com-
posite applications is particularly popular today for companies selling professional services as well as tools to build web
services [26].

The idea of composite applications is not sufficient to reasonably reduce the cost of the chain traceability. Indeed, this
idea provides a general-purpose technical integration mechanism. Technical integration refers to the design of technological
artifacts that are easy to use as part of larger suite of components, tools and services. Using an enterprise integration ap-
proach for traceability, the information systems become more complex, increasing the complexity of the supply chain man-
agement. This increase in complexity is characterized by a growth in number and variety of system elements and their
interactions [37]. The current method for dealing with this increasing level of complexity is to proportionally increase the
number of human system administrators [36]. However, this method is unsustainable at best, as it will eventually make
its cost prohibitive.

A more advanced approach involves designing the elements of a system as specialized software agents [51] able to find the
solution of a specific business problem by themselves, thanks to their awareness of specific business processes. Roughly
speaking, an agent provides a convenient and powerful way to describe a complex software entity, which is capable of acting
with a certain degree of autonomy in order to accomplish tasks on behalf of its user. Unlike objects, which are defined in
terms of methods and attributes, an agent is defined in terms of its behavior [65]. At the integration level, the communica-
tion between agents can still be efficiently achieved using the SOA paradigm. At the interoperability level, the agent-
orientation principle of autonomy implies that individual agents be as independent and self-contained as possible, with re-
spect to the control they maintain over their underlying business logic. However, to ensure an autonomous processing envi-
ronment requires a non-negligible design effort. Indeed, some important design issues have to be considered: (i) task
decomposition, i.e., how can the traceability tasks be divided and assigned to each agent? (ii) resource management, i.e.,
how can the agents share context sources? (iii) synchronization, i.e., how can we activate the agents at the right time?.
Autonomy is therefore not automatically provided by a web service [46]. To model the tracing agent behavior we therefore
have to analyze the supply chain processes so as to determine where and how tracking data has to be collected and therefore
to allocate specific tasks to agents.

A fundamental concept in modeling the tracing agent behavior is that of Business Processes. In order to analyze the sup-
ply chain processes, these are generally modeled in some specification language, which allows formally describing the activ-
ities that need to be performed, the participants who could or should perform them, and the interdependencies that exist
between these activities. The activities highlighted in the model permit determining the single tasks for each agent and
how these tasks (and consequently the agents) interact with each other. Fig. 1 shows how, starting from a process model
(bottom part of the figure), tasks can be allocated to specific agents.

Business logic, explicitly defined for the agent by some set of supply chain processes, is intended to bound the agent task
and resource dependencies on other agents or users. Agents use business logic to plan their activities in order to achieve the
goal of the concrete process participant. The use of goal-oriented communicating autonomous agents allows multiple
solution paths to the process goal to be achieved. Agent-based technologies allow greater flexibility and dynamism in the
business process analysis system [8]. Decoupling components of the system allows them to be swapped out, replaced, or
even added to the system without impacting other parts. Moreover, there is a decentralized ownership of tasks, information
and resources involved in the business process [48].
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3. Agent-based traceability: basic functional requirements

In this Section, first of all we introduce some basic concepts which will be used to define the agent behavior. Then, we
address some structural and behavioral aspects of the agents.

In the following, we refer to the data model for traceability we proposed in [3]. Here, two basic entity types have been
identified: lots and activities. A lot is a product unit processed under the same conditions. An activity represents a procedure
carried out on some lots (input lots) that produces some output lots. Generic examples of activity are production, packaging
or distribution. Assuming that each new lot is generated by an activity, under the control of a person who is responsible for
the activity itself and for the corresponding outputs, in the model each lot or activity is associated with a responsible actor,
actor for short. An identifier is associated with each lot, activity, or actor. By means of records of each instance of these enti-
ties, it is possible to associate each input lot with the target activity and the corresponding output lots, and vice versa. Hence,
activity instances can be chained forward (or backward) by finding their output (or input) lots that are input (or output,
respectively) lots of further activities. This makes possible to trace backward and trace forward, i.e., to follow the downstream
path of a product, or to determine its origin and characteristics. In order to have an information flow that is automatically
aligned to the physical flow of lots, lot identifiers are carried by means of tags, attached to lots. Fig. 2 shows a UML activity
diagram which describes the associations between lot, activity and actor. Here, quality features are also associated with a lot,

Fig. 1. A topology that employs software agents to process traceability.

Fig. 2. Activity and its associations with lot, actor and quality feature.
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as typical in real-world cases. Examples of such features are weight, rating, temperature, etc. Quality features offer more
investigation criteria, from a tracing perspective, with respect to the basic input–output association.

From a tracking perspective, each activity that terminates correctly generates some lots, and for each generated lot a
proper business transaction is recorded by the traceability information system. A business transaction is an atomic unit
of work that can be associated with the activity. For instance, from an activity with N output lots, a set of independent N
transactions can be tracked. A single transaction cannot be decomposed into lower level independent tracking pieces of
information. A business transaction is a very specialized and very constrained semantics designed to achieve product state
alignment when needed by third parties. As a transaction, it must succeed or fail, from both a technical and business protocol
perspective. If it succeeds from both perspectives, it can be designated as a piece of the lot history. If it fails from any per-
spective, it should not leave any trace of its existence.

In the following, an exact specification of the content of a transaction is provided. Let us suppose that a lot is globally
identified by the responsible actor ID (Axx), the site ID (Sxx), the lot ID (Lxx), and the generation date-time (Dxx). Similarly,
an activity is globally identified by the responsible actor ID, the site ID, and the activity ID (Txx). Indeed, considering further
constraints, it could be possible to identify a lot with a subset of this data. For instance, let us consider a product with a sim-
ple productive process consisting of a number of serial transformations, with no fork and join of activities. If a unique RFID
tag is used for each transformation, then the lot ID is enough to identify the lot at each production stage. However, this
requirement is very expensive in terms of tags. If a unique tag is used for the entire lot history, then date-time is needed
to distinguish the lot at different processing stages. Hence, in each transaction, the lot ID and the date-time are supposed
to be necessarily known. The pair (Lxx, Dxx) allows identifying a lot in a specific stage of the supply chain, even if the RFID
tag is re-used after the lot has been sold. To follow the production path, when a new tag is applied to the output lot, it is
important to keep track of the input lot ID [3].

Together with the lot, some contextual information is fundamental to support a series of tracing processes, which need to
be connected with the real-world at a business level. For instance, when some contamination event occurs, it is important to
know who and where to investigate, and also further features of the lot itself. Hence, in a general traceability model trans-
actions have to contain at least the input/output lots, their site and their responsible actor.

Let us consider in detail how transactions are structured. In the following, the possible transactions are discussed.

3.1. Providing-acquisition

Fig. 3 represents a scenario of providing-acquisition of a lot. At the instant D1, the actor A1 provides the actor A2 with the
lot L0, which was stored at the site S0. At that moment, A1 could not know the site in which A2 will store the lot, and then, in
her/his vision, that site is denoted by S? (unknown site). This is usual, for instance, if the two actors belong to different com-
panies, or if some module has not been properly configured. In this case, the transaction will have an undefined output site
(transaction TR1 in Fig. 3).

Similarly, at the instant D2, the actor A2 acquires the lot L0 and stores it in its own site S3. However, he cannot know
where the lot was previously stored. Again, in this case the acquisition transaction will have an undefined input site (trans-
action TR2 in Fig. 3). Note that, in Fig. 3, the lot is identified by two different RFID tags before and after the acquisition, i.e., L0
and L1, respectively. On the other hand, if the RFID tag is kept, L0 will be equal to L1. Note how, starting from the input lot of
the transaction TR2 (i.e., [A1, S?, L0]), and replacing its actor (i.e., A1) with the actor in the output lot (i.e., A2), it is possible to
derive the output lot of the transaction TR1 (i.e., [A2, S?, L0]). This means to identify the transaction TR1 with some data avail-
able in the transaction TR2, i.e. a step backward in the tracing. If more than a transaction with the same output lot is avail-
able, the transaction TR1 closest in time to TR2 is considered (i.e., with D1 such that D1 is closest to D2). Vice versa is also
valid for a step forward (tracing forward).

Fig. 3. A scenario of the providing-acquisition transactions.
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3.2. Transformation

In the case of processing activities that are internal to a company, a group of N lots can be transformed into a group of M
lots, via splitting, merging, moving, processing, etc. This activity can be represented as a series of M transformations of N lots
into a lot, having the same lots as input. Fig. 4 describes a scenario with three input lots. Here, at the instant D3, the actor A3
performs the activity T3, taking as inputs the three lots, L0, L1 and L2, and giving as output the lot L4. The input lots were
stored at the sites S0, S1 and S2, respectively, and owned by the actors A0, A1 and A2, respectively. The output lot is stored
at the site S4, and owned by the actor A4. Note that, in this transaction, tracing backward and forward are simpler to perform
with respect to the providing-acquisition transaction, because sites are known.

4. Agent-based traceability: architectural view

In this Section we consider more specifically the architectural view of the traceability system. Fig. 5 shows a deployment
diagram containing different kinds of units: some of these units host software agents. The proposed traceability system com-
prises different Tracking Units (TUs) equipped with RFID readers. A TU gathers data and transmits them to a Storing Unit (SU).
SUs are in charge of keeping local production data, supplied by TUs, according to some criteria. Analysis Units (AUs) steer busi-
ness process analyses and harvest data supplied by SUs in terms of pieces of a global tracing problem. TUs can be hosted by a
mobile device (e.g., PDA or smart phone equipped with an RFID reader), or fixed device (e.g., bank reader, door gate reader).
Further, TUs allow data harvesting supported by user agents, because TUs are self-configured on the basis of the local context.
More specifically, there are some Context Units (CUs), which are able to provide a local business process context. Indeed, CUs
and AUs are strictly related to each other. For a given business analysis, a set of data needs to be collected, and this can be
defined configuring TUs via CUs. Furthermore, CUs contain also the definitions of the quality features used by AUs. Finally,
there are some lookup services for SU, accomplished by Registry Units (RUs). Only SUs and TUs host agents. In particular,
an SU hosts a cooperative agent, and a TU hosts an interface agent. We will explain these agents in Sections 5 and 6.

As shown in Fig. 5, the proposed traceability system is based on a distributed architecture. Here, data is managed accord-
ing to a ‘‘pull’’ model [3]. In the pull model, at the tracking stage, data is stored at the site where it was generated, via TUs. An
RFID reader is associated with each TU, and controlled by the user agent. At the tracing stage, an AU actively requests a par-
ticular analysis from the system. Hence, SUs wait for a pull request to reconstruct a lot history. When a pull request arrives,
only related tracing data is collected and returned to the AU. As summarized in Fig. 5 by the cardinality ratios, the number of
TUs is typically much larger than the number of SUs.

An overall dynamic view of the system is represented by the communication diagram of Fig. 6. Here, the most important
relationships between the system units are summarized. In particular, a unit which is able of concurrent control of the com-
munication is represented with doubled vertical sides.

Let us consider a typical scenario. Let TU1 be a specific TU and CU1 the corresponding CU. Once powered on, TU1 sends its
ID to CU1 which returns the appropriate context to TU1. The context includes quality feature definitions, responsible actors,
activities and sites related to TU1. This allows the self-configuration of TU1. The production context is also important as im-
plicit input, to reduce the manual data input and the multiple choices available to the user in the tracking phase. Further-
more, the production context allows the self-adaptation of the user interface. This mechanism will be described in
Section 6.

Each CU is aware of a little segment of the whole production, and hence it handles a local model of the activities. Once TU1

is configured, in the tracking phase it can harvest a number of data regarding local production. This amount of production
data, as described in Section 3, is built in terms of transactions and pushed by TU1 to the storing unit SU1, which TU1 sends
the data to. During the tracking phase, no collaboration is established between SUs. SU1 records a series of tracks, coming
from the related TUs, for instance TU1, according to predefined business objectives. Such business objectives are strictly con-
nected to the business analysis that a specific analysis unit AU1 can perform. Hence, for a given business analysis, a set of
tracking points is established. On the contrary, the tracing phase requires collaboration among SUs.

Fig. 4. A scenario of the transformation transaction.

M.G.C.A. Cimino, F. Marcelloni / Information Sciences 181 (2011) 935–953 941



Let us suppose, in the scenario, that AU1 asks for the overall history of a specific lot. AU1 is supposed to know the lot iden-
tifier, e.g. L1, the responsible actor identifier, e.g. A1, of that product, and a register unit RU1, a front-end register. Hence, using
an SOA-based dynamic binding paradigm [3], AU1 sends the identifier A1 to RU1 and receives the URL of SU1 from RU1, where
the tracks of A1 are stored. Then, AU1 asks SU1 for the history of L1. SU1 performs a search in its repository, and sends all

Fig. 5. An overall deployment diagram of the traceability system.

Fig. 6. A communication diagram of the traceability system.
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available data to AU1. This is just a shallow history, i.e., concerning the activities performed by an actor in the last supply
chain segment. In the case of deep history, SU1 is able to trace backward and follow the production path, finding other
responsible actors. For instance, let us suppose that the responsible actor A2 accomplished the penultimate activity on
the product. If A2 is locally stored in SU1, its search is very similar to the search of A1. Let us suppose that L2 is remote,
i.e., stored, for instance, in SU2. Then, SU1 asks to RU1 (let us suppose that the register is shared) about the URL of the SU
where L2 is hold. RU1 provides this URL and then SU1 sends a request to SU2. It is worth noting that SU2 is not aware of
SU1, because the request is done ‘‘on behalf of’’ AU1, which appears as sender. Hence, SU2 will send tracks directly to AU1.
In a recursive fashion, it is then possible to trace backward and trace forward in the production chain, as shown in Fig. 6.
Please note that many possible relationships could be established in this recursive search, as described in Section 5. For
example, a deep search could be performed considering only defective products.

According to the SOA paradigm, the communication between SUs and AUs relies on an asynchronous message-centric pro-
tocol, which provides a robust interaction mechanism among peers, based on the SOAP/HTTP stack. On the other hand, the
communication between TUs and the other units can be proficiently achieved using a more efficient and lightweight
XML-RPC/HTTP based interaction. The implementation of the SOA paradigm in the proposed system is based on the ISO
15000 standards, which comprise a Messaging Service Specification (MSS), a Registry Information Model and a Registry Ser-
vice Specification (ISO 15000-2, 15000-3 and 15000-4, respectively). Each agent of the traceability system is supplied with
an MTS based on MSS to contact a registry and/or another agent. In the framework, an agent which desires to send a message
to another agent or to request a service uses the Directory Service (a federated registry [16]) to obtain a set of descriptors for
available agents and services. Once these descriptors have been retrieved, the agent communicates by exchanging messages
encoded in the specific Agent Communication Language (ACL) used in our system and delivered by the appropriately defined
Message Transport Service (MTS) [18]. The directory and the MTS are completely independent of the behavior embodied in
agents. This behavior is characterized by some common features [35]: (i) social ability: tracing agents are able to interact with
each other via an ACL; (ii) reactivity: agents are able to perceive their environment, through TUs, SUs and Internet, and to
respond in a timely fashion to changes that occur in it; (iii) pro-activeness: a tracing agent not simply acts in response to
the environment, but it is also able to exhibit goal-directed behavior by taking the initiative, according to a collaboration
protocol; (iv) autonomy: a tracing agent operates without the direct intervention of humans or others, and controls its ac-
tions and internal state.

As regards the latter feature, it is worth explaining the rationale of the intrinsic autonomy of each agent. The agent behav-
ior is locally established and configured by the company which owns data retained by the agent, following specific policies.
Indeed, supply chain participants, at all segments of production, are often highly protective towards their own data, thus
they would not agree on sharing all their data on the same agent with the others. Ownership, movement and location data
might be used for purposes different from traceability. Thus, each agent acts on behalf of a local management, in order to
avoid issues of data confidentiality, trade disruption and data integrity. This degree of autonomy is carried out by a cooper-
ative pattern between agents, in which each agent assesses the utility of a collaboration before accepting it.

In our traceability system, the collaboration between two agents is ruled by the ISO 15000-1 standard, which allows spec-
ifying an agreement between partners. Each partner has its own collaboration profile, which describes a series of require-
ments in an XML format. For instance, this can include the role of the partner: if the partner does not match the profile
determined by the agent, such agent can refuse the collaboration. The agreement can also specify the quality of services
guaranteed by the partner: supported messaging protocols, security capabilities, rules to follow when acknowledgments
are not received (including how long to wait for before resending, and how many times to resend), whether duplicate mes-
sages should be ignored, whether acknowledgments are required for all messages. Of course, a collaboration profile has to
take business failure conditions into account too. Transport level failures are managed by the MTS, which caters for reliable
and recoverable message exchange. The collaboration profile handles the business level failures. For example, if a partner
fails to reply within a pre-defined time interval, then the agent reverts to the previous known secure state of the collabora-
tion. The message-exchange agreement between two partners is described by a collaboration protocol, which can be defined
as a series of communicative acts. In the following, the basic communicative acts between tracing agents are discussed.

In the collaborative protocol, an agent (the Initiator) takes the role of manager which wishes to have some traceability
task performed by one or more other agents (the Participants). The representation of the protocol is given in Fig. 7 by a
UML 2 sequence diagram. The protocol can be considered as an adaptation of the FIPA pattern to a simple interaction type
[17].

The Initiator solicits a proposal from an agent by issuing a call for proposal (cfp) act, which specifies the task and the con-
ditions placed upon the execution of it. The Participant agent generates a response, which can be a propose act or a refuse act.
This decision is based on a utility function which takes both the proposal requirements and the specific agent policy into
account. The propose act contains a proposal to perform the task. This proposal includes the preconditions that the Partici-
pant is setting out for the task, which may be the quality of service, time when the task will be done, etc. The refuse act com-
municates to the Initiator that Participant will not perform the task. The Initiator evaluates the proposal of the Participant, if
any, and sends it an accept-proposal act or a reject-proposal act. After the Initiator accepts the proposal, the Participant ac-
quires a commitment to perform the task. Once the Participant has completed the task, it sends a final message, which in-
cludes local tracing results and, if required, a new call for proposal to another agent, started on behalf of the Initiator. This
agent replies directly to the Initiator by using the same propose or refuse acts, thus using the same collaboration protocol
described above.
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The ACL of the system specifies which parameters are needed for effective agent communication. A concrete instantiation
of an ACL is a mandatory element of any multi-agent architecture [18]. The basic parameters used in the system are: perfor-
mative (i.e., type of communicative acts), sender, receiver, reply-to, content (i.e., content of the message), protocol and conver-
sation-id (used for controlling the conversation).

In tracing agents, the main task to perform is a search for items with proper features and conditions. As a matter of fact,
any service requested by an AU can be decomposed into a series of dynamically coordinated local searches. Hence, the task is
represented by using a syntax for expressing queries. The syntax used in the framework is based on XSLT with XPATH 2.0
(XML Path Language, W3C recommendation 23 January 2007). The main advantage of this syntax is the possibility of auto-
matic translation into SQL syntax, which can be executed by a conventional relational DBMS. Hence, the implementation of
different searches and constraints can be easily managed with a general-purpose and efficient parser and a relational engine.

A search for items employs a series of different lot features, qualitative and quantitative, which are constrained in terms
of possible values. For instance, employing a multi-valued or interval-valued (i.e., set of possible) search key, thanks to the
use of regular expressions. In general, the search expression comprises mandatory attributes and alternative attributes as
well as optional attributes.

Fig. 8 shows an example of how the parser builds an internal data abstraction, for two basic patterns, useful to be trans-
lated into SQL expressions. In particular, the patterns show how mandatory and optional sets of attributes are connected by a
father-son relationship, whereas optional elements of a set are connected by a sibling relationship.

Other important features of conditional expressions built with XPATH2.0 are:

(i) the use of regular expressions, with the following form:fn:matches ($input as xs:string, $pattern as xs:string);
(ii) the use of date-time conditions, with the following form:$generationDate& gt;=yyyy/mm/dd hh:mm:ss’’ AND$genera-

tionDate& lt;=yyyy/mm/dd hh:mm:ss’’) OR$startingDate& lt;=’’yyyy/mm/dd hh:mm:ss);
(iii) the use of conditional expressions with quality features, expressed in terms of name and value;
(iv) the use of conditional expressions with variables, using the < xsl:variable > element.

Fig. 9 shows a simplified example of query translation.

Fig. 7. The collaboration protocol between tracing agents.
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5. Cooperative agents for tracing: a behavioral model

The behavioral model of the tracing agent SU is based on the basic transactions described in Section 3. Transactions are
managed in the tracking phase, and the corresponding data are sent from the TUs to the SUs, in the form of XML-based

Fig. 8. An example of how the parser builds structured query conditions.

Fig. 9. An example of query translation from XSLT to SQL.
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documents. In the following, more detailed specifications, regarding SUs and the tracing phase, are provided. A set of inter-
esting features have been designed and implemented for SUs, in order to satisfy many business needs. As an agent, an SU
controls also some internal maintenance features, such as garbage collection, data migration, register caching, and so on.
In the following, we list some of these features.

5.1. Attribute-driven search

It is possible to ask the agent for lots belonging to a given responsible actor, to a given site, or to a combination of site and
responsible actor, i.e. the basic lot attributes in the model. Further, it is possible to provide more than a possible search value
for each attribute, using regular expressions. An important lot attribute is called product-code, i.e., a mnemonic code used by
a firm to identify a product. Usually, it is possible to use the product-code as a foreign key to gain a lot of class-related infor-
mation about the lot, stored on information systems different from traceability systems. Another common search is based on
the date-time, i.e., to filter the search for starting or ending date within some time interval.

5.2. Direction: backward/forward

In a distributed system, it is clear that the agents should be able to collaborate with each other so as to explore the lot
history by tracing backward and forward in the supply chain. It is simple to demonstrate that each production path creates
a distributed relationship among different SUs. This relationship can be represented as a directed acyclic graph, where the
nodes and the arcs represent the SUs and the communication paths among the SUs, respectively. The relationship is a graph
because of the splitting and merging activities between lots. The graph is directed because of the input–output relationship of
each activity. In order to show that the graph is acyclic, let us consider Fig. 10.a. Here, a simple production flow scenario is
represented, considering the physical (on the left) and information (on the right) flows. The execution of each activity is
identified by a counter, in both flows.

In particular, the same activity, represented by a white gear on the left, is carried out twice (execution n. 1 and n. 2). How-
ever, each execution produces a different information lot on the right. It becomes clear that, even if the same physical lot goes
though cyclic activities, each execution of an activity generates an output information lot which is different from the input
information lot. Furthermore, considering that any input physical lot is generated before the correspondent output physical
lot, the generation time of an input information lot precedes the generation time of the corresponding output information
lot. It follows that cycles are not possible in the information graph.

This property is important to avoid the emergence of unexpected global behavior of the society of cooperative agents,
one of the drawbacks of the distribution of control in collaboration paradigms. Let us consider Fig. 10.b, representing an
example of production flow among SUs. Let us suppose that an AU asks an SU for a complete lot history, starting from a
specific lot. If the direction is ‘‘backward’’ or ‘‘forward’’, there is no possibility of cyclic interaction between agents, as the
graph is acyclic. Let us suppose that SU4 is asked for a complete history, in both directions. Hence, starting from SU4,
SU17 and SU8 are contacted, and then SU6. But, starting from SU6, SU8 is contacted again, and so on, with an infinite
loop. This situation is called livelock. The states of the agents involved in the livelock constantly change with regard to
one another, none progressing. To avoid the livelock, each agent stores a business signature of the message for a reason-
ably limited amount of time. The signature comprises the sender ID, which is an AU, and the message ID, which is pro-
vided by the messaging system. Hence, if an SU receives a second message with the same signature, the message is
discarded.

Fig. 10. (a) Distinction between physical flow and information flow; (b) an example of production flow among storing units.
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5.3. Shallow/deep search

It is possible to ask the agent to stop the search after a predefined number of activities starting from a certain lot. This can
be done using an activity counter, which is transmitted and decreased by each agent. Once it is zero, the agent will stop the
search.

5.4. Copy/move mode

In the move mode, the agent removes its own data once it has been provided to another agent or to an AU. In the copy
mode, data is kept, providing the requester with a copy. The move mode is important to implement data migration
strategies.

The amount of accumulated data at each SU can be controlled through two different services: garbage collection and data
migration. An internal garbage collector operates locally by periodically searching for inconsistent or expired transactions.
Further, a special AU is responsible for removing expired or unnecessary transactions, considering specific policies: for in-
stance, all the transactions can be removed after a fixed time interval or once a backup process has been performed. Finally,
another AU controls the data migration, following other specific policies. For instance, the AU can decide to transfer data from
an SU to a local repository for improving the efficiency of specific analyses.

6. Interface agents for tracking: a behavioral model

The objective of the interface (or user) agent is to help users in various kinds of situations, which change dynamically,
employing different preferred features according to the particular context. The input–output functionalities are limited on
mobile handheld devices, because of the small size of the device. Hence, process-awareness aims to use the information
of the usage context for adapting the behavior of the application according to an appropriate model, and to facilitate the suc-
cess of the business transaction.

More specifically, the traceability context of the agent behavioral model comprises the parameters summarized in Fig. 11.
In designing the user interface, several users involved in the supply chain were interviewed. From these interviews, two

important considerations were derived. First, TUs are usually managed by workers with limited experience in ICT devices.
Second, the use of TUs should not hamper the normal current activity. Hence, a TU should be able to offer an interface with
the lowest level of complexity in dependence of the context. For example, if there are only two possible choices in a specific
production segment, a related menu should offer only those choices, considering as default the most frequent choice. If some
specific step or parameter is not necessary, it should completely disappear.

To achieve this objective, the use of a touch screen seems to be more appropriate than a keyboard and/or a mouse. Fur-
ther, the use of keyboard-based inputs and of any intermediate device, such as a stylus, that needs to be held in the hand
should be avoided. Finally, the layout preferred by the mass of the users is a grid layout with a top status area, i.e., similar
to the layout of a common pocket calculator. This choice is optimal for recurrent use, in which the same transaction is
accomplished for a large number of times, as usual in workflows. Once established a layout, an important requirement to
address is the dynamic placement of components during a transaction. The use of a touch screen allows a wide self-adap-
tation of the graphic components, presenting at each time only what is needed. However, it has been experienced that
the use of changeable buttons during a transaction is very confusing for the users. Hence, although several possible trans-
actions, which require different buttons, are possible, in each transaction all needed buttons should be fixed in advance,
to keep a good awareness of the status. This allows skilled users to gain an excellent automatism in a short time. On the other
hand, to guide unskilled users, the agent can disable the useless buttons, keeping them still visible. Fig. 12 represents the
layout of three different interfaces for three different situations. Each interface is related to a different transactional situa-
tion. Obviously, when some choices can be automatically determined by the agent, the interface shown to the user is

Fig. 11. Traceability context for an interface agent.
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simplified. Furthermore, the agent is also able to customize the buttons labels, providing more detailed labels for each sit-
uation. In Fig. 12, generic default labels are represented.

The lowest complexity is represented by the transit situation, which considers just the transit of a lot: this situation re-
quires no explicit input parameter at all. The adoption of the transit situation is usual for bank or gate reader. In this case, the
agent derives everything from the traceability context: the tag ID, the date-time, the actor, the site. A higher level of com-
plexity is represented by the single-input context shown in Fig. 12.a, where the activity is supposed to have a single input, a
duration and a binary-valued quality factor (e.g., good/faulty). Under these circumstances, the user usually presses only the
identify lot button to read the RFID tag (and then to implicitly begin an activity) and the store activity button to commit the
transaction at the end of the activity. The assess quality button, in this situation, allows recording a faulty output lot, once
pressed.

Fig. 12.b shows a possible layout for a Multiple-Inputs context. The activity starts and terminates when the user selects the
begin activity and end activity buttons, respectively. During the activity different input lots can be identified. The assess quality
button acts as in the single-input context.

Fig. 12.c shows a possible layout for the Multi-Choice context. This means that there are attributes with multiple choices,
e.g., many activities (such as sewing, cutting and ironing) can be performed by an actor, and that many inputs for the activity
are possible. Hence, when the activity needs to be chosen, the agent is provided by the traceability context with the possible
activities only for that actor and for that type of lot. Moreover, the activities list is presented in frequency order. Furthermore,
the assess quality button, once pressed, allows the selection of specific values related to the context. In other terms, the ulti-
mate goal of the agent is to avoid a manual input or selection, using all the available information.

Fig. 13 shows a simplified State Diagram of a TU for the Multiple-Inputs and Multi-Choice situation, which represents the
behavior of the TU application controller. Many State Diagrams are possible, depending on the traceability context and the
traceability situation. Hence, self-adaptation and self-configurability are the most important properties of this agent. On the
basis of the specific tasks the TU has to manage, the CU sends the appropriate context to enable a tailored application flow on
the TU.

Once completed, a transaction cannot be rolled back by the TU. It is locally buffered and then sent to the SU. Other con-
textual behaviors are managed by the agent. For instance, it provides an adaptive communication with the SU. The sending
rate is adaptive, depending on the availability of wireless connection, to optimize the energy consumption. Transactions are
temporarily kept on persistent memory by the agent, and then sent once connection is again available. On the user interface,
a special alert symbol (on the top right of the single-input interface in Fig. 12) is presented to the user to highlight commu-
nication problems.

7. Experimental studies

The presented architectural model, namely Mobile and Agent-based Traceability (MOAT), has been developed and expe-
rienced under research and innovation programs for the development of the Tuscany small-medium enterprises. The MOAT
system has been applied to real-world firms on the fashion supply chain. In this Section, more technical details are provided,
together with some applicative scenario, in order to show how traceability allows gaining concrete insights about chain pro-
cesses and to enhance decision making activities [59].

Fig. 12. Context-aware interfaces of a TU for different situations.
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The MOAT system has been developed with public domain software, or software natively provided with the hardware
devices, in order to be completely costless in terms of licenses for the factories joined to the research program. In Tables
1 and 2 the most important software and hardware products are detailed.

To describe the specific working context, Fig. 14 shows a Business Process Modeling Notation (BPMN) [44,63] represen-
tation of the process for manufacturing a bag in a real leather chain. Fig. 14.a outlines the macro processes, from the bag
design to its shipment. Fig. 14.b represents a drill down through the ‘‘check and ship out’’ sub-process, where semi-finished
products originated from the ‘‘assemble’’ sub-process are checked against quality. If the products are good, they are packed
and shipped out; otherwise proper corrective actions are triggered to handle the error. Finally, Fig. 14.c shows the expansion
of the ‘‘check product’’ sub-process: in the first gateway, features of the product are compared with specifications and quality
plan. If the product is compliant, it can be packed and shipped out. Otherwise, the product is analyzed so as to determine the

Fig. 13. Simplified state diagram of a TU for the multi-choice context.

Table 1
Software products used for the MOAT system implementation.

System component Software product References

Storing unit, Java SE 1.6 http://dev.mysql.com
Context unit, MySql 5 http://java.sun.com/javase
Register unit Apache Tomcat 6 http://tomcat.apache.org
ISO 15000-2 interface Hermes Message Service Handler 2 http://www.freebxml.org
Terminal unit Microsoft Windows Mobile 5 http://www.microsoft.com

.NET Compact Framework 2 http://www.microsoft.com
Analysis unit Compiere ERP 2 http://www.compiere.com

Oracle 10g http://www.oracle.com

Table 2
Hardware products used for the MOAT system implementation.

System component Hardware product References

Terminal unit HP Ipaq HX2490 PDA http://www.hp.com
(for indoor use) Compact Flash Reader: CFR-F13-56 http://www.rf-id.it
Terminal unit Psion TekLogix, with OEM http://www.psion.com
(for outdoor use) COM3 HF Reader: CPRM02 http://www.rf-id.it
RFID HF tag Work-Tag Film labels http://www.rf-id.it
Wireless gateway Linksys WAG300N http://www.linksysbycisco.com
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causes of the fail and to examine the possibility to remove the defect. If the defect can be removed, then the ‘‘re-working’’
sub-process is fired, otherwise the product is dispatched to the ‘‘reject’’ sub-process.

In the following, two examples of business analysis enabled by traceability are detailed, namely the improvement of out-
sourcer selection and the analysis of the value stream in the supply chain.

As regards the outsourcer selection, the system has been used to trace the most important parameters to support this
decision. Typically, the outsourcers are used to manufacture the bag after cutting the leather. MOAT allows determining
the lead time spent for each activity in the bag production. In particular, for a set of crucial activities, we collected informa-
tion about the average lead time, variance of lead time, the average price and variance of price. MOAT allows business ana-
lysts to know the lead time spent for certain phases of the manufacturing process. Table 3 shows gathered information
concerning the production of a high quality bag. The considered activities sweep from the processing of the leather, through
the cut of the bag elements, to the assembly and packing of the end product. Depending on the chosen outsourcer, duration
times and costs can change accordingly. Furthermore, other quality parameters have been modeled to better cope with the
outsourcer selection problem. In particular percentage of defects and average delay in signaling defects have been traced in
order to give executive managers the chance to select the suitable outsourcer.

Furthermore, MOAT allows evaluating the lead times of the value-added and non-value-added activities. Thus, business
analysts can determine possible causes of waste and reduce total lead time within the supply chain. To this aim, all activities
of our case study have been pre-grouped into manufacturing, warehousing, waiting, transport and inspection processes. For
each process, we traced average lead times as shown in Table 4.

This information has allowed management to investigate causes of waste (e.g., waste of time for waiting, waste of space
for warehousing, waste of workforce for transport) and to identify improvement areas [43].

A traceability approach which is service-oriented, but does not employ agents, has been discussed in [3]. Here, decentral-
ization concerns solely data, whereas the control over data is centralized, and owned by the AU. On the other hand, if all SUs
are services and therefore are not autonomous, only a global shared policy is possible in the supply chain. Actually, in terms
of data harvesting, the process of tracing would not require agents, but the lack of local autonomy would not offer to the
owner alternatives out of the common behavior for data sharing. On the contrary, in the MOAT system, the agent-based par-
adigm allows an autonomous control over local data. Thus, the MOAT system can be considered an evolution of the system
discussed in [3]. In particular, we have replaced this system with the MOAT system in the supply chain.

Fig. 14. A BPMN business process flow representation, for the production of a bag.

Table 3
Data collected from process tracing services concerning the production of a high quality bag.

Activity Average lead time (min) D Lead time (min) Average price per minute (Euros) D Price (Euros)

Cutting 25 ±3 0.32 ±0.05
Predisposition 28 ±3 0.25 ±0.05
Assembly 135 ±10 0.29 ±0.03
Packing 11 ±2 0.28 ±0.02
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The most immediate benefits of the MOAT system have been a sensibly reduced training cost and an increased supply
chain stability, thanks to decision making personalization and configuration automation features. In particular, the auto-
configuration process performed by the TUs via the CUs on the basis of a declarative description of the productive processes
has allowed considerably reducing the effort needed for setting-up and maintaining the system. Further, the use of user
agents with the aim of automatically adapting the TU user interfaces has sensibly improved the usability of the system.
Thanks to the agent autonomy, companies have improved the management of their local control through the SUs that are
able to adopt and implement directives based on personal business policies, and to adapt themselves to changing environ-
ments. Before using the MOAT system, several slowed down decisions impacted on the supply chain business, because the
traceability system was configured with common basic policies, which often were not adequate. This limit often required the
intervention of developers to hardcode specific constraints into the SUs. Finally, the exchange of information and the data
protection have become more efficient by using tracing agents, because many business applications can now be connected
to the network via different AUs. In the MOAT system, an SU can be easily adapted to a different workload by locally changing
the policy, or by configuring a policy which takes the workload itself into account.

8. Conclusion

In this paper, we have proposed a solution for chain traceability that relies on agent-based and ubiquitous computing
technologies. After a business and technological overview, encompassing traceability patterns, enterprise integration ap-
proaches, automatic identification and data capture technologies, the study has focused on the service-oriented composition
drawbacks, promoting the multi-agent cooperation and self-adaptation to gain a better sustainability. Hence, key properties
of agent-based traceability have been pointed out, giving a business process traceability model, an architectural vision, and
then the behavioral model for both tracing and interface agents. Finally, the application of the system to a real-world case
study has been discussed, pointing out its effectiveness and the benefits in terms of business process analysis.
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