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Abstract. Granular data offer an interesting vehicle of representing
the available information in problems where uncertainty, inaccuracy,
variability or, in general, subjectivity have to be taken into account.
In this paper, we deal with a particular type of information granules,
namely interval-valued data. We propose a multilayer perceptron (MLP)
to model interval-valued input-output mappings. The proposed MLP
comes with interval-valued weights and biases, and is trained using a
genetic algorithm designed to fit data with different levels of granularity.
The modeling capabilities of the proposed MLP are illustrated by means
of its application to both synthetic and real world datasets.

Keywords: Granular computing, Information granules, Neurocomput-
ing, Interval analysis, Symbolic data analysis, Function approximation.

1 Introduction

Human capabilities are based on the ability of processing non-numeric informa-
tion clumps (granules) rather than individual numeric values [1]. Information
granules can be regarded as collections of objects that exhibit some similarity
in terms of their properties of functional appearance [2]. There are a number of
formal models of information granules including sets, rough sets, fuzzy sets, and
shadowed sets to name a few options. In [3] the authors claim that the implemen-
tation of granules in terms of interval-valued data is the easiest to comprehend
and express by a domain expert, and the simplest to process when there is a
great variability of granule sizes.

The objective of this study is to propose a neural architecture to process in-
formation granules consisting of interval-valued data. Interval-valued data arise
in several practical situations, such as recording monthly interval temperatures
at meteorological stations, daily interval stock prices, inaccuracy of the measure-
ment instruments, range of variation of a variable through time. In the proposed
model, each operation performed in the network is based on interval arithmetic
and this allows creating mappings at different levels of granularity. Since the



level of granularity is problem-oriented and user-dependent, it is a parameter of
our neural architecture.

The first conceptualization of neural networks for processing granular data
was introduced by Pedrycz and Vukovich in [3]. Here, several design approaches
are discussed, together with a number of architectures of granular neural net-
works and associated training methods. Also, the authors tackle a number of
fundamental issues of these networks, such as specificity of information gran-
ules, learning complexity, and generalization capabilities. Neural architectures
based on interval arithmetic have been proposed in [2,4,5,8,9,10]. In particu-
lar, the model developed in [4] uses a standard multilayer perceptron (MLP)
with numeric weights and biases, and a neuron transfer function able to operate
with interval-valued inputs and outputs. Here, the training process uses an error
function based on a weighted Euclidean distance between intervals, and a Quasi
Newton method for the minimization of the error function. More robust mini-
mization methods such as genetic algorithms and evolutionary strategies have
been also proposed [5].

In its most general architecture proposed in the literature, an MLP that pro-
cesses interval-valued data is characterized by weights and biases expressed in
terms of intervals, and maps an interval-valued input vector to an interval-valued
output. However, very often, in the design of the training methods some simplify-
ing assumptions are made, e.g. input, weights and biases may be real numbers,
or the error function between intervals is not compliant with the rules of the
interval arithmetic.

This paper proposes a new genetic-based learning method for a general interval-
valued neural architecture. We also show the effectiveness of this method by using
three interval-valued datasets.

2 Interval Arithmetic: Some Definitions

We employ a basic implementation of granules in terms of conventional interval-
valued data. An interval-valued variable X is defined as:

X =[2,7] IR, z,T€ R, (1)

where IR is the set of all closed intervals in the real line, and z and T are the
boundaries of the intervals. An F'-dimensional granule is then represented by a
vector of interval-valued variables as follows:

X = [Xy,.., Xr] €IRT, X, € IR. (2)
Sometimes an interval variable is expressed in terms of its midpoint © and half-
width z, as follows [5]:

~

X=(i,2)elR, &,z €R, &= (T+x)/2, &=T—2)/2. (3)

Table 1 summarizes some basic operations of interval arithmetic that have been
used in this study. The interested reader can find a detailed discussion in [6,7].



3 The Adopted Interval-Valued Neural Architecture

Let f : IRY — IR be an F-dimensional interval-valued regression model:

FX) = f(Xy, . Xp) =V . (4)

Table 1. Some basic interval arithmetic operations used in interval-valued MLP

Operation Implementation

Addition [z,7] + [y,7] = [z +y, T+ 7]

Multiplication [z,7] % [y, 7] = [min{zy; 27; Ty; TY, max{zy; 27; Ty; TY)
Function evaluation F([z,%]) = [F(z), F(Z)], F monotonically increasing
Real distance dist(|z, =], [y,7]) = maz{|z —y|,|T — 7|}

Absolute value [z, T]| = dist([z, ], [0, 0]]) = maz{|z|, |Z|}

Fig. 1 shows the MLP we adopt to deal with the regression problem modeled
by (4). This architecture has been already proposed by some authors (for in-
stance, in [5]). The novelty of our approach concerns the training process, which
allows an effective and efficient sensitivity analysis (i.e., to quantify the effect of
input variability on the outputs). The hidden layer comprises N nonlinear hid-
den units and the output layer consists of one linear output unit. The activation
of each hidden unit j is obtained as sum between the weighted linear combi-
nation, with weights Qi,j, i1=1,.., F,j=1, .. N, of the F interval-valued
inputs X and the bias ("207]'. Since both weights and biases are intervals, this
linear combination results in a new interval. The output of each hidden unit is
then obtained by transforming its activation interval using a hyperbolic tangent
(sigmoid) function. Since the function is monotonic, this transformation yields
a new interval [5]. Finally, the output of the network, Y, is obtained as the sum
between the weighted linear combination, with weights ("2]-7 7 =1, .., N, of the
outputs of the hidden layer, and the bias 2. The overall processing method is
based on the fundamental arithmetic operations on IR shown in Table 1. The
resulting model can be used in two ways [4]: (i) as a granular function approxima-
tion model, whose granular weights can be adjusted through supervised learning
by minimizing an error function; (ii) as an instrument to evaluate the prediction
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Fig. 1. The proposed architecture of MLP for interval-valued data



of a pre-adjusted MLP model subject to variable uncertainty associated with
its input variables. Such input uncertainty can be characterized using interval
inputs of different lengths.

4 The Training of the Interval-Valued MLP

As pointed out in [5], the width of the predicted output regions for an interval
MLP is affected by the width of the weight intervals. Wide widths cause the
propagation of large ranges of intermediate values through the network, thus
generating wide output intervals. This is known as “bound explosion” effect. To
control this effect, we adopt the following procedure. Let {XY} e IR"*! be
a set of T input-output interval-valued samples, represented as midpoint and
half-width. First, we use the midpoints of T to train a conventional MLP which
has the same structure as the interval-valued MLP to be developed. We adopt
the Levenberg-Marquadt method. In this way, we form a reference model, which
solves the regression problem for reference points of the interval-valued data.
When we tackle the regression problem for the interval-valued data, we expect
that the interval weights and biases contain the numerical weights and biases
(@E?lt) and d;;m”)) of the reference model, respectively. Further, we expect that
the widths of these intervals are constrained by the level of granularity of the
mapping that is determined by the problem and by the desired resolution with
which the user is interested in observing the data.
The first requirement is satisfied by enforcing the following relationship:

wz(,z]nzt) S Qi,j and wj(znzt) S Q] VZ,] . (5)
As regards the second requirement, we enforce that the half-widths of weights
and biases are bounded by an interval-valued percentage of the initial values:

Dij € 0T G and @; € W] -G Vi, 5. (6)

where G = [9,9] € IR", with g,g € R*, is a granularity interval expressed
in percentages which allows to adapt the granularity of the mapping to the
granularity level of the information. The choice of G depends on the specific
performance index used to assess the quality of the model. For instance, in our
case we used the network error.

To learn the interval-valued weights and biases, standard error back prop-
agation is likely to give poor results [5]. Indeed, the network prediction error
surface is expected to be very nonlinear with several local minima. A global
search method is much more desirable. Genetic algorithms (GAs) and evolu-
tionary strategies are, in general, effective examples of such methods. Thus, we
decided to adopt a GA. Fig. 2 shows the chromosome coding used in the GA.
The initial population is randomly generated by satisfying the constraints in
formulas (5) and (6). Chromosomes are selected for mating by a fitness pro-
portional strategy. We apply the classical two-point crossover operator, with a
user-defined crossover probability P.. The mutation operator is controlled by a
mutation probability defined as 7,,/L, where 7,, is a user-defined mutation co-
efficient and L = 2N (F + 2) + 2 is the chromosome length. We randomly choose
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Fig. 2. The chromosome coding

a user specified percentage Pr of the genes that undergo mutation. Then, we
replace the current values of each selected gene by randomly extracting two val-

ues in the intervals [|w<”m |- g, |wl(ljmt) -g] and |w; (th) - @i, wl(z;“t) + @i 4],
respectively. The first interval is directly related to the definition of G. Once

provided @; ;, from formulas given by (6) we derive that the maximum distance

from w(m“) can be w(zjmt) +o

As regards the fitness functlon unlike the network error functions proposed
in the literature that implicitly assume an isomorphism between IR and R?, we
adopt the following error function directly derived from the interval arithmetic
operations shown in Table 1:

T
1 .
= =B Bi—dist(Vi, V) e R (7)
=1
where V; and Yz’ are the desired and network outputs. The algorithm stops if

a maximum number N¢g of generations is reached or if the best fitness of the
population is lower than a prefixed fitness threshold .

5 Experimental Results

A variety of works have been developed in the field of interval-valued data. Unfor-
tunately there is still a lack of significant benchmark datasets for interval-valued
data regression. In this section, we discuss the application of our interval-valued
neural architecture to one real world and two synthetic datasets. In all experi-
ments, the data are normalized between 0 and 1 (by subtracting the minimum
value and dividing the data by the difference between the maximum and the
minimum values). The population of the GA consists of 20 chromosomes. The
parameters P, v, Pr, and 7 have been set to 0.4, 0.7, 10%, and 0.001, respec-
tively. We used a value of N¢g equals to 500 except for the experiment in section
5.3 where we adopted a value equals to 1000.

5.1 The Salary Dataset

The Salary dataset [10] shown in Fig. 3.a consists of 30 interval-valued samples
which represent the range of salaries by years of experience for American males
with degree in 1989. The original data samples are not granular, and subject to
significant sampling error. First, fuzzy information granules have been generated
via FCM clustering. Hence, an alpha-cut of 0.05 has been applied to the resulting
fuzzy partition. Finally, interval-valued data have been derived considering, for
each alpha-cut, the smallest containing rectangle. We adopted a 10-fold cross-
validation: for each trial, the training and the test sets consist of the randomly
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Fig. 3. (a) The Salary dataset. (b) Training error versus generations in a trial.

extracted 90% and 10% of the original data, respectively. The granularity interval
used to observe the mapping is G = [0, 4]%. The network has been equipped with
15 hidden neurons. The mean values + the standard deviations of the error on
training and test set are, respectively, 0.007 4+ 0.0051 and 0.018 + 0.028. We
can observe a good balance between the values of errors for the training and test
sets. This confirms sound generalization capabilities of the network.

Fig. 3.b shows the error of the best chromosome of each generation versus the
number of generations in a sample trial. We observe that the error gets stable
around 100 generations.

5.2 The Peak Dataset

The Peak dataset shown in Fig. 4.a consists of 189 synthetic interval-valued
samples. Again, we adopted a 10-fold cross-validation. The granularity interval
used to observe the mapping is G = [0.4,4]%. The network has been equipped
with 30 hidden neurons. The mean values 4+ the standard deviations of the
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Fig. 4. (a) The Peak dataset. (b) Training error versus generations in a trial.



error on training and test set are, respectively, 0.0064 £+ 0.0014 and 0.0085 =+
0.0043. We can observe that the error in the test set is very close to the error
in the training set, thus pointing out the good generalization capabilities of the
network. Fig. 4.b shows the error of the best chromosome of each generation
versus the number of generations in a sample trial. We observe that the error
gets stable around 500 generations.

5.3 The Wave Dataset

The Wave dataset shown in Fig. 5.a consists of 400 synthetic interval-valued
samples in the three-dimensional space. The network has been equipped with
15 hidden neurons. We use this dataset for analyzing the differences between
the mappings with different granularity intervals. Fig. 5.b shows the error of
the best chromosome of each generation versus the number of generations when
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Fig.5. (a) The Wave dataset. (b) Training error versus generations with G =
0.2,10]% and Gy = [10,50]%.
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Fig. 6. Models generated by the network. (a) G1 = [0.2,10]%. (b) G2 = [10, 50]%.



the network is trained with the granularity intervals G; = [0.2,10]% and Gy =
[10, 50]%.

Fig. 6.a and Fig. 6.b show the models generated by the network in the two
cases, respectively. We can observe how the model generated by using Gy is
coarser than the model generated using G;. Further, in the former, the error
gets stable around 500 generations against the 300 of the latter.

6 Conclusions

We have proposed a new genetic-based learning method for a general interval-
valued neural architecture. The originality of the approach concerns the training
process which allows a valuable sensitivity analysis. We have quantified the ef-
fectiveness of the approach in terms of generalization capabilities and sensitivity
by using three interval-valued datasets.
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