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Abstract. Decision-making processes in healthcare can be highly com-
plex and challenging. Machine Learning tools offer significant potential
to assist in these processes. However, many current methodologies rely
on complex models that are not easily interpretable by experts. This
underscores the need to develop interpretable models that can provide
meaningful support in clinical decision-making. When approaching such
tasks, humans typically compare the situation at hand to a few key exam-
ples and representative cases imprinted in their memory. Using an app-
roach which selects such exemplary cases and grounds its predictions on
them could contribute to obtaining high-performing interpretable solu-
tions to such problems. To this end, we evaluate PIVOTTREE, an inter-
pretable prototype selection model, on an oral lesion detection prob-
lem. We demonstrate the efficacy of using such method in terms of per-
formance and offer a qualitative and quantitative comparison between
exemplary cases and ground-truth prototypes selected by experts.
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1 Introduction

One of the sectors that has significantly benefited from the application of
Machine Learning (ML) tools is healthcare [8,21]. However, although the models
employed to solve diagnostic tasks are powerful in terms of predictive capability,
their reliance on complex architectures often makes it difficult for experts and
users to understand their reasoning. Moreover, the “cognitive process” employed
by these models is frequently not comparable to how humans reason to solve the
same tasks [49]. Given the pivotal role of these tools as decision-support systems
for practitioners in healthcare, explaining and interpreting their predictions has
become crucial and is the focus of active research in Explainable AT (XAI) [2].
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As humans, our cognitive processes and mental models frequently depend on
case-based reasoning [37]|, where past exemplary cases are stored in memory and
retrieved to solve specific tasks. This type of reasoning is so deeply embedded in
us that even young children can recognize and interact with unfamiliar objects
they have never encountered before, provided these objects resemble something
they already know [42]. Moreover, this ability extends across various modalities:
we identify authors by their writing style, recognize relatives by shared facial
features, and classify music genres based on similarities to familiar tracks [23].
In the healthcare sector, practitioners frequently diagnose or identify new con-
ditions by referencing past case reports [20,38]. Additionally, the experiments
detailed in [11] demonstrated that pattern recognition, grounded in examples
gained through experience, is the diagnostic strategy with the highest likelihood
of success.

Given these premises, a promising approach to designing inherently inter-
pretable MLL models for the healthcare sector is to explore the intuitive notion
of similarity between discriminative and descriptive instances. The underlying
assumption is that grounding a model’s predictions on the similarity between test
instances and exemplar cases would yield a naturally interpretable and trustwor-
thy tool for medical experts and end-users alike. In this paper, we present a case
study with an interpretable similarity-based model for decision-making applied
to a specific medical context, i.e., for an oral lesion prediction task.

In particular, we study PIVOTTREE [7], a hierarchical and interpretable case-
based model inspired by Decision Tree (DT) [6]. By design, PIVOTTREE can be
used both as a prediction and selection model. As a selection model, P1vor-
TREE identifies a set of training exemplary cases named pivots; as a predictive
model, PIVOTTREE leverages the identified pivots to build a similarity-based
DT, routing instances through its structure and yielding a prediction, and an
associated explanation. Unlike traditional DT's, the resulting explanation is not a
set of rules having features as conditions, but rules using a set of pivots to which
the instance to predict is compared. Like distance-based models, PIVOTTREE
allows to select exemplary instances in order to encode the data in a similarity
space that enables case-based reasoning. Finally, PIVOTTREE is a data-agnostic
model, which can be applied to different data modalities, jointly solving both
pivot selection and prediction tasks. Given its modality agnosticism, P1voT-
TREE represents an advancement over traditional DTs. As shown in [7], the
case-based model learned by PIVOTTREE offers interpretability even in domains
like images, text, and time series, where conventional interpretable models often
underperform and lack clarity. Furthermore, unlike conventional distance-based
predictive models such as k-Nearest Neighbors (KNN) [15], PIVOTTREE intro-
duces a hierarchical structure to guide similarity-based predictions.

Figure 1 provides an example of PIVOTTREE on the breast cancer dataset!,
wherein cell nuclei are classified according to their characteristics computed from
a digitized image of a fine needle aspirate of a breast mass. Starting from a
dataset of instances, PIVOTTREE identifies a set of two pivots (Fig.1 (a)) in this

! https://archive.ics.uci.edu/dataset /17 /breast+cancer-+ wisconsin+diagnostic.
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case belonging to the two distinct classes Benign and Malignant. Said pivots
are used to learn a case-based model wherein novel instances are represented
in terms of their similarity to the induced pivots (Fig. 1 (b)). Building on pivot
selection, PIVOTTREE then learns a hierarchy of pivots wherein instances are
classified. This hierarchy takes the form of a Decision Tree (Fig.1 (¢)): novel
instances navigate the tree, percolating towards pivots to which they are more
similar or dissimilar, and landing into a classification leaf. In the example, given
a test instance z: if its similarity to pivot 0 is lower than 3.61 (following the right
branch), then x is classified as a Benign, i.e., x is far away from the Malignant
pivot 0 (see Fig.1 (b)). Instead, following the left branch, if x’s similarity to
pivot 1 is higher than 0.39 (left branch), then x is still classified as Benign as it
is very similar to the Benign pivot 1, otherwise x is classified as Malignant as it
is sufficiently similar to the Malignant pivot 0. In contrast, a traditional Decision
Tree would model the decision boundary with feature-based rules, e.g., “if mean
concave points < 2.4 then Benign else if mean symmetry < 1.7 then Malignant”.
However, traditional DTs (i) can only model axis-parallel splits, and (7i) cannot
be employed on data types with features without clear semantics such as medical
images. Hence, improving on traditional DTs, the case-based model learned by
P1vOTTREE can provide interpretability even in domains such as images, text,
and time series, by exploiting a suitable data transformation.
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s(x, pivot 0) > 3.61
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Fig. 1. PIvOTTREE as (a) selector, (b) interpretable model, (¢) Decision Tree.

In this paper we demonstrate that PIVOTTREE represents a promisingly effec-
tive approach for interpretability of oral lesion detection, and we compare its
selected pivots with instances identified as representative by domain experts.
After an initial review of the literature concerning XAl in the healthcare sector,
and prototype-based approach for explainability in Sect. 2, in Sect. 3 we summa-
rize the PIVOTTREE method. Then, in Sect. 4 we report the experimental results
on the oral lesion diagnostic problem. Finally, Sect. 5 completes our contribution
and discusses future research directions.
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2 Related Work

The wide use of explainability techniques for the medical field has been exten-
sively reviewed in previous work [3,16]. ML [12], and specifically case-based
reasoning, already finds application in the medical domain, where interpretable
and uninterpretable models [5,10] already tackle a variety of tasks, including
breast cancer prediction [28,41,48], melanoma detection [17,31-33] and Covid-
19 detection [39]. The latter, in particular, introduces two-level interpretations:
prototypes are also defined contrastively, i.e., both highly similar and highly dis-
similar prototypes are provided, and they are also accompanied by heatmaps
indicating regions of higher importance. These approaches integrate the discov-
ery of prototypes directly into the model, which often uses similarity-based scor-
ing function to perform predictions. Other examples include [44], which combines
knowledge distillation with heterogeneous prototype selection for mammograms,
building on [9], and [24] which leverage prototype learning for Autism spectrum
disorder detection from fMRI images. In [25] besides prototypes criticism are
also identified, i.e., instances representatives of some parts of the input space
where prototypical examples do not provide good explanations.

Focusing on oral cancer detection, a relevant example is [46], which proposes
an end-to-end, two-stage model for oral lesion detection and classification. This
model leverages YOLOvS! [22] for detection and EfficientNet-B4 [43] for clas-
sification, making it suitable for deployment as a mobile application. In [27],
the authors fine-tune a Single Shot Multibox Detector (SSD) [29] to identify
the presence and location of oral disease. Finally, in [50] a self-supervised pre-
training strategy is defined, followed by a semi-supervised learning approach on
epithelial regions for carcinoma detection. A case-based approach specifically for
oral lesion is offered in [13], which works with tabular descriptors by physicians.
More at large, and aside from case-based interpretations, interpretability in the
medical sector has been gaining attention for quite some years [34]. However, all
the aforementioned works offer black-box models for oral lesion detection and
classification. On the other hand, in terms of interpretability tools for oral cancer
detection, only a handful of proposals are currently in place. In [1| an ensemble
approach for oral cancer prediction using tabular data, which by design relays
on SHAP values [4] for explainability, is discussed. In [14] an approach using
gradient-weighted class activation mapping is presented and [40] provides visual
explanations leveraging attention mechanisms also adding expert knowledge by
incorporating manually edited attention maps in order to update classification
results. Differently from the literature presented so far, to the best of our knowl-
edge, our study is the first inquiring on explainability through prototypes for
the oral lesion detection problem using a data-agnostic model.

3 Pivot Tree in a Nutshell

In this section, we present the main characteristics of PIVOTTREE. For more
detailed information and extensive benchmarking, we refer readers to [7].
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Given a set of n instances represented as real-valued m-dimensional feature
vectors? in R™, and a set of class labels C' = {1,...,c}, in case-based reasoning,
the objective is to learn a function f : R™ — (' approximating the underlying
classification function, with f being defined as a function of k exemplary cases
named pivots. Similarity-based case-based models define f on a similarity space
S, often inversely denoted as “distance space”, induced by a similarity function
s : R™ x R™ — R quantifying the similarity of instances [36]. Given a train-
ing set (X,Y), and a similarity function s, our objective is to learn a function
7t RPX™ — RFX™ that selects a set P C X of k pivots maximizing the per-
formance of f. The instances in X are mapped into Z through S, wherein they
are represented in terms of their similarity to the pivots P. f is then trained on
(Z,Y), and at inference time, instances are first mapped through the similarity
space, before being fed to f.

Aiming for transparency of the case-based predictive model f, our objective
is to employ as an interpretable model f Decision Tree classifiers (DT) or k-
Nearest Neighbors approaches [18] (kNN). When f is implemented with a DT,
split conditions will be of the form s(x,p;) > 3, i.e., “if the similarity between
instance x and pivot p; is greater or equal then [, then ...”, allowing to easily
understand the logic condition by inspecting x and p; for every condition in the
rule. On the other hand, when f is implemented as a kNN, every decision will
be based on the similarity with a few neighbors derived from the pivot set P. A
human user just needs to inspect x and the similarities with the pivots P and
the instances in the neighborhood. When the number of pivots is kept small,
the interpretability of both methods increases, limiting the expressiveness. Vice
versa, using a selection model 7 that returns a large number k of pivots can
increase the performance at the cost of interpretability. Our proposal aims to
balance these two aspects by allowing the selection of a small number of pivots
that still guarantee comparable performance to interpretable predictive models.

PIvOTTREE implements the selection function 7, and leverages existing
interpretable models to implement f. Much like Decision Tree induction algo-
rithms [6], PIVOTTREE greedily learns a hierarchy of nodes wherein pivots lie.
Node splits are selected so that the downstream performance of f is maximized,
i.e., the split is chosen to maximize the information gain of the node. Notably,
P1vOTTREE does not operate directly on the data, but rather on the induced
similarities, thus the split is chosen among a set of candidates defining lower or
higher similarities to a set of candidate pivots: the traditional “x; < a” split is
replaced by a similarity rule of the form s(x;,p;) < « thresholding the similarity
of instances to pivots. The training data is then routed according to the split,
and the operation repeats recursively. Pivots come in two families: discrimina-
tive, which guide instance routing, and descriptive, which instead describe the
node. The former are selected to maximize the performance, while the latter
are selected to maximize similarity to the other instances percolating the node.

2 For the sake of simplicity, we consistently treat data instances as real-valued vectors.
Any data transformation employed in the experimental section to maintain coherence
with this assumption will be specified when needed.
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Fig. 2. P1vOoTTREE workflow for selection of discriminative pivots of class ¢ for a non-
terminal node with X; training instances. With z(®) we indicate an instance of class
¢ and in analogous way with discriminative'® the fact we are referring to a class ¢
pivot.

Figure 2 displays the selection process for the discriminative pivots of class ¢ in
a node: choosing the best splitting feature in the similarity space implies find-
ing the c-instance which best separates the current training data when instance
similarity is taken into account, i.e., the discriminative pivot of such class.

In a sense, the descriptive and discriminative pivots extracted by PIvoTr-
TREE can be associated with the prototypical examples and criticisms identified
by [25]. However, their usage is markedly different. By design, PIVOTTREE is
a data-agnostic model that leverages the concept of similarity to conduct both
selection and prediction tasks simultaneously. While some data types, e.g., rela-
tional data, are more amenable than others, e.g., images or text, to similarity
computation, with our contribution, we aim to address all data types as one. By
decoupling similarity computation and object representation, PIVOTTREE can
be applied to any data type supporting a mapping to R, i.e., text through lan-
guage model embedding, images through vision models, graphs through graph
representation models, etc. In the healthcare sector, this approach can be highly
beneficial due to the heterogeneous nature of the data types involved in diagnos-
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tic processes: sequential data like EEG/ECG signals, text-based clinical reports,
and medical images of lesions can all be processed using a unified PIVOTTREE
framework by transforming each data type into an appropriate vector repre-
sentation. This integrated approach can improve diagnostic explainability by
allowing for a comprehensive analysis of multimodal healthcare data. In the fol-
lowing experiments, we focus specifically on images, particularly on oral lesion
images, using embeddings provided by a pre-trained deep learning model.

4 Experiments

In this section, we evaluate the performance of PrvorTREE? (PTC) on the
DoctOral-Al dataset?. Our objective is to demonstrate that PIVOTTREE is an
accurate predictor and selector tool for the task and show how comparable the
learned pivots are to ground-truth cases deemed prototypical by expert doctors.

Classification Models. We refer to PIVOTTREE used as Classification
model with PTC. We use P to denote the set of pivots identified by PIVOTTREE,
and O to denote the set of ground-truth prototypes. DT p and KNN p refer to DT
and KNN models, respectively, trained in the similarity space obtained by com-
puting the similarity between each instance and every pivot in P. Similarly, DT
and KNNg are trained in the similarity space derived from the ground-truth pro-
totypes in O. As further baselines, we compare PIVOTTREE with KNN and DT
directly trained on feature space. Finally, as deep learning (DL) model we rely
on the Detectron2 (D2) model [47] fine-tuned on the DoctOral-Al dataset. We
report the performance of D2 to observe the loss in accuracy at the cost of
interpretability. A comparison on DoctOral-Al w.r.t other DL architectures is
also offered in [35].

Experimental Setting. We evaluated the predictive performance of the
aforementioned models by measuring Balanced Accuracy and F1-score, Precision
and Recall by computing the metric for each label and reporting the unweighted
mean. In line with [7], for PIVOTTREE hyperparameter selection®, both as a
predictor and a selector, we aim to maintain a low number of pivots and an
interpretable classifier structure. Therefore, the optimal maxdepth is searched
within the interval [2,4]. When using PIVOTTREE as a selector, we assess the
performance of using different pivot types — discriminative, descriptive, both, and
using only those considered as splitting pivots — to identify which combination
achieves the best selection performance when paired with DT or KNN. The best
performance for KNNp are obtained with maxdepth = 3, while for PTC and
DT p with mazdepth = 4. Leveraging both discriminative and descriptive pivots
consistently yields better results. Finally, for the baseline DT and KNN the best
performance is achieved with mazdepth = 4 and k = 5, respectively, both in

3 A Python implementation, along with experimental details, is available at https:/ /
github.com /acascione,/PivotTree DoctOral.

* https://mlpi.ing.unipi.it /doctoralai/.

® For every tree, we set 3 as min nbr. of instances a node must have to be considered
leaf, and 5 as the min nbr. of instances a node must have to perform a split.
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the original space and in the similarity feature space. As distance function, we
always adopt the Euclidean distance.

Dataset and Embedding Model. The DoctOral-Al dataset comprises
535 images of varying sizes, which define a multiclassification oral lesion detec-
tion task with classes neoplastic (31.58%), aphthous (32.52%), and traumatic
(35.88%). Neoplastic ulcers typically exhibit the loss of epithelial layers, with
raised, poorly defined margins. The base of these ulcers is often grayish, yellow-
ish, or whitish, presenting a crater-like or raised appearance, generally composed
of necrotic tissue with a granular texture. Aphthous ulcers, on the other hand,
are characterized by the loss of epithelial layers and have flat, erythematous
(red) margins with a grayish-yellow base, surrounded by red mucosa. Traumatic
ulcers can feature raised or flat margins, bordered by a whitish or reddish rim,
with a crater-like base in shades of white, gray, and yellow. Over time, the edges
of chronic traumatic ulcers may harden and thicken. This detailed categorization
is crucial for accurate diagnosis and treatment in clinical settings. The dataset is
divided into 70% development and 30% testing, the former further divided on a
80%/20% split for training and validation. We embed images with a Detectron2
(D2) [47] CNN architecture fine-tuned on the dataset®. We resized each image
into an 800 x 800 format. Then relevant feature maps are selected from the D2’s
backbone output and passed to the D2’s region of interest pooling layer. Finally,
a pooling layer and a flattening layer map the feature maps to a 256-dimensional
embedding. We also report the performance of D2 to observe the loss in accuracy
at the cost of interpretability.

neoplastic - pys,

S(X,Ps,) >23.54 S(X,Pys5) <23.54

aphthous - pyg7 traumatic - p33
¢ A

S(%,P157) >15.58 I s(%p;9,)<15.58 S(%,ps5) >27.92 S(X,Ps5) S27.92

4

aphthous - pass aphthous - p13a
= = g

aphthous S(X,Pa07) >13.7 S(%,P.436) >19.30

M S(X,P401)<13.75
traumatic neoplastic aphthous

Fig. 3. Partial visual depiction of best PTC configuration on the test set. Branches
are labeled with similarity threshold values used for prediction.

® We offer details regarding the training process in https://github.com/
galatolofederico/oral-lesions-detection.
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Qualitative Results. Fig. 3 depicts a visual representation of PTC decision
rules and splitting pivots associated with the initial nodes”. Given a hypothetical
instance x to predict, the predictive reasoning employed by the trained model
proceeds as follows: x is first compared to poso, a neoplastic instance. If the
similarity between x and psss is sufficiently high, then x traverses the left branch
and is compared to the aphthous pivot pig7. If x is sufficiently similar to pig7, the
model concludes the prediction and assigns x to the aphthous class. Otherwise,
an additional comparison with p4g; is performed, leading to a final classification
as either neoplastic or traumatic. We underline that the path leading to traumatic
decision lacks pivots belonging to such class. This suggests that the model can
effectively perform comparisons with pivots belonging to other classes to exclude
their possibility for =, thereby assigning z to the remaining class by exclusion®.
On the other hand, if the initial comparison identifies x as dissimilar from the
neoplastic posa, the model then compares it to the aphthous p33 and applies
analogous reasoning for subsequent comparisons.

Table 1. Mean predictive performance and number of pivots. Best performer in bold,
second best performer in italic, third best performed underlined.

Model |Bal. Acc.|F1-score[Precision|Recall|Nbr. Pivots

D2 0.859 | 0.854 | 0.854 |0.858
PTC| 0.834 | 0.832 | 0.839 |0.834
DTp | 0.833 | 0.830 | 0.830 |0.833
KNNp| 0.811 0.807 | 0.810 |0.811
DTo | 0.739 | 0.734 | 0.742 |0.740
KNNo| 0.801 0.795 | 0.798 |0.801

DT | 0.770 | 0.766 | 0.772 |0.770 -
KNN | 0.809 | 0.808 | 0.811 |0.810 -

© oo S ol

Quantitative Results. Table 1 reports the mean predictive performance,
and the number of pivots of the various predictive models®. D2 has the highest
performance, at the cost of being not interpretable. However, a not markedly
inferior performance is achieved by PIVOTTREE predictor, i.e., PTC, that only
requires 9 pivots (6 of which are shown in Fig.3). The third best performer is
PivOTTREE used as selector for a DT, i.e., DT p. Unfortunately, such perfor-
mance is accompanied by high complexity, as DT p requires 47 pivots. Finally,

" The actual trained tree has a mazdepth of 4. For visualization purposes, we limit the
visualization to the initial nodes.

® We intend to fix this (possible) issue by extending PIvoTTREE with Proximity
Trees [30] to compare the test x against two pivots instead of only one.

® For DT and PrvorTREE selector/predictor models we trained each best configu-
ration with 50 different random states. Since the standard deviation of the values
resulted to be negligible, we report only the average result.
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KNNp, i.e., PIVOTTREE used as selector for a KNN is the predictor requiring
the smallest number of pivots. Overall, PIVOTTREE both employed as selector
and predictor leads to competitive results compared to D2. We underline how
PTC has the best trade-off between accuracy and complexity, showing compet-
itive results with respect to the fine-tuned D2 but providing an interpretable
predictor through its pivot structure, and the low number of pivots adopted.

Remarkably, selecting the set of pivots P through PIVOTTREE leads to a
KNN and a DT which are better than those resulting using the ground-truth
prototypes, especially for the DT case, underlying that those instances which
for humans are clear examples, perhaps didactic examples, of certain cases, are
not necessarily the best ones to discriminate through an automatic Al system.

Finally, we remark that the performance of any PIVOTTREE-based model is
better than those of the KNN and DT classifiers directly trained on embeddings.

Pivot-Prototypes Comparison. We provide here a quantitative compar-
ison in terms of similarities between the pivots selected through PTC P with
the ground-truth prototypes O. In particular, we consider as similarity measures
the Euclidean distance on the D2 embeddings, and the Structural Similarity
(SSIM) [45] on the original images. For the latter, we first resize the images
regions of interest to 300 x 300 pixels. SSIM identifies changes in structural
information by capturing the inter-dependencies among similar pixels, especially
when they are spatially close. In Figs. 4 and 5 we report two heatmaps highlight-
ing the similarities between the PIVOTTREE pivots (rows) and ground-truth pro-
totypes (columns), on Euclidean and SSIM similarity, respectively. Darker colors
indicate higher similarity. For the similarity comparison through Euclidean dis-
tance, we specify that the average distance between each pair of instances in
the DoctOral-Al training set is 26.90 £ 6.48. When examining the average dis-
tance between pivot and ground-truth pairs w.r.t. each class in the heatmap, we
find the following values: 23.93 for neoplastic, 24.65 for aphthous, and 24.60 for
traumatic. This shows how the mean pairwise distances within individual classes
are generally close to the overall mean pairwise distance. Pivots and ground-
truth prototypes tend to not present robust similarities. Furthermore, we notice
how for pivots psp3 and ps3s, both members of aphthous class, the most similar
ground-truth prototypes belong to a different class. On the other hand, for the
other pivots, the closest ground-truth counterpart is consistently one of the same
class, sometimes with a very high similarity: some examples are py34 with o3g9
and pyo3 and o993. A different tendency can be observed in Fig.5 when using
SSIM: the average SSIM with respect to each class is 0.46 for neoplastic, 0.70
for aphthous, and 0.57 for traumatic, with a mean similarity in the overall train-
ing set of 0.58 4+ 0.10. This highlights a notably high internal similarity for the
aphthous class. As evident from Fig. 5, the highest similarity is always observed
when comparing pivots with the aphthous ground-truth prototypes, differently
from Fig. 4 which shows higher variability across classes more oriented towards
the right matching. This comparison corroborates the idea of relying on the
Euclidean distance on the D2 embedding space for PIVOTTREE.
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Fig. 4. PIvOTTREE pivots (rows) and ground-truth prototypes (columns) comparison
as FEuclidean distances on D2 embedding. The darker the color the more similar are a
pivot and a ground truth prototype. The first letter identifies the class of the instances:
neoplastic, aphthous, and traumatic.

Furthermore, we evaluate how pivots extracted using PTC group instances
together compared to ground-truth prototypes. We partition dataset instances
with Voronoi partition, each instance associated to the prototype closest to it
in the D2 embedding space. In Fig. 6, we compare group size and entropy cal-
culated w.r.t. the target variable Y. In PTC groups, we highlight how aphthous
pivots tend to aggregate the majority of instances, alongside the traumatic pivot
P322. Aphthous pivots exhibit higher entropy levels and form less pure groups,
except for the smaller, entirely pure group centered around pi;34. Conversely,
the neoplastic instance poso significantly captures a substantial percentage of
its class, paralleled by p33 which similarly captures traumatic instances effec-
tively. On the other hand, regarding ground-truth prototypes, most instances
group around og, 03g2, and 0233, representing traumatic, aphthous, and neoplas-
tic classes, respectively. Many neoplastic instances are well-represented by o152,
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Fig. 5. PIVOTTREE pivots (rows) and ground-truth prototypes (columns) comparison
as SSIM on raw regions of interest. Same rules from Fig. 4 apply.

and similarly for aphthous instances with o3g3. Instances of pure or almost pure
groups are observed for neoplastic and aphthous classes, whereas a highly pure
group for traumatic instances is lacking in this scenario. Only a single entirely
pure group for neoplastic instances is found for ground-truth prototypes, whereas
PTC pivots are able to isolate two entirely pure groups around pss and pi34.
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centers, respectively. Entropy values of each group with respect to the target variable
are indicated by values above each bar.
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5 Conclusion

We have discussed PIVOTTREE application in the case of oral lesion prediction,
showing its superiority as a predictor with respect to other simple interpretable
models and as selector when paired with such simple models trained on the
similarity space induced by the selected pivots. Furthermore, we have compared
expert-selected prototypes with PIVOTTREE-selected pivots, highlighting how
a strong similarity can be observed in some of the pairs. Given its flexibility,
PivOTTREE lends itself to be applied for several other diagnostic task in the
healthcare sector. Future investigations include testing PIVOTTREE on medical
data of different modalities (time-series, text reports, tabular data) in order to
assess its performance, comparing it against neural prototype-based approaches
for medical data as explored in [26,39] and evaluating the interpretability of
identified pivots through human subjects. Additional analysis could investigate
the trade-off between performance and explainability by evaluating how Piv-
OTTREE compares to competing post-hoc explainers. Moreover, future research
could focus on developing specialized interpretability metrics for PIVOTTREE
and other case-based models, as this study primarily relied on depth and the
number of pivots to assess interpretability and complexity. Furthermore, other
splitting strategies could be analyzed, one being a direct comparison between
pairs of pivots as shown in PROXIMITY TREE models [30] or attempting to gen-
erate instead of select the PIVOTTREE model [19].



Oral Lesion Diagnosis Through Prototypical Instances Identification 329

Acknowledgments. This work has been partially supported by the European Com-
munity Horizon 2020 programme under the funding schemes ERC-2018-ADG G.A.
834756 “XAI: Science and technology for the eXplanation of AI decision making”,
“INFRATA-01-2018-2019 - Integrating Activities for Advanced Communities”, G.A.
871042, “SoBigData-++: FKuropean Integrated Infrastructure for Social Mining and
Big Data Analytics”, by the European Commission under the NextGeneration EU
programme - National Recovery and Resilience Plan (Piano Nazionale di Ripresa e
Resilienza, PNRR) - Project: “SoBigData.it - Strengthening the Italian RI for Social
Mining and Big Data Analytics” - Prot. IR0000013 - Avviso n. 3264 del 28 /12/2021, and
M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artificial
Intelligence Research” - Spoke 1 “Human-centered AI”, M4 C2, Investment 1.5 “Cre-
ating and strengthening of innovation ecosystems”, building “territorial R&D leaders”,
project “THE - Tuscany Health Ecosystem”, Spoke 6 “Precision Medicine and Person-
alized Healthcare”, by the Italian Project Fondo Italiano per la Scienza FIS00001966
MIMOSA, by the “Reasoning” project, PRIN 2020 LS Programme, Project number
2493 04-11-2021, by the Italian Ministry of Education and Research (MIUR) in the
framework of the FoReLab project (Departments of Excellence), by the European
Union, Next Generation EU, within the PRIN 2022 framework project PIANO (Per-
sonalized Interventions Against Online Toxicity) under CUP B53D23013290006.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Adeoye, J., et al.: Explainable ensemble learning model improves identification of
candidates for oral cancer screening. Oral Oncol. 136, 106278 (2023)

2. Ali, S., et al.: The enlightening role of explainable artificial intelligence in medical
& healthcare domains: a systematic literature review. Comput. Biol. Medicine 166,
107555 (2023)

3. Band, S.S., et al.: Application of explainable artificial intelligence in medical health:
a systematic review of interpretability methods. Inf. Med. Unlocked 40, 101286
(2023)

4. Baptista, M.L., et al.: Relation between prognostics predictor evaluation metrics
and local interpretability SHAP values. Artif. Intell. 306, 103667 (2022)

5. Bichindaritz, I., Marling, C.: Case-based reasoning in the health sciences: what’s

next? Artif. Intell. Med. 36(2), 127-135 (2006)

Breiman, L., et al.: Classification and Regression Trees. Wadsworth (1984)

7. Cascione, A., et al.: Data-agnostic pivotal instances selection for decision-making
models. In: Bifet, A., Davis, J., Krilavi¢ius, T., Kull, M., Ntoutsi, E., Zliobaité,
I. (eds.) ECML/PKDD, vol. 14941, pp. 367-386. Springer, Cham (2024). https://
doi.org/10.1007/978-3-031-70341-6 22

8. Celard, P., et al.: A survey on deep learning applied to medical images: from simple
artificial neural networks to generative models. Neural Comput. Appl. 35(3), 2291—
2323 (2023)

9. Chen, C., et al.: This looks like that: deep learning for interpretable image recog-
nition. In: NeurIPS, pp. 8928-8939 (2019)

10. Choudhury, N., Begum, S.A.: A survey on case-based reasoning in medicine.
IJACSA 7(8), 136-144 (2016)

&



330

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Cascione et al.

Coderre, S., et al.: Diagnostic reasoning strategies and diagnostic success. Med.
Educ. 37(8), 695-703 (2003)

Dixit, S., et al.: A current review of machine learning and deep learning models
in oral cancer diagnosis: recent technologies, open challenges, and future research
directions. Diagnostics 13(7), 1353 (2023)

Ehtesham, H., et al.: Developing a new intelligent system for the diagnosis of oral
medicine with case-based reasoning approach. Oral Dis. 25(6), 15551563 (2019)
Figueroa, K.C., et al.: Interpretable deep learning approach for oral cancer classi-
fication using guided attention inference network. JBO 27(1), 015001 (2022)

Fix, E.: Discriminatory analysis: nonparametric discrimination, consistency prop-
erties, vol. 1. USAF school of Aviation Medicine (1985)

Frasca, M., et al.: Explainable and interpretable artificial intelligence in medicine:
a systematic bibliometric review. Discov. Artif. Intell. 4(1) (2024). https://doi.org/
10.1007/s44163-024-00114-7

Grignaffini, F., et al.: Machine learning approaches for skin cancer classification
from dermoscopic images: a systematic review. Algorithms 15(11), 438 (2022)
Guidotti, R., et al.: A survey of methods for explaining black box models. ACM
Comput. Surv. 51(5), 93:1-93:42 (2019)

Guidotti, R., et al.: Generative model for decision trees. In: AAAI, pp. 21116—
21124. AAAT Press (2024)

Harasym, P.H., et al.: Current trends in developing medical students’ critical think-
ing abilities. KIMS 24(7), 341-355 (2008)

Javaid, M., et al.: Significance of machine learning in healthcare: features, pillars
and applications. Int. J. Intell. Networks 3, 58—73 (2022)

Jocher, G.: YOLOvV5 by Ultralytics. https://github.com /ultralytics/yolov5
Johnson-Laird, P.N.: Mental models and human reasoning. Proc. Natl. Acad. Sci.
107(43), 18243-18250 (2010)

Kang, E., et al.: Prototype learning of inter-network connectivity for ASD diagnosis
and personalized analysis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S.
(eds.) MICCALI LNCS, vol. 13433, pp. 334-343. Springer (2022). https://doi.org/
10.1007/978-3-031-16437-8 32

Kim, B., et al.: Examples are not enough, learn to criticize! criticism for inter-
pretability. In: NIPS, pp. 2280—2288 (2016)

Kim, E., et al.: XProtoNet: diagnosis in chest radiography with global and local
explanations. In: CVPR, pp. 15719-15728. Computer Vision Foundation / IEEE
(2021)

Kouketsu, A., et al.: Detection of oral cancer and oral potentially malignant dis-
orders using artificial intelligence-based image analysis. Head Neck 46, 2253—-2260
(2024)

Lamy, J., et al.: Explainable artificial intelligence for breast cancer: a visual case-
based reasoning approach. Artif. Intell. Medicine 94, 42-53 (2019)

Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21-37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

Lucas, B., et al.: Proximity forest: an effective and scalable distance-based classifier
for time series. Data Min. Knowl. Discov. 33(3), 607-635 (2019)

Metta, C., et al.: Exemplars and counterexemplars explanations for image classi-
fiers, targeting skin lesion labeling. In: ISCC, pp. 1-7. IEEE (2021)

Metta, C., et al.: Improving trust and confidence in medical skin lesion diagnosis
through explainable deep learning. JDSA, 1-13 (2023). https://doi.org/10.1007/
s41060-023-00401-z



33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Oral Lesion Diagnosis Through Prototypical Instances Identification 331

Metta, C., et al.: Advancing dermatological diagnostics: interpretable AI for
enhanced skin lesion classification. Diagnostics 14(7), 753 (2024)

Panigutti, C., et al.: Doctor XAl: an ontology-based approach to black-box sequen-
tial data classification explanations. In: FAT*, pp. 629-639. ACM (2020)

Schank, R.C., Abelson, R.P.: Knowledge and Memory: The Real Story, pp. 1-85.
Psychology Press (2014)

Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recog-
nition - Foundations and Applications, Series in Machine Perception and Artificial
Intelligence, vol. 64. WorldScientific (2005)

Schank, R.C., Abelson, R.P.: Knowledge and Memory: The Real Story, pp. 1-85.
Psychology Press (2014)

Shin, H.S.: Reasoning processes in clinical reasoning: from the perspective of cog-
nitive psychology. KJIME 31(4), 299 (2019)

Singh, G., Yow, K.C.: An interpretable deep learning model for Covid-19 detection
with chest x-ray images. IEEE Access 9, 85198-85208 (2021)

Song, B., et al.: Interpretable and reliable oral cancer classifier with attention
mechanism and expert knowledge embedding via attention map. Cancers 15(5),
1421 (2023)

Song, B., et al.: Classification of mobile-based oral cancer images using the vision
transformer and the SWIN transformer. Cancers 16(5), 987 (2024)

Spelke, E.S.: What babies know: Core Knowledge and Composition Volume 1,
vol. 1. Oxford University Press (2022)

Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: ICML. Proceedings of Machine Learning Research, vol. 97, pp. 6105—
6114. PMLR (2019)

Wang, C., et al.: Knowledge distillation to ensemble global and interpretable
prototype-based mammogram classification models. n: Wang, L., Dou, Q., Fletcher,
P.T., Speidel, S., Li, S. (eds.) MICCAIL LNVCS, vol. 13433, pp. 14-24. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-16437-8 2

Wang, Z., et al.: Image quality assessment: from error visibility to structural sim-
ilarity. IEEE Trans. Image Process. 13(4), 600-612 (2004)

Welikala, R.A., et al.: Automated detection and classification of oral lesions using
deep learning for early detection of oral cancer. IEEE Access 8, 132677-132693
(2020)

Wu, Y., et al. Detectron2 (2019). https://github.com/facebookresearch/
detectron2

Yagin, B., et al.: Cancer metastasis prediction and genomic biomarker identification
through machine learning and explainable artificial intelligence in breast cancer
research. Diagnostics 13(21), 3314 (2023)

Yang, G., et al.: Unbox the black-box for the medical explainable Al via multi-
modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf.
Fusion 77, 29-52 (2022)

Zhou, J., et al.: A pathology-based diagnosis and prognosis intelligent system for
oral squamous cell carcinoma using semi-supervised learning. ESWA 254, 124242
(2024)



