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A B S T R A C T

Land subsidence is a worldwide threat that may cause irreversible damage to the environment and the in
frastructures. Thus, identifying and mapping areas prone to land subsidence with accurate methods such as Land 
Subsidence Susceptibility Index (LSSI) mapping is crucial for mitigating the adverse impacts of this geohazard. 
Also, Machine Learning (ML) is now becoming a powerful tool to analyze vast and different datasets such as those 
necessary for LSSI mapping. In this study, we use the conventional Frequency Ratio (FR) method and ML models 
to generate LSSI maps of the region of Murcia (Spain) where land subsidence occurred in the past due to 
groundwater overdraft. A LSSI map was initially generated with known FR. Then, additional Conditioning 
Factors (CFs) with increased spatial resolution were used to train several ML models and generate a new LSSI 
map. The Extra-Trees Classifier (ETC) outperformed the other approaches, achieving the best performance with a 
weighted average precision and F1-Score of 0.96, after optimizing its hyperparameters. Then, a third LSSI map 
was calculated using the FR method and observations of land subsidence from InSAR (Interferometric Synthetic 
Aperture Radar). This study shows that the effectiveness of using several CFs depends on the added information 
of each layer. Moreover, the comparison between the different LSSI maps and InSAR data highlights the crucial 
role of the spatial resolution for accurate mapping, thus enhancing land subsidence risk assessment.

1. Introduction

Land subsidence refers to the lowering of the ground surface caused 
by natural or anthropogenic processes such as groundwater withdrawal. 
It is a worldwide threat that affects several areas in the world (Galloway 
and Burbey, 2011). Well-known examples can be found in the Po Valley, 
northern Italy (Fabris et al., 2022), Guadalentín basin in Spain (Hu et al., 
2022) and metropolitan areas such as Mexico City (Cigna and Tapete, 
2021) and Murcia (Tomás et al., 2005) where structures built in sub
siding areas suffer damage and collapse (Tomás et al., 2005). Thus, 
identifying and mapping areas prone to land subsidence is important for 
planners and decision-makers to ensure adequate management of the 
territory and to minimize the associated impacts (Herrera et al., 2020).

In the literature, a wide range of techniques have been employed, 
both qualitative and quantitative, to assess and map Land Subsidence 
Susceptibility (LSS) in different contexts, such as in areas of sinkholes, 

earthquake damage, and over-exploited aquifer. The susceptibility to 
land subsidence of a region is usually evaluated by using maps of sus
ceptibility indexes that vary spatially. These maps are usually generated 
by integrating different layers of information related to Conditioning 
Factors (CFs) such as geological or geotechnical units, land use, soil 
thickness, and aquifer units. Each CF is characterized by multiple classes 
that can be represented on a map. The availability of a vast range of 
potential CFs and classes is essential for generating accurate LSS maps. 
The overall purpose is to generate a model based on expert knowledge or 
on known values of land subsidence that link CFs and LSS. These maps 
can be difficult to obtain because the relationships between CFs and land 
subsidence are diverse, acting at different scales and times, and because 
direct and regular land subsidence measurements are often lacking 
(Herrera et al., 2020).

A conventional semi-quantitative method for mapping LSS is the 
Weighted Linear Combination (WLC), where each CF is weighted, and 
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all its classes are rated based on expert knowledge and historical in
ventories (Loupasakis and Tzampoglou, 2017). Other methods include 
Analytical Hierarchy Process (AHP), which used expert judgment to 
weight and rank factors and Certain Factor (CtF) analysis, which 
quantifies the influence of various factors on LSS based on their corre
lation and importance (Rezaei et al., 2020). However, a major limitation 
of these methods is their dependence on expert knowledge, which often 
introduces uncertainties tied to the subjective opinions of decision 
makers (Pradhan et al., 2014).

On the other hand, approaches such as Fuzzy Logic (FL) (Bianchini 
et al., 2019) and Frequency Ratio (FR) (Herrera et al., 2020; Bianchini 
et al., 2019; Elmahdy et al., 2020) can also be used. In particular, FL uses 
membership functions to handle uncertainty and classifies susceptibility 
based on input factors and their nonlinear relationships. The FR method 
defines the correlation between the land subsidence and the related 
factors in a given spatial domain. The FR is then the ratio of occurrence 
to non-occurrence probability for a specific phenomenon (Bianchini 
et al., 2019). Bianchini et al. (2019) used multi-temporal InSAR (Inter
ferometric Synthetic Aperture Radar) data as a Spatial Database (SD) 
and mapped the land subsidence susceptibility in the area of Grosseto 
Plain (Italy) by testing both FL and FR approaches. From their analysis it 
emerged that the performance of FR was better than FL. Another work 
was published by Herrera et al. (2020), where FR was used to evaluate 
and map LSS at a global scale using the Land Subsidence Susceptibility 
Index (LSSI). In particular, the authors created a Global Subsidence 
Database (GSDB) consisting of a set of known land subsidence locations 
and several CFs. They then used FR to extrapolate CF weights that were 
then used to map LSSI globally and thus obtain a Global Subsidence 
Susceptibility (GSS) map.

Moreover, the FR method has also been tested and combined with 
Machine Learning (ML) algorithms such as Random Forest (RF), which 
employs an ensemble of decision trees to classify susceptibility, 
improving model accuracy and robustness (Elmahdy et al., 2020). In 
fact, in the last decade, Artificial Intelligence (AI) and ML techniques 
have been demonstrated to be powerful tools to overcome the limita
tions of semi-quantitative methods, such as those involving imbalanced 
datasets and multi-classification tasks. Several machine learning models 
have been created for predicting geo-environmental hazards spatially. 
These include 1) Decision Tree (DT), which uses a branching structure to 

classify susceptibility based on input features (Arabameri et al., 2021), 
2) Logistic Model Tree (LMT) that combines decision trees with logistic 
regression (Tien Bui et al., 2018), 3) Support Vector Machine (SVM) that 
finds optimal hyperplanes to classify data (Arabameri et al., 2021; Tien 
Bui et al., 2018), and 4) Maximum Entropy (MaxEnt) which estimates 
the probability distribution of data for classification (Rahmati et al., 
2019).

In this context, a significant line of work was developed in (Saha 
et al., 2023) to build the relationship between climate change and land 
subsidence using Deep Learning models. In particular, the authors dis
cussed the relationship between deformation and ground-water level 
change, as well as extreme precipitation. Further, the authors used a 
Deep Learning model to establish the link between groundwater level 
and satellite observations of ground deformation, and then obtained the 
link between the drivers of the dualistic water cycle and land 
subsidence.

In the context of hybrid models for Land Susceptibility Maps, rele
vant research work was developed in (Wang et al., 2024) from both 
conventional and ML models, combining AHP and SVM models. A lim
itation of this research is the lack of deep learning methods by increasing 
datasets.

In our work, the land subsidence of the Vega Media del Segura River 
(Murcia, SE Spain) induced by groundwater withdrawal was evaluated 
by means of LSSI mapping as defined by Herrera et al. (2020). We 
therefore use the Frequency Ratio (FR) and Machine Learning (ML) 
methods. A significant advancement of this study is the use of an 
expanded set of CFs with higher spatial resolution, offering a more 
detailed representation of the LSSI of the area. Moreover, the generated 
LSSI maps were compared to the land subsidence measured by InSAR.

The paper is structured as follows. The study area and the dataset 
used are described in Section 2 and Section 3, respectively, whereas the 
methodologies adopted to generate the different LSSI maps are detailed 
in Section 4. The results and the discussion are in section 5. Conclusions 
are covered by Section 6.

2. Study area

The study area focuses on the Vega Media of the Segura River Basin, 
situated in southeastern Spain. It covers approximately 326 km2, 

Fig. 1. Map of the area of interest (AOI).
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including the metropolitan area of Murcia intersected by the Segura and 
Guadalentín rivers (Fig. 1). The Vega Media of the Segura River is an 
alluvial plain characterized by its flat topography and fertile soils, which 
have been shaped by fluvial processes. Floodplains are the primary 
landforms, formed by the deposition of sediments during periodic 
flooding events. The geological framework of the Vega Media of the 
Segura River is complex, influenced by tectonic activities and sedi
mentary processes acting over millions of years. The study area is 
located in the eastern sector of the Betic Cordillera (Herrera et al., 2010), 
a mountain range formed by the collision of the African and Eurasian 
plates. Since the Upper Miocene, the zone has experienced compres
sional tectonics that led to the development of the foreland basin of the 
Vega Media of the Segura. The basin is delimited by Permo-Triassic 
rocks from the basement belonging to the internal zones of the Betic 
Cordillera in the south and Neogene sedimentary rocks in the north 
(Tessitore et al., 2016). It is filled by Plio-Quaternary sediments of the 
Segura River divided in three main units: the upper Miocene marls (the 
lowest unit), a clastic succession of marls and clays of 
Pliocene-Quaternary age (the intermediate unit) and Recent sediments 
(the uppermost unit) deposited by the Segura and Guadalentín rivers 
(Tomás et al., 2005). These Recent sediments constitute the most 
problematic geotechnical unit. Within a hydraulic framework, the 
aquifer system is composed of two main units: a shallow semi-confined 
aquifer made of fine soils which reach 30 m below the surface (Herrera 
et al., 2010), below which is a deep aquifer made of sand and gravels 
from which groundwater has been extensively pumped in the past 
(Tomás et al., 2005; Tomas et al., 2011). In particular, the Vega Media of 
the Segura was widely affected by land subsidence in the nineties 
reaching maximum values of up to 15 cm (Tomas et al., 2011). The land 
subsidence intensified during drought periods leading to lowering 
piezometric levels. The first documented episode of land subsidence was 
caused by a lowering of the piezometric level of 8 m and occurred during 
a period of drought in 1992–1995. InSAR measurements show reduced 
land subsidence rates between 1993 and 1995 mainly in the south
western part of Murcia. However, in 1995–1997, land subsidence 
increased especially in the southwest and northeast portions of the city, 
showing deformation velocities of up to 10 mm/yr (Tomás et al., 2005). 
Lastly, during the period of 1998–2004, vertical displacements of 2 
mm/yr were observed in the central part of the basin filled by Recent 
and unconsolidated sediments (Tomás et al., 2005). Although the area 
affected by land subsidence extends beyond the limits of the Vega Media 
in the Segura Basin, our analysis specifically focused on the adminis
trative area of the basin, including the city of Murcia, where the highest 
subsidence rates were recorded. During the first drought episode, over 

150 buildings and other infrastructure in this area were damaged 
(Tomás et al., 2005). This selection of the study area was also driven by 
the fact that some of the CFs used in the analysis, such as “soft soil 
thickness” were collected exclusively within the administrative area of 
the Vega Media of the Segura River Basin.

3. Data

In this work, a fundamental starting point was the global map of LSS 
developed by Herrera et al. (2020). In their work, the authors used the 
FR method (explained in detail in section 3.3) to calculate the different 
weights of the classes in each CF (geological units, land cover, slope and 
climate) based on the analysis of real ground deformation from 200 
different locations in the world, and to obtain a global LSSI map, namely 
a GSS map. As established by the authors, the GSS map is classified 
globally into six LSSI levels, each representing an increasing severity of 
land subsidence susceptibility. Level 1 is “Very Low” and represents 
areas with minimal susceptibility of subsidence, typically found in re
gions with stable geotechnical units, high elevation, and steep slopes, 
where infrastructure is unlikely to be affected by land subsidence. Level 
2 is “Low” and represents areas with slight susceptibility, where minor 
factors, such as low slope and low soft soil thickness, may contribute to 
ground instability, causing little to no damage. Level 3 is “Medium Low”, 
which might present moderate susceptibility, where soft soil layers are 
present and land subsidence can occur, but it is not expected to be 
widespread or severe. In Level 4, which is “Medium High”, a noticeable 
susceptibility of subsidence is expected, as the area may include factors 
like low elevation and proximity to rivers, making it prone to ground 
deformation. Finally, Level 5 and 6, which are “High” and “Very High” 
classes, refer to areas with significant or extreme susceptibility of land 
subsidence, commonly characterized by thick soft soil layers, 
fine-grained geotechnical units and dry climate conditions (Cimino 
et al., 2022). These zones require extensive monitoring and strong 
preventive measures to mitigate their high susceptibility to land subsi
dence. However, this map is obtained at the spatial resolution of 1 km, 
leading to less detailed layers. In contrast, our study employed a higher 
number of CFs collected at a higher resolution, representing more local 
data. Table 1 presents a detailed overview of the characteristics of each 
CF used in this study compared to the dataset used by Herrera et al. 
(2020).

In our study, a total of seven thematic layers of CFs associated with 
the land subsidence of Murcia have been collected (Table 1). Fig. 2a–g 
shows the different classes for each of the thematic layers of the CFs, 
represented in different colors. It can be observed that the first four CFs 

Table 1 
List of CFs collected over the AOI.

CFs available in GSS (Herrera 
et al., 2020)

CFs prepared for this study

CFs Spatial 
resolution 
(m)

CFs Spatial 
resolution 
(m)

# 
Classes

Categorical/ 
Numerical

Short description Vector/ 
Raster

Source

Geological 
units

1000 × 1000 Geotechnical 
units

– 5 Categorical Geotechnical units Vector (European Environment Agency (EEA), 
2006)

Land cover 1000 × 1000 Land cover – 19 Categorical Land cover 
classification

Vector (Organismo Autónomo Centro Nacional 
de Información Geográfica (CNIG), 2023)

Slope 1000 × 1000 Slope 20 × 30 ​ Numerical Rate of change of 
elevation (◦)

Raster Derived from digital elevation model (
Beck et al., 2018; Bagheri-Gavkosh et al., 
2021)

Climate 9000 × 9000 Climate 1000 × 1000 3 Categorical Climate 
classification

Raster (Bagheri-Gavkosh et al., 2021; IGME, 
2000)

– – Elevation 20 × 30 ​ Numerical Topography Raster (Beck et al., 2018; Bagheri-Gavkosh 
et al., 2021)

– – Soft soil 
thickness

– 7 Numerical Thickness of first 
soil strata

Vector (IGME, 2000; Confederación 
Hidrográfica del Segura, 2023)

– – River distance 20 × 30 ​ Numerical Buffer map of 
distance from river

Vector Derived from river vector map (
Confederación Hidrográfica del Segura, 
2023; Pedregosa et al., 2011)
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Fig. 2. Thematic maps depicting each CF within the AOI: a) geotechnical units; b) land cover (for a description of the classes see table S1); c) soft soil thickness; d) 
climate (for a description of the classes see table S1); e) elevation; f) slope; g) river distance. The definition of the classes plotted in figures b and d is included in the 
supplementary material. For a detailed overview of the characteristics and sources of each CF see Table 1.
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we used are similar to Herrera et al. (2020), except for “geological units” 
being replaced by “geotechnical units” and also including “land cover”, 
“slope” and “climate”. The “geotechnical units” (Comunidad Autónoma 
de la Región de Murcia, 2023) represents different soil and rock types 
categorized by their mechanical properties, indicating areas with vary
ing ground stability and subsidence susceptibility. Moreover, the “land 
cover” layer shows the distribution of different surface types over the 
study area retrieved by the 2006 Copernicus CORINE land cover data 
(European Environment Agency (EEA), 2006). On the other hand, 
“slope” layer (Organismo Autónomo Centro Nacional de Información 
Geográfica (CNIG), 2023) was derived from the “elevation” layer using 
GIS tools, capturing steepness variations that might influence ground 
stability: typically, areas with low slope values are more prone to 
accumulation of water and fine sediments, making them more suscep
tible to land subsidence and to climate conditions that can affect soil 
moisture and groundwater dynamics. Notably, climate can play a crucial 
role as a CF in land subsidence susceptibility due to its impact on various 
environmental and geological processes. Specifically, Herrera-Garcia 
et al. (Herrera et al., 2020) emphasized the role of climate change in 
exacerbating subsidence risks through altered precipitation patterns and 
increased frequency of extreme weather events. Accordingly, in the area 
of Murcia, BWh class (hot, arid deserts) is a dominant climate type, 
correlated with higher susceptibility to land subsidence, especially in an 

urban setting. In addition, Bagheri-Gavkosh et al. (2021) discovered that 
climate factors, such as precipitation and temperature, significantly in
fluence land subsidence rates. Based on Köppen’s climate classification 
(Beck et al., 2018), they found that the highest LS rates occur in dry 
regions, while the lowest rates are observed in warm temperate areas. 
Furthermore, they noted that droughts in arid and semi-arid climates 
intensify groundwater depletion, which accelerates subsidence. Addi
tionally, their research showed a negative correlation between LS and 
the aridity index, indicating that LS decreases as the aridity index in
creases. Consequently, a hot desert climate is particularly associated 
with higher LS rates due to more severe groundwater depletion and soil 
desiccation, making these areas more susceptible to subsidence. Addi
tionally, in our study we include three additional factors including 
“elevation”, “soft soil thickness” and “river distance”. The layer of 
“elevation” (Organismo Autónomo Centro Nacional de Información 
Geográfica (CNIG), 2023), representing the height of the terrain above 
sea level, influencing factors such as water flow, erosion and soil sta
bility. Thus, similarly to the “slope”, it affects land subsidence suscep
tibility and geotechnical conditions because lower elevation areas often 
have higher groundwater accumulation and softer sediments, making 
them more prone to land subsidence. Notably, the layer of “soft soil 
thickness”, which refers to the depth of weak, compressible soils, is 
extracted by the data collected specifically over the city of Murcia, 
where most of the damage and effects of land subsidence were found 
(Tomás et al., 2005; IGME, 2000). Furthermore, the layer of “river dis
tance” (Confederación Hidrográfica del Segura, 2023) was calculated in 
a GIS environment to see the influence of the Segura and Guadalentín 
rivers on the LSS phenomenon. For all the above-mentioned CF layers 
the spatial resolution has been improved at a finer local scale. The 
minimum spatial resolution in the previous study was of 1 km, whereas 
it is 20 m in our study (Table 1). The layers of the CFs are obtained from 
different sources in different coordinate systems and formats (vectors, 
raster). Thus, each layer has been georeferenced to a common reference 
system (i.e., EPSG:3857 coordinate system), converted from vectors to 
raster, and homogenized. In order to achieve the uniformity required by 
ML in terms of pixel size, all layers were finally resampled to a resolution 
of 20 m × 20 m.

4. Methods

The overall methodological workflow employed in this study, and 
the generation and validation of the different LSSI maps is shown in 
Fig. 3. It is a cascading data flow from left to right and from top to 
bottom. First, a subset of the CFs originally used by Herrera et al. (2020)
(geotechnical units, land cover, slope and climate) was used to generate 
a High-Resolution (HR) LSSI map.

Then, the set of CFs by Herrera but at higher spatial resolution and 

Fig. 3. Overall workflow for generating and validating the LSSI maps.

Table 2 
Layers and new assigned weights for the units defined in the high-resolution CFs 
maps (Herrera et al., 2020).

Layer Label Assigned 
weights

Geotechnical units (
Fig. 2a)

Soft cohesive soils 100
Clays and marls with gypsum 13
Claystones, sandstones, marls and 
conglomerates

6

Alluvial-colluvial deposits 94
Bedrock 6

Land cover (Fig. 2b) 312 1
511 4
333 22
323, 324 31
222, 242, 243, 121, 133, 112, 212, 131, 
111, 223, 124, 142, 211

100

Slope (%) 
(Fig. 2f)

0–0.2 100
0.2–0.5 53
0.5–1 29
1.01–2 25
2.01–5 14
5–89.74 0

Climate (Fig. 2d) BWh 36
BWk 12
BSk 11
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with the addition of soft soil thickness, elevation and river distance was 
used, together with the HR-LSSI map, to create an enriched SD. This SD 
was used for training and validation sets for 22 ML models, randomly 
selecting 80% and 20% of the data, respectively. Specifically, the model 
presenting the best metrics and performance was validated with the 
AUC-ROC (Area Under the ROC Curve) method. Thus, the ML-LSSI map 
was generated by ML. Then, an FR-LSSI map was generated via the 
InSAR velocity map and the FR method. A comparative analysis of the 
three maps was finally performed using different statistical measures, 
namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE) 
and Mean Absolute Percentage Error (MAPE).

4.1. Method for generating the HR-LSSI map

As explained previously, the global LSSI map generated by Herrera 
et al. (2020) was obtained at the spatial resolution of 1 km. Thus, the CF 
maps used by Herrera et al. (2020) presented a minor number of classes 
due to their global scale. In contrast, our study employs 
higher-resolution and local data presenting a higher number of classes 
for each CF layer. Consequently, our initial step involved reclassifying 
some of our detailed data using weights derived from Herrera’s 
global-scale analysis (Herrera et al., 2020). In particular, we considered 
the same four CFs except for “geological units” substituted by 
“geotechnical units” (Fig. 2a–d and Table 2).

Subsequently, the HR-LSSI map (20 × 20 m) was calculated through 
the following formula, where each pixel provides an estimation of LSSI: 

LSSIA
i,j =ΣK

k=1 FRA,k
i,j

(
fA,k
i,j

)
(1) 

where:
FRA,k

i,j is the FR of each class (fk) for each CF layer, and fA,k
i,j represents 

each class of the CFs layers.

4.2. Method for generating the ML-LSSI map

For generating the ML-LSSI map, the complete stack of the seven 
different CFs thematic raster was merged with a new 20 m × 20 m point 
grid and the HR-LSSI map. The HR-LSSI map is used as target output for 
the ML models, while the CFs are considered as input.

Given the heterogeneous dataset composed of several layers used in 
this study, the LSSI levels were not equally represented. This imbalanced 
distribution poses challenges for many conventional ML algorithms 
aimed at classification, particularly when it comes to accurately pre
dicting the minority levels.

In our work, the task assigned to ML involves classifying LSSI levels 
through ML using an imbalanced dataset, aiming at accurate classifi
cation based on the six LSSI levels already used in Herrera et al. (2020). 
Thus, a comparative analysis of 22 ML models was performed. For 
further details on each classifier, the interested reader is referred for 
more details to text (Pedregosa et al., 2011). To further optimize the 
performance of the model chosen, a hyperparameter tuning was carried 
out, using a Bayesian optimization process (Shahriari et al., 2016; Snoek 
et al., 2012). Bayesian optimization is an effective strategy for tuning ML 
model hyperparameters, building a probabilistic model of the objective 
function to efficiently select new hyperparameter settings to evaluate. 
The probabilistic model is iteratively updated with results from new 
hyperparameter evaluations, to progressively achieve optimal hyper
parameters (Snoek et al., 2012). Through Bayesian hyperparameter 
tuning, the model selected was tailored to the particular dataset and 
problem structure to maximize predictive accuracy. In the literature, 
Bayesian optimization for hyperparameter optimization is well-known 
for its demonstrated efficiency (Eriksson et al., 2019), as well as for its 
established superiority over other optimization algorithms in numerous 
benchmark optimization functions (Jones, 2001). In addition, Bayesian 
optimization has been widely employed for hyperparameter tuning of 

ML models applied to geological and geotechnical engineering (Li et al., 
2022; Diaz and Spagnoli, 2023).

The following performance metrics have been considered to retrieve 
the best model and to evaluate the performance of the different ML al
gorithms: accuracy, precision, recall (sensitivity), specificity, F1-score, 
unweighted and weighted average. Let us consider, for a given set of 
items and for a given i-th class, the total number of items belonging (P, 
positive) and not belonging (N, negative) to that class. Let us consider a 
classifier, and let us denote as TP the true positives, i.e. the number of 
items correctly assigned to the class; FP the false positives, i.e. the 
number of items incorrectly assigned to the class; FN the false negatives, 
i.e. the number of items incorrectly not assigned to the class; TN the 
number of items correctly not assigned to the class. Then, the following 
measures can be defined: 

Accuracyi =
TP + TN

TP + FN + TN + FP
(2) 

Precisioni =
TP

TP + FP
(3) 

Recalli or Sensitivityi =
TP

TP + FN
(4) 

Specificityi =
TN

TN + FP
(5) 

F1scorei =2⋅
Precision⋅Recall

Precision + Recall
(6) 

Balanced Accuracyi =
Sensitivityi + Specificityi

2
(7) 

In other words, accuracy measures the percentage of correctly clas
sified items, while precision measures the accuracy of positive classifi
cations (i.e., the percentage of correct positive classifications over items 
classified as positive). Recall, also known as sensitivity, measures the 
completeness of positive classifications (i.e., the percentage of correct 
positive classifications over the total number of actual positive items in 
the dataset). Specificity, or true negative rate, measures the proportion 
of actual negative items that are correctly classified as negative. Finally, 
the F1score is the harmonic mean of precision and recall, that is 
approximately the average of these two metrics when they are close. 
Balanced accuracy is a measure that averages the recall from each class 
(sensitivity and specificity (to provide a more comprehensive metric that 
accounts for imbalanced datasets by considering both the true positive 
rate and the true negative rate.

To combine the above per-class metrics in a global performance 
metric, the following measures can be defined: 

Average=
1
C
∑C

i=1
PMi (8) 

Weighted Average=

∑C

i=1
Performancemetrici

ʹ
• ci

∑C

i=1
ci

(9) 

where PM is the performance metric, C is the number of classes, and ci 
the number of items belonging to the i-th class. However, the weighted 
average is more appropriate for dataset with unbalanced classes.

To further handle and address the challenges posed by imbalanced 
levels, the performance evaluation was measured using AUC-ROC for 
each level, using two strategies: 

(i) One-v-Rest (OvR), in which a binary classifier is trained for each 
level against the rest of the levels. The AUC-ROC score is then 
calculated separately for each binary classifier.
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(ii) Weighted AUC, a variant of the AUC-ROC (Area Under the Curve of 
Receiver Operating Characteristic) metric that considers the AUC 
values are weighted by the level proportions: the weight of each 
level is proportional to its frequency (or sample size) in the 
dataset. This approach ensures that the evaluation metric gives 
the same importance to the performance of the minority or un
derrepresented levels.

To generate performance measures that are as independent from the 
dataset as possible, the cross-validation technique was employed: (i) the 
dataset was divided into k subsets (folds); (ii) for each fold, training was 
conducted on the remaining k-1 folds, while validation was performed 
on that specific fold; (iii) the average validation performance was 
computed. Specifically, we utilized the stratified k-Fold cross-validation 
method with k = 10. In the stratified approach, each individual fold was 
generated as a representative sample of the entire original dataset. This 
is particularly crucial for unbalanced datasets and serves as an addi
tional measure alongside the traditional training-test split to verify its 
randomness.

4.3. Method for generating the FR-LSSI map

Given a study area affected by land subsidence, and several related 
CFs, FR can be computed as: 

FRA,k
i,j =

subsidence ratio
area ratio

=

⎛

⎜
⎜
⎜
⎝

(
# pixels i,j with sA

i,j=1 and class fk
# pixels i,j with sA

i,j=1

)

(
# pixels i,j with class fk

# pixels i,j in A

)

⎞

⎟
⎟
⎟
⎠

(13) 

where:
FRA,k

i,j (fk) is the frequency ratio of each class for each CF layer, # 
pixels i,j with SA

i,j = 1 and class fk is the number of pixels in class fk in the 
land subsidence area; # pixels i,j with SA

i,j = 1 is the total number of pixels 
where land subsidence occurs in the total SA

i,j; # pixels i,j with class fk is 
the number of pixels of class fk in the whole study area and # pixels i,j in 
A is the total number of pixels in the whole study area. Finally, the 
different weights retrieved assigned to each pixel of all CFs are then 
summed together according to Formula (1).

This is a bivariate statistical model aimed at retrieving the ratio 
between the area where land subsidence occurs with respect to the total 
study area, and the ratio of the probability of land subsidence occur
rence with respect to no-occurrence, for each class of all CFs.

Thus, the FR can be defined as a cross correlation between the 
different classes of each CF of a certain pixel and the effective land 
subsidence of the same pixel (Elmahdy et al., 2020). As a result, FR 
identifies which CFs influence the land subsidence.

The first step for LSSI mapping through FR is the creation of the SD 
(Herrera et al., 2020; Bianchini et al., 2019; Elmahdy et al., 2020) which 
consists of two parts. The first part is the land Subsidence Inventory (SI) 
consisting of the real detected land subsidence in a certain area. SI can 
be obtained using different techniques but InSAR and other geodetic 
techniques are the main sources of information (Herrera et al., 2020; 
Bianchini et al., 2019). The second part is the CFs, a set of layers of 
ground characteristics that might affect the LSS. Then the relationship 
between known subsiding areas and the CFs is calculated and the LSSI is 
estimated.

In this work, the SD used to generate the FR-LSSI map consists of the 
SI represented by the mean annual deformation velocity map measured 
by InSAR in the satellite Line-Of-Sight (LOS), and the same CFs used for 
the HR-LSSI map (Fig. 2a–d). In particular, the InSAR data are acquired 
by the European Space Agency (ESA) ENVISAT satellite, in descending 
orbit covering October 2003 to December 2008 which has been 
considered as a drought period in previous studies (Tomás et al., 2005), 
and ascending orbit covering August 2003 to July 2008. ENVISAT SAR 
images have been processed using SBAS-InSAR, a processing method 

based on the P-SBAS technique (Casu et al., 2014). The P-SBAS calcu
lates the time–series of cumulative displacements and average velocity 
maps at a ground pixel resolution of 80 m. The average velocity pattern 
is 3 mm/yr of subsidence, with the rates higher in the center of the 
Segura valley where, the AOI values in the northeastern sector are up to 

Fig. 4. InSAR derived target output: (a) total deformation map of the AOI of 
Murcia in the LOS projection, Descending orbit, obtained through the SBAS- 
InSAR technique covering the period from October 2003 to December 2008; 
(b) total deformation map of the AOI of Murcia in the LOS projection, 
Ascending orbit, covering the period from August 2003 to July 2008; c) gen
eration of a land subsidence matrix SA, representing in red color only pixels 
subject to subsidence.
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− 20 mm/yr and − 15 mm/yr in the descending and the ascending orbits 
respectively. On the contrary, areas in the northwest and southeast of 
the AOI remain with almost no deformation. The patterns here observed 
by InSAR coincide with the land subsidence trends found in other works 
(Tomás et al., 2005; Tessitore et al., 2016).

Fig. 4 shows the generation of the InSAR target output. Notably, the 
InSAR velocity maps in descending and ascending are analogous, indi
cating that the surface motion is consistent with vertical subsidence 
without any significant horizontal component. This finding aligns with 
other subsidence measurements in the area (Tessitore et al., 2016). 
However, the ascending data has lower coherence and does not cover 
the study area as extensively as the descending data (Fig. 4b) (Orlandi 
et al., 2022). Moreover, decomposing the displacement field would 
require focusing only on common pixels between the two orbits, which 
would significantly reduce the area available for analysis. Thus, for our 
study area, land subsidence distribution is derived from the InSAR 
descending data (Fig. 4a). Specifically, the InSAR land subsidence map is 
converted into a land subsidence matrix SA (Fig. 4c), at a spatial reso
lution of 80 m. The land subsidence matrix is defined as SA

i,j ∈ {1, 0}, 
where pixels have a value of 1 if land subsidence occurred (pixels 
showing velocity rates below − 3 mm/yr, in red in Fig. 4b) and 0 if there 
is no record of land subsidence (pixels showing velocity rates between 
0 and 3 mm/yr, in green in Fig. 4b). In particular, for the area of Murcia, 
there are 6395 pixels affected by land subsidence, while 76108 pixels 

are stable (total pixels are 82503).
Finally, the CFs (geotechnical units, land cover, slope and climate) 

were converted into grids at the same spatial resolution of SA and sub
divided into the classes of each CF. The FR-LSSI map (80 m × 80 m) was 
then generated via the FR method (Herrera et al., 2020; Arabameri et al., 
2021), above explained.

4.4. Validation of the LSSI maps

In order to compare different LSSI maps, three statistical metrics 
have been used, namely Root Mean Square Error (RMSE), Mean Abso
lute Error (MAE) and Mean Absolute Percentage Error (MAPE). More 
formally, an LSSI map is an M × N matrix of elements LSSI(n,m) ∈ LSSI. 
Given a target LSSI map and a modelled LSSI map, namely LSSITAR and 
LSSIMOD, the following errors were calculated to evaluate the perfor
mance of the prediction methods: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N,M

n,m [LSSIMOD(n,m) − LSSITAR(n,m)]
2

M × N

√

(11) 

MAE=

∑N,M
n,m |LSSIMOD(n,m) − LSSITAR(n,m)|

M × N
(12) 

Fig. 5. Comparison between the different LSSI maps obtained: a) GSS map; b) HR-LSSI; (c) ML-LSSI and (d) FR-LSSI.
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MAPE=
100

M × N
⋅
∑N,M

n,m |LSSIMOD(n,m) − LSSITAR(n,m)|

LSSITAR(n,m)
(13) 

5. Results and discussion

5.1. LSSI mapping

In this study, LSS phenomenon was explored and calculated using 
several CFs through different approaches described in Sections 2-3. 
Fig. 5 shows the GSS map (Herrera et al., 2020) with a focus over the AOI 
(Fig. 5a) and the three LSSI maps generated, HR-LSSI (20 × 20 m), 
ML-LSSI (20 m × 20 m), and FR-LSSI (80 × 80 m), respectively. Overall, 
the maps exhibit a consistent visual pattern, with the central region of 
the study area displaying elevated LSS levels in all the four maps.

Results show good alignment between HR-LSSI and ML-LSSI across 
identical CFs, with the role of the additional CFs in ML-LSSI consistent 
with previous studies (Orlandi et al., 2022). First of all, a comparative 
analysis with Fig. 2 shows that HR-LSSI exhibits high LSSI predomi
nantly within “soft cohesive soils”, with additional susceptibility 
observed in the “alluvial-colluvial deposits”. This pattern is closely 
associated with land cover classes “222” (orchards) and “242” (mosaic 
of crops). Climate conditions of BWh (hot deserts) dominate the region, 
with a minor presence of BWk (cold desert) in the northwest. Moreover, 
it is evident that the most of the LSS is associated with slope values 
ranging from 0◦ to 2◦. Similarly, the ML-LSSI map shows high LSSI 
values within geotechnical units such as “soft cohesive soils” and 
“alluvial-colluvial deposits” and the same values of slope. The same land 
cover classes shared with HR-LSSI map contribute to higher suscepti
bility. However, the prevailing climate is BWh, with a slight influence of 
BWk in the northwest sector of the study area. In the ML-LSSI the impact 
of three other CFs can be appreciated. Starting from the elevation, most 
of the LSS appear to occur at elevations ranging from 25 up to 110 m a.s. 
l. Subsequently, the observed pattern of “soft soil thickness” aligning 
with areas of high LSSI suggests that these soil types are indeed more 
susceptible to land subsidence (Comunidad Autónoma de la Región de 
Murcia, 2023). Lastly, the information of the distance to the main river 
of Segura is particularly noteworthy, as it highlighted the importance of 
proximity to a water body for having higher values of LSS. In fact, most 
land subsidence occurs within a maximum distance of 130 m from the 
river, suggesting a correlation between river proximity and land subsi
dence as found in other previous works (Tomas et al., 2011). This is 
because the proximity can be linked to the presence of soft cohesive 
soils, which are commonly found in areas near water bodies. Other 
factors can include the higher density of pumping wells close to the river 

Table 3 
Performance evaluation of machine learning models using features without and with encoding and normalization.

Model Without encoding nor normalization With encoding and normalization

Accuracy Balanced Accuracy F1-Score Accuracy Balanced Accuracy F1-Score

Extremely Randomized Trees .96 .94 .96 .96 .94 .96
RandomForestClassifier .95 .93 .95 .95 .93 .95
BaggingClassifier .94 .92 .94 .95 .92 .95
DecisionTreeClassifier .94 .91 .94 .94 .91 .94
KNeighborsClassifier .90 .85 .90 .90 .85 .90
Light Gradient Boosting Machine Classifier .87 .82 .87 .87 .82 .87
Support Vector Classifier .74 .59 .70 .74 .57 .72
GaussianNB .45 .54 .48 .45 .54 .48
NearestCentroid .46 .52 .49 .46 .52 .49
Bernoulli Naive Bayes .57 .46 .55 .57 .57 .59
LinearDiscriminantAnalysis .66 .44 .59 .66 .56 .65
QuadraticDiscriminantAnalysis .56 .38 .56 .56 .38 .56
PassiveAggressiveClassifier .63 .38 .56 .60 .32 .57
LogisticRegression .67 .38 .60 .67 .45 .62
CalibratedClassifierCV .67 .37 .59 .68 .45 .64
LinearSVC .67 .35 .57 .68 .43 .61
Perceptron .57 .35 .53 .60 .37 .58
AdaBoostClassifier .61 .31 .51 .61 .31 .51
RidgeClassifier .65 .31 .55 .68 .41 .60
RidgeClassifierCV .65 .31 .55 .68 .41 .60
Stochastic Gradient Descent Classifier .64 .3 .56 .67 .42 .63
DummyClassifier .57 .17 .41 .57 .17 .41

Table 4 
Optimal hyperparameters of the ERT model, achieved via Bayesian 
optimization.

Hyperparameter Optimal 
Value

Description

n-estimators 1820 The number of trees in the forest
criterion ‘gini’ A measure of the quality of the split.
max_depth None The max. depth of the tree. None means all 

nodes are expanded.
min_samples_split 2 The min. number of samples required to 

split an internal node
min_samples_leaf 1 The minimum number of samples required 

to be at a leaf node.
min_weight_fration_leaf 0.0 The minimum weighted fraction of the 

sum total of weights (of all the input 
samples) required to be at a leaf node.

max_features None The number of features to consider when 
looking for the best split.

max_leaf_nodes None Best nodes are defined as relative 
reduction in impurity.

min_impurity_decrease 0.0 A node will be split if this split induces a 
decrease of the impurity greater than or 
equal to this value.

bootstrap False Whether bootstrap samples are used when 
building trees. If False, the whole dataset is 
used to build each tree.

oob_score False Whether to use out-of-bag samples to 
estimate the generalization score. Only 
available if bootstrap = True.

n_jobs None The number of jobs to run in parallel.
random_state None It controls the source of randomness.
verbose 0 Controls the verbosity when fitting and 

predicting.
warm_start False It is used to fit a whole new forest.
class_weight balanced Weights associated with classes in the 

form.
ccp_alpha 0.0 Complexity parameter used for Minimal 

Cost-Complexity Pruning.
max_samples None The number of samples to draw.

D. Orlandi et al.                                                                                                                                                                                                                                 Applied Computing and Geosciences 24 (2024) 100207 

9 



and the groundwater dynamics. On the other hand, despite its lower 
resolution, FR-LSSI exhibits defined LSSI patterns, with some differences 
in the dominating geotechnical and land cover units. For instance, 
FR-LSSI identifies susceptibility primarily within geotechnical units 
characterized by “soft cohesive soils” in the northwest and central parts 
of the AOI. This pattern of geotechnical-related LSS can also be found in 
previous studies (Tomas et al., 2011). The land cover classes associated 
with high LSSI include “111” (continuous urban fabric), “112” 
(discontinuous urban fabric), “222” (orchards) and “242” (mosaic of 
crops), indicating a diverse range of land uses contributing to land 
subsidence susceptibility. Finally, similarly to the ML-LSSI map, the 
prevailing climate is BWh, with a presence in BWk in the northeast.

5.2. Model validation and comparison

The results of the performance of the different algorithms are sum
marized in Table 3. Overall, the Extremely Randomized Trees (ERT) 
emerged as the best model, demonstrating a robust performance with 
accuracy, balanced accuracy and F1-scores equal to 0.96, 0.94 and 0.96, 
respectively.

The process was both carried out without and with pre-processing, i. 
e., normalizing and encoding the variables. However, the top perform
ing models, i.e., ERT, Random Forest Classifier, Bagging Classifier, and 
Decision Tree Classifier, achieved about the same performance regard
less of pre-processing. Pre-processing only provided small improvements 
for weaker models, like Bernoulli NB and Logistic Regression. But the 
top models still outperformed without preprocessing due to flexible 
ensemble and decision tree bases. Their consistency implies an inherent 
capability to handle diverse raw features effectively on this particular 
dataset and task.

More specifically, the ERT is an ensemble tree-based ML algorithm, 
introduced by Geurts et al. (2006) (Geurts et al., 2006), that builds on 
the Random Forest algorithm by taking further steps to randomize the 
trees. In Random Forest, each tree is trained on a bootstrap sample of the 
training data, whereas ERT goes further by sampling features randomly 
for each node, without replacement to split on.

Tables 4 and 5 show the optimal value of each hyperparameter and 
the confusion matrix, respectively, for the optimized ERT model, with 
80/20 train/test split.

More specifically, Table 6 summarizes the performance metrics 
achieved on the test set for each level by ML-LSSI based on Extra-Trees 
Classifier (ETC).

The ETC model effectively distinguished between different classes 
and maintained strong metrics even for minority classes. Specifically for 
the minority level (1) the ETC model achieved high specificity (0.998) 
and sensitivity (0.971). Performance remains strong for level 2 as well, 
with precision 0.939, recall 0.944 and F1-score 0.942. As expected, the 
prevalent level 3 is handled exceptionally well, with excellent precision 
(0.981), recall (0.983) and F1-score (0.982), due to benefiting from 
substantial training data. For the smaller levels 4, 5, and 6, metrics 
naturally decline but are still respectable, reflecting the inherent chal
lenge in balancing sensitivity and specificity with diminishing samples. 
In summary, the classifier exhibits robust performance on an imbal
anced multilevel problem, maintaining strong metrics even for the 
smaller levels. Its flexibility and generalization capability allow effective 
balancing of precision and recall across all levels despite data scarcity. 
The classifier’s resilience enables both sensitive identification of rare 
cases and accurate classification of common cases.

Table 7 shows the results of OvR AUC-ROC and Weighted AUC-ROC 
in the proposed ETC. The results indicated high performance across all 
levels, with OvR AUC-ROC averaging at 0.998 and consistently strong 
values across individual levels. The Weighted AUC-ROC also demon
strated strong performance at 0.997. These findings suggest robust 
discriminative ability and class separation across the different levels.

Additionally, another check was performed, and the dataset under
went Stratified k-Fold cross-validation with k = 10. This approach 
eliminates partitioning bias and offers an unbiased estimate of average 
performance. The results showed a mean accuracy of 0.960 and a 

Table 5 
Confusion matrix achieved after the hyperparameter optimization of the ERT 
model.

ML-LSSI

1 2 3 4 5 6

HR-LSSI 1 7272 68 138 7 0 0
2 49 3863 176 0 0 0
3 129 181 94329 928 242 136
4 1 0 1047 23912 654 332
5 0 0 227 662 20253 816
6 0 0 176 189 826 12544

Table 6 
Summary of performance metrics achieved on the test set for ML-LSSI based on 
ETC.

Levels Precision Recall F1-Score Support

Very Low (1) 0.98 0.97 0.97 7485
Low (2) 0.94 0.94 0.94 4088
Medium Low (3) 0.98 0.98 0.98 95945
Medium High (4) 0.93 0.92 0.92 25946
High (5) 0.92 0.92 0.92 21958
Very High (6) 0.91 0.91 0.91 13835

Average 0.94 0.94 0.94 169257

Weighted Average 0.96 0.96 0.96 169257

Table 7 
OvR ROC AUC values of each class and mean weighted ROC AUC score.

Metric Average Level 
1

Level 
2

Level 
3

Level 
4

Level 
5

Level 
6

OvR AUC- 
ROC

0.998 0.999 0.999 0.998 0.996 0.996 0.997

Weighted 
AUC- 
ROC

0.997 ​ ​ ​ ​ ​ ​

Fig. 6. Map showing the accuracy of the model pixel by pixel between the HR- 
LSSI map with ML-LSSI map.in yellow areas where the model predicts correctly 
and in scales of purple the levels of failure of prediction.
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balanced accuracy of 0.944 aligning closely with the original results 
(train test split), showing that the original validation metrics accurately 
reflect the true capabilities of the model. Crucially, the robust k-fold 
metrics, despite completely distinct data splitting on each fold, confirm 
that the classifier does not simply memorize the training data but can 
successfully generalize predictions.

However, discrepancies were noted between HR- and ML-LSSI maps. 

Table 8 
Comparative analysis between ML-LSSI and the other maps, using RMSE, MAE 
and MAPE measures.

LSSI map RMSE MAE MAPE (%)

ML-LSSI vs HR-LSSI 0.109 0.009 0.36
ML-LSSI vs FR-LSSI 1.260 0.967 42.20

Fig. 7. Distribution of the InSAR velocity values across all the 6 LSSI classes for: a) and b) HR-LSSI map; c) and d) ML-LSSI map and e) and f) FR-LSSI map, where 
negative LOS values represent land subsidence.
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By comparing LSSI values between HR-(Observed) and ML-LSSI (Pre
dicted) maps, thus representing and examining the error distribution in 
each LSSI class, it can be observed that the maximum error values (no 
more than 0.8 %, Fig. 6) coincide with certain values of elevation and 
geotechnical and land cover units. For instance, most of the error co
incides with the boundary of the Vega Media, which in turn corresponds 
to the contact between “bedrock” and “alluvial-colluvial deposits” 

geotechnical units, which further aligns with the edge between the land 
cover classes of “coniferous forests” and “orchards”. These discrepancies 
could be attributed to the introduction of additional CFs such as topo
graphic variations, which may lead to complex interactions along valley 
edges and consequent inaccuracies, and environmental factors, where 
interactions between vegetation and different types of soil along valley 
edges may not be fully captured. These findings emphasize the need to 

Fig. 7. (continued).
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consider multiple factors and spatial resolutions when modeling LSS.
Table 8 shows a comparative analysis between ML-LSSI and the other 

maps, i.e., HR-LSSI and FR-LSSI. Here, the impact of spatial resolution 
on model performance. The ML-LSSI vs. FR-LSSI is characterized by a 
greater error than ML-LSSI vs. HR-LSSI, as ML-LSSI and FR-LSSI have 
different spatial resolution (20 m and 80 m, respectively) while ML-LSSI 
and HR-LSSI have the same resolution (20 m).

Finally, all the three LSSI maps have been compared to the InSAR 
LOS average velocity maps (Fig. 7). By analyzing the distribution of the 
InSAR velocity values within the six different classes of LSSI across all 
the three LSSI maps, we observed a significant agreement between low 
LSSI classes and stable LOS values. However, different findings can be 
drawn. Concerning the HR-LSSI and ML-LSSI maps, while areas with 
high LSSI values (“Medium high” class) often correspond to significant 
InSAR velocity ranges (up to 20 mm/yr), a notable portion of the area 
affected by land subsidence shows almost stable LOS values. This in
dicates that high susceptibility does not always coincide with land 
subsidence, highlighting the complexity of subsidence processes. This 
result is not contradictory with the concept of LSS: in fact, LSSI values 
may not experience subsidence, yet the area remains susceptible to land 
subsidence. It is worth noting that a susceptibility map highlights areas 
most likely to experience subsidence events. However, high suscepti
bility to land subsidence does not guarantee subsidence happens. For 
example, if triggers such as falling piezometric levels never occur then 
subsidence does not occur. This is likely the main reason for the dis
crepancies between real displacements derived from InSAR and the 
susceptibility maps. Conversely, greater consistency is observed in the 
FR-LSSI map, where the “High” susceptibility classes correspond to 
larger land subsidence values.

These findings underscore the importance of considering multiple 
factors and spatial resolutions, and also the importance of accurately 
assessing model performance when interpreting and validating LSS 
models to inform land management decisions and risk mitigation 
strategies.

6. Conclusions

In conclusion, our study highlights the advantages of integrating 
machine learning techniques with traditional methods for Land Subsi
dence Susceptibility mapping. The study compared multiple Land Sub
sidence Susceptibility maps, on the pilot area of Murcia, generated using 
both conventional Frequency Ratio methods and advanced Machine 
Learning models. More than twenty Machine Learning models were 
compared, over different performance metrics. The superior perfor
mance of the Extra-Trees Classifier model, suitable for analyzing vast 
geospatial datasets and to outperform traditional methods, demon
strates the potential for these approaches to enhance land subsidence 
susceptibility assessment. Specifically, the Land Subsidence Suscepti
bility maps were validated using InSAR satellite data, confirming the 
reliability and accuracy of the Machine Learning generated maps. This 
validation underscores the importance of high spatial resolution in 
improving land subsidence susceptibility assessments. The analysis 
carried out in the area of Murcia revealed that while incorporating 
multiple Conditioning Factors is beneficial, their effectiveness is highly 
dependent on the characteristics of each data layer. This finding em
phasizes the need for careful selection and optimization of Conditioning 
Factors in Land Subsidence Susceptibility mapping. Future research 
should focus on further refining these models and exploring the inte
gration of additional high-resolution datasets to improve the accuracy 
and reliability of land subsidence susceptibility maps.”
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