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A B S T R A C T

The increasing demand for wireless sensor networks to monitor specific regions has prompted extensive
research on sustaining coverage over time. The main threat to this goal arises from coverage holes caused
by random node deployment or failures. This study proposes a swarm intelligence-based algorithm to
detect and heal coverage holes. The swarm of agents relies on local and relative information, activating in
response to detected holes and navigating a potential field toward the closest hole. The agents quantize their
perceptions to disperse efficiently, approaching holes from different directions to accelerate healing. Based
on geometric criteria, the swarm deploys at locally optimal positions along hole borders while preventing
redundant deployments. Agents deployment update the potential field, guiding the rest of the swarm toward
unhealed areas and ensuring dynamic detection and tracking of new holes, even near the region frontier.
Experimental studies demonstrate superior coverage restoration compared to state-of-the-art solutions, showing
good scalability and flexibility to different hole sizes, shapes, and multiplicity. Moreover, it exhibits high
robustness to the corruption of agents’ perceptions and to their failure, while efficiently managing the battery
level.
1. Introduction

In recent years, there has been a growing demand for systems
capable of continuously monitoring and sensing environmental factors
across wide areas. This need for continuous and complete coverage of
a Region of Interest (ROI) extends to diverse sectors, including sus-
tainable agriculture [1,2], wildlife monitoring [3,4], disaster recovery
[5,6], surveillance [7,8], and military applications [9,10]. Typically,
to achieve this, a Wireless Sensor Network (WSN) is deployed across
the ROI, ensuring that each network node can cover a specific portion
of it. The widespread adoption of WSNs can be attributed to the
customization, scalability, and interconnectivity of their nodes [11].

However, several factors can interfere with sustaining such coverage
requirements: the random positioning of network nodes might result
in some areas of the ROI being uncovered [12]. Furthermore, nodes
are susceptible to unforeseen failures, whether due to, e.g., hardware
damage, hacking, or energy depletion [13,14]. All these situations
result in coverage holes, which can be classified as open or bounded,
depending on whether the border forms an open or closed curve [15].
Due to the importance of maintaining complete coverage, several stud-
ies proposed solutions to detect and restore the sensing in bounded
holes [16–18] (i.e., healing the holes). However, these approaches
require (i) mobile network nodes to enable relocation as needed;
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(ii) highly dense networks, in which more nodes are deployed than
those required. These assumptions are not usually met, especially in
case of massive, unmovable nodes, or when the network functioning
leverages its stationarity. Moreover, it is not always feasible to have
redundant nodes deployed beforehand, especially when the devices are
expensive. Another drawback of these solutions is that they do not
consider that the nodes involved in restoring the coverage could fail
as well, hindering the healing process.

New methods based on swarm intelligence were developed to ad-
dress these limitations [6,14]. These approaches use autonomous and
mobile external agents with limited functionalities, to temporarily re-
store the coverage until the full-fledged nodes are reinstated. The
methods are applicable in stationary networks and do not require any
deployment beforehand, eliminating the need for dense networks. They
also leverage the inherent robustness of swarm intelligence techniques
to complete the healing process even if agents fail. In this work,
we extend the solution in [6], which introduces a novel bio-inspired
approach for detecting and healing holes using a swarm of resource-
constrained agents with limited sensing capabilities. These agents are
released in the ROI and rely on local information to detect hole bor-
ders and deploy themselves in locally optimal positions for temporary
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restoration. The swarm behavior is governed by three key rules inspired
by the phenomena regulating blood coagulation: activation, wherein
agents initiate the healing process upon detecting holes; adhesion,
where agents adhere to hole borders and emit attractants to enhance
collaboration; and cohesion, enabling agents to cohere until complete
hole healing is achieved.

Despite displaying high robustness, the method in [6] can only
effectively handle holes located away from the ROI frontier. Moreover,
the agents, following a similar logic and departing from close locations,
tend to cluster excessively. This not only hampers the exploitation of
the swarm’s parallelism during navigation but also generates frequent
concurrent deployments in very close positions, wasting resources. In
this work, we tackled these issues while also incorporating an anal-
ysis of the effectiveness of our method from an energy perspective.
Particularly, our main contributions include:

• enabling holes next to ROI frontier, allowing their detection and
their healing.

• exploiting the findings in [14] and the benefits brought by the
quantization of perceptions [19,20] to speed up the healing pro-
cess without increasing the number of agents deployed.

• integrating a commitment strategy before agents positioning to
prevent clustered deployments, thus minimizing the number of
resources necessary to restore the coverage.

Moreover, we equip the agents with a detailed model of the battery
level, as to showcase the suitability of our method to real-world
scenarios. Using energy information, we devise proactive policies to
optimize the replacement process in case the agents deplete their
energy, extending the duration of WSNs lifetime.

We carry out a thorough validation and evaluation of our so-
lution. We optimize the parameters using the Differential Evolution
(DE) algorithm and investigate the performance of our method in
response to different internal and external factors. We also assess the
robustness to data corruption and agent failure and we compare its
performance against several state-of-the-art algorithms, namely [6,10,
16,17,21], showing that it outperforms all of them.

The rest of this paper is organized as follows. In Section 2, the
literature on the topic is reviewed and, in Section 3, the context is
detailed. The algorithm is explained in Section 4, while Section 5
reports and discusses the results of performance evaluation. Finally, in
Section 6, conclusions are drawn.

2. Related work

Several studies suggest methods for detecting [22,23] or heal-
ing [21,24] coverage holes in WSNs. Most of these approaches rely
on geometric properties and topological insights, such as the Voronoi
Diagram or its dual, the Delaunay Triangulation. For example, two
algorithms were presented to reduce the energy consumption of mobile
nodes, aimed at delaying holes formation [13,18]. They employ a
distributed Voronoi-based cooperation scheme [18] and insights from
intersection points among nodes [13]. However, both methods can only
be applied to dense networks, a condition usually not met. While [7]
employs the Delaunay triangulation of the network alongside a virtual
edge-based technique, [25] utilizes an additively weighted Voronoi
diagram for hole identification and patching position calculation. In
contrast to our decentralized approach, both solutions are centralized
and consequently lack robustness. The same drawback is found in
[8,26]. In [8] the holes are detected through network cellularization
and geometric criteria and prioritized to enable their healing. [26],
instead, uses a sleep/wake schedule for the nodes to reinstate the
coverage. Both these solutions rely on a Base Station (BS), introducing a
single point of failure. In [10], a BS is also used to gather information
from nodes about network density and to displace mobile agents as
needed. The distributed approach in [27] leverages nodes position
2

to geometrically compute the centroid of the holes, that is where
new agents must deploy. However, knowing all nodes position is not
always possible. Another decentralized method is [5], in which a
Voronoi diagram is constructed from the network and used to estimate
holes position and size. Similarly, [21] uses the network’s Voronoi
diagram to identify the positions of additional nodes, then filtered by
Linear programming and probabilistic sensor model techniques. These
approaches only work with homogeneous networks (i.e., having nodes
with equal sensing capabilities), as opposed to our method, which can
serve also heterogeneous networks. This limitation is shared by the
tree-based and chord-based algorithms in [3,23], and by the approach
in [16] that uses geometric criteria to decide which, where, and with
which priority some nodes must move to restore sensing. The solution
proposed by [28] employs trigonometric rules to compute the updated
node positions. However, as for [16], the process of choosing which
node to move generates a high message overhead, debilitating nodes
with limited energy.

A different kind of approaches to hole detection and healing is rep-
resented by [15], where a complex messaging protocol is used to detect
the hole. The healing proceeds through virtual forces driving the nodes
toward holes center while repelling other nodes to increase coverage.
Hybrid solutions, as introduced in [1,29,30], merge the advantages of
geometry-based and virtual forces-based approaches but require GPS
availability.

Another class of solutions uses Deep Learning (DL) and Reinforce-
ment Learning (RL) techniques to detect the holes and compute poten-
tial patching positions [2,31,32]. [31] introduces a pure topology-based
solution that uses a Convolutional Neural Network trained with transfer
learning to detect the polygonal border of the holes from the network
layout. [2] detects and estimates the size of the holes through Hybrid
Deep RL, while [32] employs a game theory-based RL algorithm to
learn the most energy-efficient sleep/wake schedule for network nodes.
However, the amount and precision of data needed by these algorithms
are nearly unattainable, especially in unknown environments.

Swarm Intelligence (SI) algorithms have proven to be particularly
suitable in managing WSNs [33]. Their approaches to hole detection
and healing can be divided in two categories: optimization-based (SI-
optimization) and behavioral rules-based (SI-behavioral rules). In the
former category, the problem is modeled as an optimization task. The
result of this optimization process is the new positions that certain
nodes in the network must take to restore the coverage. To find these
positions, the algorithms virtually move in an 𝑛-dimensional solutions
space to find those maximizing a fitness function of global coverage.
Examples of this category are [12,34], that employ Particle Swarm
Optimization (PSO) or an improved version of PSO to update the
positions of patching nodes. In [35], the network is cellularized and fed
to an active contour model to detect coverage holes. To restore service,
PSO is used to find the locations for additional nodes that maximize
coverage, while minimizing their traveled distance. Similarly, in [17],
network cellularization provides coverage information to evaluate the
fitness function in an enhanced version of the Artificial Fish Swarm
Algorithm [36]. In contrast to our approach, which depends solely
on local information, these methods require global knowledge of the
environment and network. Assuming global knowledge relies on having
specific systems in place to collect and manage information, which
might not always be feasible if the environment is unknown or if the
network changes post-deployment. Therefore, these methods follow
offline planning and cannot adjust to environmental changes, without
having to re-collect and re-process global information. Conversely,
local knowledge can be acquired in real-time without the need for
such specialized infrastructure. In fact, our algorithm exploits online
planning to be able to react to dynamic scenarios. The latter category
encompasses behavioral rules-based approaches in which the behavior
of agents, such as robots, is driven by a set of predefined local rules. [6]
introduces a hole detection and healing algorithm that uses resource-
constrained agents to restore the service. Rules inspired by blood

coagulation are followed by the agents to place inside the holes as to
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Table 1
Comparison of key features for hole detection and healing algorithms against our solution. A✓ represents partial achievement. Methods involved
in the quantitative comparison are reported in bold font.
Reference Technique used Distributed GPS-free Low density Dynamic

scenarios
Agent
failure

Sahoo et al. [22] Geometric ✓ ✓

Li et al. [23] Geometric ✓ ✓

Aliouane et al. [24] Geometric ✓ ✓ A✓
Khedr et al. [13] Geometric ✓ A✓
Papi et al. [8] Geometric ✓

Narayan et al. [26] Geometric ✓

Rath et al. [27] Geometric
Singh et al. [3] Geometric ✓

Khalifa et al. [16] Geometric ✓✓✓

Hallafi et al. [10] Geometric A✓A✓A✓ ✓✓✓ A✓A✓A✓ ✓✓✓

Khelil et al. [21] Topological A✓A✓A✓ ✓✓✓ A✓A✓A✓ A✓A✓A✓
Qiu et al. [18] Topological ✓

Soundarya et al. [7] Topological ✓ ✓

Davoodi et al. [25] Topological A✓
Duan et al. [5] Topological A✓
Wu et al. [28] Topological ✓

Senouci et al. [15] Virtual forces ✓ A✓
Kukunuru et al. [1] Virtual forces A✓ ✓ A✓
Kadu et al. [29] Virtual forces ✓

So-In et al. [30] Virtual forces A✓
Lai et al. [31] DL/RL-based ✓ A✓
Chowdhuri et al. [2] DL/RL-based ✓ A✓
Chauhan et al. [32] DL/RL-based ✓ ✓ A✓
Mehta et al. [34] SI-optimization
Wang et al. [12] SI-optimization
Yu et al. [35] SI-optimization ✓

Yan et al. [17] SI-optimization A✓A✓A✓
Ours SI-behavioral rules ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
restore the coverage. In [14], a version of this algorithm is presented,
able to detect and heal coverage holes under sparse and coarse per-
ception. These solutions, however, cannot handle holes forming next
to the ROI frontier. Moreover, despite showing prompt reaction to
holes formation, they cannot provide swift healing while minimizing
the number of agents employed. In this work, we leverage the findings
in [6,14] to propose a new version of the algorithm able to overcome
these issues, providing prompt recovery with fewer resources.

Table 1 summarizes the discussed approaches, providing a qualita-
tive comparison regarding the technique used and key characteristics
of hole detection and healing algorithms. Comparison is made against
(i) whether the methods are distributed, and thus more robust; (ii) if
they do not rely on nodes’ absolute position (GPS-free), therefore being
applicable to GPS-denied scenarios; (iii) if they support low density
networks or demand abundant nodes to function; (iv) whether they
handle dynamic scenarios, i.e., changes in network status and (v) if they
adapt to agent failure.

We compared our algorithm against five of the discussed state-of-
the-art methods, namely [6,10,16,17,21]. We selected Khalifa et al. [16]
and Hallafi et al. [10] among the geometry-based approaches. These
recent methods showed superior performance with respect to those of
their category. Moreover, they rely on different geometric concepts,
being good representatives of the geometric category. For the same
reason, we selected Khelil et al. [21] among the topological approaches.
The methods relying on virtual forces were proven to be outperformed
by geometric and topological solutions. Therefore, we excluded them
from our comparison as they offer no additional insights. DL/RL-
based approaches necessitate data that cannot be gathered in unknown
scenarios, or infrastructures and computational power that might not
be available. Since the assumptions they rely on cannot be met in the
scenarios we considered, we opted not to select any. Among the SI-
optimization methods, we selected Yan et al. [17] since it outperformed
other PSO-based approaches. Simionato et al. [6] was included in the
comparison to evaluate the improvements introduced in this work.

Next, we will provide more details about the methods chosen as
3

comparisons (reported in bold font in Table 1). In their work, Khalifa
et al. [16] present DHDR, a solution designed for a dense network
of mobile nodes. In this approach, nodes respond to the absence of
a heartbeat message from a neighboring node by moving toward the
detected hole. Consequently, only nodes adjacent to the hole actively
contribute to the healing process. The displacement calculation is deter-
mined through geometric criteria, considering the intersection points
between the sensing disk of each node and that of its neighbors and
following a heuristic priority scheme to guide the movement of nodes.

The algorithm in Hallafi et al. [10] uses mobile agents to heal
coverage holes. A BS cellularizes the network, selecting the highest-
energy nodes as cell heads. Each cell head is responsible for its cell
coverage computation, using the information from its neighbors and
geometric rules. A sleep-wake schedule is applied to minimize energy
consumption in case of high cell density. If the covered area is lower
than that of the cell, the head alerts the BS. The BS instructs the agents
to navigate toward the cells containing holes to heal them. If the agents
are less than the detected holes, the BS selects the highest priority holes
using a Grasshopper Optimization algorithm [37].

Khelil et al. [21] detects coverage holes using [22]. For each hole, it
appoints a node as hole manager responsible for building the Voronoi
diagram from the nodes bordering its hole. Diagram vertices are can-
didate patching positions for external nodes. The list of locations is
iteratively filtered using Integer Linear Programming techniques, and
the concept of maximal independent set of points with minimum
cardinality, to minimize the number of new nodes.

Yan et al. [17] approach the issue as an optimization task, pre-
senting the FSHR algorithm. This adds leap and rebirth behaviors to
the AFSA, enhancing it. To heal the holes, FSHR moves some of the
inactive, mobile nodes that are dispersed across a network of static
nodes. The nearest mobile nodes are guided to the target positions
by the WSN sink nodes, which compute the positions and provide
control inputs. To do this, FSHR divides the ROI into discrete grids and
optimizes a fitness function that is determined by the percentage of
grid points that are covered by both the static nodes and the activated

mobile nodes.
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These approaches show some limitations: they rely on GPS, which
may not be available in critical scenarios, or assume mobile redundant
nodes in the network, while our method uses external agents inde-
pendent of network characteristics. Moreover, they compute new de-
ployment positions without considering unexpected failures, unlike our
online planning method which dynamically adapts to environmental
changes.

3. System model

We assume the region of interest to be a 2-dimensional area free
from obstacles. This area is completely covered by a network of station-
ary nodes, having communication and sensing capabilities. We model
nodes as point-like entities, where their position corresponds to the
center of mass (CoM) of the device they represent. The network layout
is randomly generated and it is designed to ensure that each point of
the ROI is sensed by at least one node, while keeping the overall density
low. This means that the failure of a node always results in a portion
of the ROI left uncovered, generating holes.

To heal the coverage holes, we make use of a swarm  = {𝑠1,… , 𝑠𝑛}
of mobile agents, e.g., drones or unmanned ground vehicles. We con-
sider agents to have limited computational and energy resources and
restricted sensing capabilities. We model the agents as point-like non-
holonomic entities following the unicycle dynamics [38]. As for the
nodes, their pose coincides with the robot CoM. The control inputs
are the steering and driving speeds. If specific control values are not
explicitly needed for executing maneuvers or reaching a destination,
the agents move in the environment maintaining a steady steering �̄�
and driving �̄� speed. This abstraction offers broader applicability to
different robots, with the potential to map more complex dynamics
back to the simplified model we used for movement.

Nodes and agents have sensing and communication capabilities,
which we represent through the Boolean disk coverage model [39]. In
this model, we assume reliable communication or sensing within a disk
of radius 𝑟𝑐 or 𝑟𝑠 centered on each node and agent, and no service out-
side. As a result, the communication range 𝑟𝑐 represents the maximum
distance at which packets can be exchanged and the sensing range 𝑟𝑠 is
the maximum distance covered. Given the limited coverage capability
of the agents, we suppose that their sensing radius 𝑟𝑠,𝑎 is significantly
smaller than that of nodes, denoted as 𝑟𝑠,𝑛 (i.e., 𝑟𝑠,𝑎 ≪ 𝑟𝑠,𝑛). However,
we stress that our algorithm could work without modifications also for
𝑟𝑠,𝑎 ≥ 𝑟𝑠,𝑛. To ensure connectivity in the restored area, we assume that
the communication range is at least double of the sensing radius for
both agents and nodes, that is 𝑟𝑐,𝑎 ≥ 2𝑟𝑠,𝑎 and 𝑟𝑐,𝑛 ≥ 2𝑟𝑠,𝑛 [40].

To perceive the environment, nodes and agents 𝒐𝒊 are equipped with
a Range and Bearing (RaB) sensor [41] that provides, in their reference
frame, the relative distance 𝑑𝑖𝑗 and angle 𝜑𝑖𝑗 to other nodes and
agents 𝒐𝒋 within the communication range. These values are computed
using hardware geometry and packets arrival time at the antennas
array [42]. We leverage this concept by sending lightweight packets
containing nodes and agents information to estimate the quantities.
This sensor enables continuous environmental assessment, allowing the
swarm to adapt to dynamic scenarios without relying on a priori global
knowledge or GPS information.

To tighten the gap with real-world scenarios, we endowed the
agents with a model of the battery level, detailed in Section 4.3.

4. Proposed method

Our algorithm is inspired by the behavior exhibited by biological
platelets during blood coagulation. As the platelets, the swarm stays
in an inactive state if no holes are detected. In this state, the swarm
is clustered in random locations, called Release Points (RPs) that are
scattered around the ROI. In real-world scenarios, the RPs represent
the locations where the swarm could be potentially released by ex-
4

ternal operators. Network nodes, instead, evaluate periodically their
surroundings looking for coverage holes, based on their RaB readings
and geometric rules. When a hole is detected, they start spreading an
alert message in the network. This behavior emulates the diffusion
of collagen, a substance that leaks inside the bloodstream following
an injury and is responsible for activating the platelets [43,44]. The
concentration of the collagen is inversely proportional to the wound
distance. Similarly, the nodes keep track of their distance to the closest
hole, leveraging information from their neighbors (i.e., those with
which their sensing disks overlap). In this way, they form a simple
potential field that points toward the closest hole.

The inactive agents eavesdrop on nodes’ communications, waiting
for the alert to activate. Once activated, they start following the po-
tential field created by nodes until they are close to the hole border.
In biology, platelets initiate the plug by adhering to the border of
the wound, becoming bound. After that, they start releasing adenosine
iphosphate (ADP) and fibrin. The former substance attracts other
latelets and induces them to cohere to increase the size of the plug.
he latter, instead, cements the bonding with the injury walls and
ith other platelets [43,44]. We adapt these concepts by making the

warm adhere to the hole border, deploying in locally optimal positions
computed geometrically. Deployment has the effect of switching the
agent state to bound and connecting it with the rest of the network (as
artificial fibrin). Moreover, a bound agent contributes to the forwarding
of the alert message and updates the potential field. This will naturally
attract other agents and foster further deployments (as artificial ADP).

Deployment must not occur outside the hole, where the network
works properly. In the biological context, to discourage adhesion to
the intact part of the vessel, a repulsive substance named prostacyclin
is secreted. Similarly, the agents are instructed to discard potential
positions that are already covered by other nodes or bound agents.

Our algorithm results in the border of the holes changing and
shrinking as the swarm deploys. When the healing is completed, holes
are no longer detected and the alert message ceases to be forwarded.
The remaining agents may return to the RPs, or to a safe area, wait-
ing to be reactivated. Similarly, platelets return to flowing in the
bloodstream when the injury is healed.

Since we consider a swarm with limited capabilities, we stress that
our algorithm offers a prompt but temporary solution. For this reason,
it can be thought of as a primary hemostasis for the network.

In the next paragraphs, we will detail how hole detection is per-
formed and how the potential field is generated (Section 4.1). We
will explain the healing process (Section 4.2), and define the battery
model, as well as the techniques employed for energy management
(Section 4.3).

4.1. Hole detection

Holes in the coverage are detected by nodes and bound agents
through the computation of a coefficient: the Angular Coverage Ratio
(ACR). This coefficient 𝑐 ∈ [0, 1] represents how much of the border
of their sensing disk is covered by the sensing disk of other nodes or
bound agents. If a node (or bound agent) faces one or more holes, part
of its border will not be covered. Particularly, if the ACR of a node or
bound agent 𝒐𝒊, namely 𝑐𝑖, is below a threshold 𝑇ℎ𝑐 , it means that 𝒐𝒊
belongs to the set  of nodes or bound agents bordering a hole. ACR
computation relies on the readings from the RaB sensor and involves
only the neighbors. For each node and bound agent 𝒐𝒋 in the set 𝑖
of neighbors of 𝒐𝒊, 𝒐𝒊 follows Eq. (1a) to compute the angle 𝜃𝑗 in the
riangle

▵
𝒐𝒋𝒐𝒊𝒒𝒋 . Here, 𝒒𝒋 is one of the two points of intersection between

ensing circumferences, 𝑟𝑠,𝑜𝑖 represents the sensing range of 𝒐𝒊 (and
𝑟𝑠,𝑜𝑗 of 𝒐𝒋), and 𝑑𝑖𝑗 its distance to 𝒐𝒋 , provided by the sensor. These
quantities are used as margins for intervals centered in the direction
𝜑𝑖𝑗 in which the neighbors are perceived. The intervals are merged, as
in Eq. (1b), to obtain the angular span covered by the neighbors. 𝑐𝑖 is
then computed according to Eq. (1c) (where |𝛩𝑖| returns the length of

the interval 𝛩𝑖) and compared with 𝑇ℎ𝑐 to determine the presence of a
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Fig. 1. Example of ACR computation for 𝒐𝒊. The red border shows where it faces holes.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

hole. 𝑇ℎ𝑐 represents, therefore, a tolerance accounting for RaB noises
and imperfect placement. We assess the impact of different values for
𝑇ℎ𝑐 in Section 5.2. ACR computation occurs periodically, enabling
prompt detection of holes and tracking of their recovery, even in case
of agent failure. Fig. 1 illustrates an example of ACR computation.

𝜃𝑗 = arccos
⎛

⎜

⎜

⎝

𝑟2𝑠,𝑜𝑖 + 𝑑2𝑖𝑗 − 𝑟2𝑠,𝑜𝑗
2𝑟𝑠,𝑜𝑖𝑑𝑖𝑗

⎞

⎟

⎟

⎠

(1a)

𝑖 =
⋃

𝑜𝑗∈𝑜𝑖

[𝜑𝑖𝑗 − 𝜃𝑗 , 𝜑𝑖𝑗 + 𝜃𝑗 ] (1b)

𝑐𝑖 = |𝛩𝑖|∕2𝜋 (1c)

In this work, we extend the ACR computation to support scenarios
n which frontier nodes, i.e., those located at the ROI frontier, face the
oles. To identify frontier nodes, right after deployment, each node
erforms Eq. (1) when the network is still intact. All nodes 𝒐𝒊 having

𝑐𝑖 < 𝑇ℎ𝑐 , store 𝛩𝑓
𝑖 = [0, 2𝜋]∖𝛩𝑖, a set of intervals representing the

ortion of the sensing border facing the outside of the ROI (see Fig. 2).
ue to the stationarity of the network, the angular span identified by
𝑓
𝑖 can always be considered as covered. In this way, only the part of

he sensing border left uncovered by a hole can be responsible for a
ower ACR. To account for this, we modify Eq. (1c) as follows:

𝑖 = |(𝛩𝑖 ∪ 𝛩𝑓
𝑖 )|∕2𝜋. (2)

When a node or bound agent 𝒐𝒊 detects a hole, it spreads the alert
essage in the network using a gossip protocol, such as [45]. In addition,

t stores the level 𝓁𝑖 representing the one-hop distance to the closest
ole, computed as follows:

𝑖 =

⎧

⎪

⎨

⎪

⎩

0, if 𝒐𝒊 ∈ 
min
𝒐𝒋∈𝑖

𝓁𝑗 + 1, otherwise. (3)

he network levels generate a potential field of increasing integer
alues, whose global minimum is 0 at the holes border. When agents
hange the border by deploying, the levels are recalculated, updating
he potential field and directing the swarm to the remaining unhealed
rea.

.2. Hole healing

When the inactive agents overhear the alert message, they switch
heir state to active and begin the healing process. In [6], the swarm
ses the RaB readings to follow the potential field by moving in the
irection of the closest node (or bound agent) with minimum level.
nstead in [14], the bearing readings are quantized into 𝐾 angular sec-
ors. The agents move when facing the sector with the lowest average
evel of nodes and bound agents within that sector. As proved in [14],
5

s

Fig. 2. Geometric interpretation of 𝛩𝑓
𝑖 (blue border) for the frontier node 𝒐𝒊. (For

interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

its navigation strategy introduces more dispersion in the swarm due to
the higher coarseness of the readings. This results in the swarm tackling
holes from different directions, parallelizing the healing and thus speed-
ing up the process, compared to [6]. However, the deployment logic
in [14] requires more agents. In this work, we theorize that combining
the navigation strategy of [14] with the placement logic of [6], here
described, could lead to quicker healing without the waste of resources.
The effectiveness of this combination is proved in Section 5.2.

Both navigation strategies drive the swarm to the closest hole bor-
der. Whenever an agent perceives at least two nodes or bound agents
with level 𝓁 = 0 (on the border), it computes potential deployment
positions. Each position is based on the coordinates of two nodes or
bound agents with overlapping sensing disks and level 𝓁 = 0, referred to
as parents. The positions 𝒕𝟏,𝟐 are calculated using Eqs. (4) and (6) when
both parents share the same type (either both nodes or both agents),
or Eqs. (5) and (6) otherwise. Here, 𝒐𝒊 and 𝒐𝒋 are the coordinates of
the parents in the agent reference frame, provided by the RaB sensor.
𝑟𝑠,𝑜𝑗 is the sensing range of 𝒐𝒋 and 𝑑 is the distance between the parents
computed from RaB data. 𝐤⊥ is the unit vector orthogonal to the unit
vector 𝐤. We recall that 𝑟𝑠,𝑎 and 𝑟𝑠,𝑛 are the sensing ranges of the
agents and of the nodes, respectively. Figs. 3a and 3b depict the two
symmetrical solutions obtained in the two cases.

𝐤 =
𝐨𝐢−𝐨𝐣

‖𝐨𝐢−𝐨𝐣‖
=

𝐨𝐢−𝐨𝐣
𝑑

𝑑𝑏 = 𝑑∕2 𝑑ℎ =
√

𝑟2𝑠,𝑜𝑗 −
𝑑2
4 + 𝑟𝑠,𝑎

(4)

𝐤 =
𝐨𝐢−𝐨𝐣

‖𝐨𝐢−𝐨𝐣‖
=

𝐨𝐢−𝐨𝐣
𝑑 𝑑2 = 2

√

𝑟2𝑠,𝑎 −
(

𝑑2−𝑟2𝑠,𝑛−𝑟2𝑠,𝑎
2𝑟𝑠,𝑛

)2

𝑝 = 2𝑑+𝑑2
2 𝐴 =

√

𝑝(𝑝 − 𝑑)2(𝑝 − 𝑑2)

𝑑ℎ = 2𝐴∕𝑑 𝑑𝑏 =
√

𝑑22 − 𝑑2ℎ

(5)

𝐭𝟏,𝟐 = 𝐨𝐣 + 𝑑𝑏𝐤 ± 𝑑ℎ𝐤⊥ (6)

Since the RaB sensor provides a local and relative perception of the
nvironment, the solutions computed by the agents are only locally
ptimal. To increase the coverage, we also considered additional posi-
ions on the midpoint of the segment joining two nonadjacent parents,
aving distance 𝑑 ≤ 𝑟𝑠,𝑜𝑖 + 𝑟𝑠,𝑜𝑗 + 2𝑟𝑠,𝑎. These solutions 𝒕 are computed

according to Eq. (7) and illustrated in Fig. 3c.

𝐤 =
𝐨𝐢−𝐨𝐣

‖𝐨𝐢−𝐨𝐣‖
=

𝐨𝐢−𝐨𝐣
𝑑 𝐤′ = 𝐨𝐣−𝐨𝐢

‖𝐨𝐢−𝐨𝐣‖
=

𝐨𝐣−𝐨𝐢
𝑑

𝐩𝟏 = 𝐨𝐣 + 𝑟𝑠,𝑜𝑗𝐤 𝐩𝟐 = 𝐨𝐢 + 𝑟𝑠,𝑜𝑖𝐤
′ 𝐭 = (𝐩𝟏 + 𝐩𝟐)∕2

(7)

To prevent deployment onto intact parts of the network, the agent
iscards from the list of potential positions those already covered by the
ensing disk of other nodes or bound agents. To do so, it checks if the
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Fig. 3. Geometric representation of locally optimal solutions for parents with same (a) or different sensing radius (b). Additional solution (c).
Fig. 4. Geometric representation of different situations in the filtering process of solutions outside the ROI: importance of satisfying both conditions (a) and (b); importance of
inimum distance (c); geometric quantities involved in the filtering for agents headed within the range (d) and outside of it (e).
istance from the virtual solution 𝒕 to the perceived nodes and bound
agents 𝒐𝒋 is greater than the corresponding sensing range (i.e., 𝑑𝑗𝑡 >
𝑠,𝑜𝑗 ∀𝒐𝒋). If it is not the case, the agent must discard the solution.

Computing potential deployment positions using Eq. (4) or Eq. (5)
ay yield solutions beyond the ROI when at least one parent is a

rontier node. These positions are uncovered since no node or agent
s deployed outside the ROI, and thus not automatically discarded. To
ddress this, we introduce the following filtering rule:

heorem 1. A potential position 𝒕, generated by the parents 𝒐𝒊 and 𝒐𝒋
according to Eq. (4), Eq. (5) and (6), must be discarded if each of these
conditions holds:

1. Either 𝒐𝒊 or 𝒐𝒋 is a frontier node.
2. The angle 𝛼 at which 𝒕 is observed must fall within the range defined
by the angles at which the two parents are perceived.

3. The distance 𝑑 to the position 𝒕 must be greater than the distance at
which the closest parent is perceived.

Proof. If neither one of the two parents are frontier nodes, 𝒕 cannot lie
farther than them, so it must lie inside the ROI. Conditions 2 and 3 must
be both satisfied. If only the condition on the angle is met, based on the
geometry underlying how solutions are computed and the assumption
that the RPs are scattered inside the ROI, without the condition on
distances we could exclude viable positions. In fact, when the condition
on the angle is satisfied, viable positions are closer than any of the
parents (see Fig. 4a). Similarly, meeting the distance condition ensures
that a viable solution will not be found within the cone formed by
the agent and its parents (see Fig. 4b). Considering the distance to be
greater than the minimum between parents’ distances allows the agent
to correctly exclude positions, as shown in Fig. 4c. □

Algorithm 1 reports the steps of the filtering process. Lines 1–9
remove the positions already covered, while lines 10–29 implement the
filtering rule of Theorem 1. The range in condition 2 must be computed
in two ways, depending on the agent heading. If its orientation lies
6

within the range, as in Fig. 4d, the condition is implemented according
to lines 18–22. Otherwise, if the agent does not face the range (Fig. 4e),
it must follow lines 23–27. We stress that this theorem can be applied
only because of the geometry behind the solutions computation and
because the RPs lie inside the ROI.

The remaining solutions are then sorted according to a specific
policy. We consider policies based on the distance to the solutions and
the type of their parents. Particularly, we devise the policies DNAM,
NAMD, AMND, closest, and random. The names of the first three strate-
gies reflect the descending priority assigned to the virtual solutions
based on their parents type: both Nodes, both Agents, Mixed type,
and Additional solutions of Fig. 3c. When positions belong to the same
type, precedence is given to the closest one. The closest strategy always
opts for the nearest computed solution, whereas the random strategy
selects the closest solution among those associated with a randomly
chosen type of parents. The impact of the diverse policies is assessed
in Section 5.2. Each agent pursues its highest-ranked solution until
either the selected position becomes occupied or its distance is below
a threshold 𝑇ℎ𝑏. In the former case, the agent selects a new position,
while in the latter, it halts and switches its state to commit. In this state,
it collects the IDs of other committed agents that are within its sensing
range. If it has the lowest ID [46], it deploys, switches to bound state
and starts providing coverage acting as in Section 4.1. Otherwise, the
agent resumes the navigation. We added this commitment strategy to
prevent overly clustered deployment and thus waste of resources.

Frontier and loops avoidance. The navigation logic in [14], using quan-
tized information, might drive the agents outside the ROI if the RPs are
too close to its frontier, since sectors without readings have lower aver-
ages. To prevent this, the agents are instructed to move away from the
frontier nodes by keeping them in the rear sectors. This logic might also
create loops in agents behavior, with short-term loops caused by two
consecutive perceptions demanding opposite actions. To break these
loops, agents are subjected to a random impulse, imposing uniformly
random control speeds. Long-term loops, instead, occur when agents
navigate along arbitrary lengths, resulting in identical perceptions.
To avoid these loops, a wiggling behavior is programmed, initially

𝑖
involving 𝑛𝑤 consecutive instants of random impulses. The wiggle is
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Algorithm 1: Solutions Filtering
Data: L the list of solutions 𝒕;

R the RaB readings of nodes and bound agents 𝒐𝒊.
Result: Filtered L.

1 foreach 𝒕 in L do
2 foreach 𝒐𝒊 in R do
3 𝑑𝑖𝑡 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑(𝒐𝒊, 𝒕);
4 if 𝑑𝑖𝑡 ≤ 𝑟𝑠,𝑜𝑖 then
5 𝑟𝑒𝑚𝑜𝑣𝑒 𝒕 𝑓𝑟𝑜𝑚 𝐿;
6 𝑏𝑟𝑒𝑎𝑘;
7 end
8 end
9 end
0 𝜖 ← 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒;
1 foreach 𝒕 in L do
2 𝑝1, 𝑝2 ← 𝑔𝑒𝑡𝑃 𝑎𝑟𝑒𝑛𝑡𝑠(𝒕);
3 if 𝑝1 is a frontier node or 𝑝2 is a frontier node then
14 𝑑, 𝛼 ← 𝑔𝑒𝑡𝑅𝑎𝐵𝐼𝑛𝑓𝑜(𝒕);
15 𝑑1, 𝛼1 ← 𝑔𝑒𝑡𝑅𝑎𝐵𝐼𝑛𝑓𝑜(𝑝1);
16 𝑑2, 𝛼2 ← 𝑔𝑒𝑡𝑅𝑎𝐵𝐼𝑛𝑓𝑜(𝑝2);
17 𝛼𝑚𝑖𝑛 = min(𝛼1, 𝛼2); 𝛼𝑚𝑎𝑥 = max(𝛼1, 𝛼2);
18 if |𝛼1 − 𝛼2| ≥ 𝜋 then
19 if [𝛼 ≤ (𝛼𝑚𝑖𝑛 + 𝜖) 𝑜𝑟 𝛼 ≥ (𝛼𝑚𝑎𝑥 − 𝜖)] and
20 𝑑 > min(𝑑1, 𝑑2) then
21 𝑟𝑒𝑚𝑜𝑣𝑒 𝒕 𝑓𝑟𝑜𝑚 𝐿;
22 end
23 else
24 if 𝛼 ≥ (𝛼𝑚𝑖𝑛 − 𝜖) 𝑎𝑛𝑑 𝛼 ≤ (𝛼𝑚𝑎𝑥 + 𝜖) and
25 𝑑 > min(𝑑1, 𝑑2) then
26 𝑟𝑒𝑚𝑜𝑣𝑒 𝒕 𝑓𝑟𝑜𝑚 𝐿;
27 end
28 end
9 end
0 end
1 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿;

Table 2
Parameters for battery model.
Parameter Value

Consumption for forward motion 1 J/𝑚
Consumption for rotation motion 0.5 J/2𝜋
Consumption for sensing 0.2 J/s
𝐸𝑒𝑙𝑒𝑐 50 nJ/bit
𝜖𝑓𝑠 10 pJ/bit/𝑚2

𝜖𝑚𝑝 13e-17 J/bit/𝑚4

triggered after 𝑡𝑖𝑤 instants and repeated with a period of 𝑇𝑤 instants,
increasing each time its duration by one instant. In Section 5.2, the
effects of the wiggling parameters will be evaluated.

4.3. Energy management

To account for energy consumption, we extended the battery model
in [13]. Three sources of power consumption are considered: move-
ment, transmitting, and receiving packets.

For inactive agents the energy consumption is zero, since it is
assumed that they are connected to the power supply. When moving,
the energy decreases proportionally to the traveled distance, following
the values in Table 2. These values were chosen as to resemble typical
power consumption of commercial drones, as further validated by [13].
The fixed decay rate for forward motion is higher than for rotation,
to compensate for the energy needed to overcome air resistance. Once
deployed, the agents consume constant energy over time to sense the
environment.
7

Transmitting a packet consumes an amount of energy proportional
to its size and to the distance of the receiver. In particular, the energy
𝐸𝑇𝑥 spent to transmit a 𝑙-bit message at distance 𝑑 can be computed as
follows:

𝐸𝑇𝑥(𝑙, 𝑑) =

{

𝑙 𝐸𝑒𝑙𝑒𝑐 + 𝑙 𝜖𝑓𝑠 𝑑2 if 𝑑 < 𝑑0
𝑙 𝐸𝑒𝑙𝑒𝑐 + 𝑙 𝜖𝑚𝑝 𝑑4 if 𝑑 ≥ 𝑑0

(8)

here 𝐸𝑒𝑙𝑒𝑐 , 𝜖𝑓𝑠, and 𝜖𝑚𝑝 are coefficients (whose values are reported
n Table 2) and 𝑑0 =

√

𝜖𝑓𝑠∕𝜖𝑚𝑝. The computation considers distance,
as signals need amplification for farther destinations, leading to higher
energy consumption [13]. Conversely, the energy cost of receiving a
packet depends solely on its size, according to Eq. (9). The parameters
in Table 2 relative to the transmission and reception of packets are
those used in simple models of radio communications and validated
by [13,47].

𝐸𝑅𝑥(𝑙) = 𝑙 𝐸𝑒𝑙𝑒𝑐 (9)

In our algorithm, packets are exchanged to allow the RaB sensor
to compute the distance and direction of other nodes and agents, and
to collect essential information. Since perception is not directional,
the packets are broadcasted within the communication range. Once
activated, the swarm only receives packets from nodes and deployed
agents within communication distance, while in the committed state
or after deployment, the agents contribute to the exchange of packets.
To compute the energy spent on communication using Eqs. (8) and
(9), we estimated the size of a packet to 𝑙 = 164 bit, by encoding
its content. Each agent starts with 1000 J (400 J in case of limited
resources) and it keeps track of its remaining energy. At each time
step, according to the state and the environment, the contributions
brought by movements and communication are deducted from the
current energy level. When an agent’s energy drops below zero, it
becomes faulty and stops participating in the healing.

In this work, we propose to leverage the information on the re-
maining energy to prematurely signal agent failure. This allows the
agents to modify the potential field, driving the swarm toward them
for replacement. Particularly, when the remaining battery level drops
below a threshold 𝑇ℎ𝑒, i.e., a fixed percentage of the battery capacity,
the agents start acting as faulty, while continuing to provide coverage.
This notice enables the swarm to reach their position and deploy the
replacements before they actually run out of energy.

We introduce another measure to counteract energy depletion: the
incremental release of the swarm. The agents activate upon hole de-
tection, directing all resources toward healing. In real-world scenarios,
the uncertainty about hole size may lead to overestimating the required
healing capacity, risking wasting resources by releasing unnecessary
agents or depleting their energy while patrolling for potential re-
placements. An incremental release, instead, delays the activation of
a fraction of agents, conditioning their involvement in the healing
process based on actual need. This approach also allows fully charged
agents to quickly replace the failed ones, extending the overall lifespan
of the replacements.

We investigate the impact of the incremental release and different
values for 𝑇ℎ𝑒 in Section 5.5.

5. Performance evaluation

To assess our algorithm performance, we used HDH Simulator [48],
a discrete time platform specifically designed to address hole detection
and healing problems in WSNs.

We investigated different aspects influencing our method perfor-
mance. Firstly, we optimized parameters and strategies to identify the
most effective setup, examining performance variations with different
parameter values (Section 5.2). We assessed the impact on perfor-
mance of external factors such as hole size, shape, and multiplicity
(Section 5.3) and of internal factors, like sensing capabilities (Sec-

tion 5.4). Additionally, we tested the method robustness, evaluating its
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Table 3
Parameters used in the simulations. The default values are highlighted in bold font.
Parameter Symbol Value

Node sensing range 𝑟𝑠,𝑛 30 m
Node communication range 𝑟𝑐,𝑛 60 m
Agent sensing range 𝑟𝑠,𝑎 10 m
Agent communication range 𝑟𝑐,𝑎 60 m
Agent cruise driving speed �̄� 5 m/s
Agent cruise steering speed �̄� 0.1 rad/s
Bound threshold 𝑇ℎ𝑏 0.3 m
Bearing quantization levels 𝐾 4
Time step duration 𝑑𝑡 {0.5, 1, 2, 4, 10} s
Avg. Perc. RaB distance error 𝜌 {0, 1, 1.5, 5, 20} %
Avg. error on RaB bearing 𝛾 {0, 2, 5, 15, 20} ◦

Avg. Perc. agent failure 𝑃𝑓 {0, 5, 10, 25, 50} %

resilience to potential disruptive elements like noise, data frequency,
and both predictable and unpredictable faults (Section 5.5). Finally,
we compared our method against several state-of-the-art approaches
(Section 5.6).

5.1. Experimental settings

We considered networks composed of 125 randomly deployed
nodes. Each network is designed to fully cover the region of interest,
allowing small overlapping among nodes sensing area, but without
inducing high density. Holes in the coverage are modeled through the
failure of a specific number of adjacent nodes that leave part of the
region uncovered. Unless expressly stated otherwise, we relied on a
default scenario consisting of a single hole caused by the failure of
7 adjacent nodes (medium-sized hole) and the parameters in Table 3.
These holes presented an irregular but compact shape. The communi-
cation and sensing ranges of nodes and agents were selected to meet
Section 3 assumptions and to align with existing technologies, such
as [49]. The swarm perceived the environment once per time step using
the RaB sensors. The data provided by these sensors was perturbed
using two zero-mean Gaussian noises with a constant variance for
the bearing information and a variance proportional to the measured
distance for the range. Default noise values are reported in Table 3 and
are compliant with modern sensors [42,49]. We set the control speeds
of the agents to match the values observed in commercial quadrotors,
e.g., [50]. By default, the agents were released from a single RP, which
represents the most challenging, yet realistic, configuration for our
algorithm (as further discussed in Section 5.4). For each experiment,
the swarm size was empirically determined and carefully calibrated to
avoid both inflated performance resulting from an excess of agents and
undue penalization due to their scarcity.

For each experiment, we carried out 70 simulations lasting 𝑇 =
1000 time steps each. The default duration of a time step was set
to 1s. In every simulation, we introduced variability to the scenario
by randomly altering RPs location, the network topology, and the
shape and position of the holes, while ensuring that key characteristics
remained comparable.

As a measure of performance, we relied on three metrics: (i) average
coverage over time; (ii) number of deployed agents and (iii) average
energy spent over time. Specifically, the first metric, ranging from 0
to 1, measures the fraction of the hole area effectively recovered by
the deployed agents. We will refer to as convergence, the attainment
of a stable value by the coverage before the simulation ends. The
number of deployed agents, instead, serves as an indicator of agents
placement efficiency: when coverage values are comparable, a reduced
number signifies more effective resource management by the algorithm.
Additionally, at each time step, we collected the average energy con-
sumption of the swarm (according to the battery model detailed in
Section 4.3) to quantify the energy demands of the methods.

Fig. 5 exemplifies the healing process in a scenario with multiple
8

holes.
Table 4
Average number of deployed agents and corresponding 95% confidence interval
for different navigation strategies and for Simionato et al. [6] in a single 5-failures
hole scenario.

Avg. no. agents 95% CI

Continuous 22.28 7.96
Discrete 22.12 8.13
Simionato et al. [6] 27.78 2.57

5.2. Parameters optimization and strategy comparison

In Section 4.2, we hypothesized that coupling the navigation strat-
egy lead by quantized perception with the placement logic using the
continuous RaB information could accelerate the healing process while
deploying a similar amount of agents. To prove this hypothesis, we
considered two strategies: Discrete navigation (as in [14]), where data
from RaB sensors is quantized before being fed to the discrete nav-
igation module, and Continuous navigation, where RaB readings are
directly used as in [6]. Both strategies are coupled with the placement
logic described in Section 4.2. Before comparing the performance of
these strategies, we optimized their parameters. For the Continuous
strategy, we optimized 𝑇ℎ𝑐 (threshold for bordering a hole) in the range
[0.75, 1.0] and the policy for ranking potential deployment positions.
To do so, we employed the Differential Evolution algorithm, using
Scipy’s default parameters and the maximization of the coverage at
convergence as fitness function. The exploration of the parameter space
was performed on a single-hole scenario with 5 adjacent faulty nodes,
using default parameters from Table 3 and a swarm size of 30.

Fig. 6a, shows the fitness landscape. The algorithm’s poor perfor-
mance at low 𝑇ℎ𝑐 values is due to nodes and deployed agents tolerating
more uncovered border within their sensing disks, hindering agent
adhesion by not signaling their presence on the hole border. Con-
versely, as values approach 1, most nodes and deployed agents signal
their presence on the hole border, even when adequately covered. This
results in a lack of guidance for the agents, overwhelmed by the number
of potential solutions. The plateau in the fitness landscape prompted
additional analysis to identify the optimal parameter set. We conducted
50 simulations for each 𝑇ℎ𝑐 value in [0.9, 0.95, 0.98] with all policies,
introducing randomness in the scenario for a more robust performance
assessment. The resulting coverage at convergence, shown in Fig. 6b
for all combinations, allowed us to discern the best performing sets
of values. However, in time-sensitive contexts, it is also important
to analyze the time required to reach convergence, i.e., the transient
duration. Fig. 6c illustrates the average coverage over time for the best
performing sets, indicating 𝑇ℎ𝑐 = 0.95 and 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 policy as the optimal
values.

We repeated the same operation for the Discrete strategy, including
the parameters associated with the long-term wiggle: 𝑇𝑤 ∈ [50, 300],
𝑛𝑖𝑤 ∈ [1, 10], and 𝑡𝑖𝑤 ∈ [0, 1000]. For clarity, Fig. 7 shows only the
region of the fitness landscape generated by the DE with values over
0.98. Based on this information, we restricted the parameters space
and analyzed the performance over time and at convergence of the best
performing sets of parameters. From this analysis emerged that, among
those sets, 𝑇ℎ𝑐 = 0.95 and 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 policy confirm as the best values,
while there is no statistically significant difference among values for
the wiggle parameters, leading us to choose 𝑇𝑤 = 300, 𝑛𝑖𝑤 = 7 and
𝑡𝑖𝑤 = 750 as the best set of parameters for the Discrete variant.

Using the same setting and the optimal values, we compared the
two strategies by performing 70 simulations on the same set of sce-
narios. For an early assessment, we included in the comparison the
algorithm in [6], to evaluate the improvements introduced in this work.
Although [6] employs the Continuous navigation strategy, it lacks the
commitment logic and the capability to handle holes adjacent to the
ROI frontier. From Fig. 8 and Table 4, we derived that both navigation

strategies achieve comparable high values of coverage at convergence
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Fig. 5. Snapshots of a multi-hole healing process for subsequent time steps [6].
Fig. 6. Parameters optimization for the Continuous strategy: DE landscape (a); plateau analysis using coverage at convergence (b); avg. coverage over time for the best performing
sets of parameters. The shaded bands represent the 95% confidence interval.
Fig. 7. DE landscape from Discrete parameters optimization. Only instances with
coverage at convergence greater than 0.98 are reported for clarity.

while deploying a similar number of agents. Using the same navigation
strategy of Continuous, the shape of the coverage over time of [6] is
similar to the Continuous curve, except for the slightly quicker transient
caused by the simultaneous placements of agents in close positions. The
values in Table 4 show how the commitment strategy, introduced in
this work, allows obtaining similar coverage using less agents. Overall,
the Discrete strategy presents a much quicker transient that the other
two curves, thus confirming the initial hypothesis and becoming the
default navigation strategy for the rest of the evaluation. Using this
logic brings also the advantage of reducing the impact that proportional
error has on the long distances usually encountered during navigation:
the perturbation is absorbed by the quantization levels.
9

Fig. 8. Average coverage over time for the two navigation strategies and for Simionato
et al. [6] in a single 5-failures hole scenario. The shaded bands represent the 95%
confidence interval.

5.3. External factors analysis

To study the adaptability of our algorithm to different scenarios,
we analyzed the impact that external factors have on performance. We
consider as external factors those not under our control, such as the
size, shape, position, and multiplicity of holes.

To adjust the hole size, we varied the parameter 𝑚, representing
the number of faulty adjacent nodes. We investigated various hole
dimensions, including minimum (𝑚 = 1), small-medium (𝑚 = 5),
medium (𝑚 = 10), large (𝑚 = 20), and extremely large (𝑚 = 40)
configurations. These latter values were included to test the limits of
our method. For each dimension, the swarm size was selected according
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Fig. 9. Avg. coverage over time for different hole sizes (a); shapes (b); locations (c) and multiplicities (d). The shaded bands represent the 95% confidence interval.
Fig. 10. Examples of scenarios with the shapes under analysis.
Table 5
Values of the geometric parameters regulating the primitives shape.
Primitive Parameter Value

Line Length 100 m

T-shape Longitudinal length 200 m
Cross length 200 m

Branched
Main length 80 m
Max. branch length 10 m
No. branches 3

Square Side length 120 m

Circle Radius length 100 m

to the criteria in Section 5.1. Fig. 9a shows the average coverage
over time for different values of 𝑚. As expected, the duration of the
transient increases with the size of the hole: the larger the area, the
longer it takes to traverse and cover it. Our method attains very high
coverage across most dimensions. Yet, for the case 𝑚 = 1, we note a
decrease of the coverage at convergence, mainly caused by the limited
pool of potential deployment positions. However, we recall that the
coverage metric is calculated based on the hole area. Hence, a small
uncovered area has a proportionally greater impact on smaller holes:
deploying an agent to cover it would waste resources. In this analysis,
we included massive holes (up to 1/3 of the network) to study the
behavior of the algorithm in extreme scenarios. Despite the large hole,
our method covers more than 69% of the area. The reduction in
coverage is primarily linked to the necessity for the swarm to divide in
response to the attraction from various directions. However, few agents
might become trapped by small uncovered areas within one branch,
failing to reconcile with the rest of the swarm and providing the support
required for larger uncovered areas. In summary, our method quickly
achieves high coverage, especially for small to medium holes (the most
frequent in real-world scenarios), maintaining good performance even
in the presence of massive failures.

We then investigated whether the shape of the hole could affect
the performance. We considered different geometric primitives: line,
t-shape, branched, square, and circle. To guarantee a fair analysis, the
10
Table 6
Average number of deployed agents and corresponding 95% confidence
interval for different hole locations in a single 7-failures hole scenario.

Avg. no. agents 95% CI

Inside 33.60 11.65
Next frontier 32.47 13.23
On frontier 43.51 12.20

parameters regulating the shapes (see Table 5) were chosen to obtain
similar areas. The resulting hole size is comparable to the failure of
15 adjacent nodes. The inclusion of the square and circle also aimed
at studying how the algorithm responded to holes containing isolated
but intact nodes. Fig. 10 exemplifies the scenarios generated by the
different shapes. We involved 90 agents in the healing process. The
average coverage over time reported in Fig. 9b indicates that the
algorithm reaches high coverage independently from the shape of the
hole. The longer transient produced by squared and circular holes can
be attributed to the swarm not deploying as it moves through the intact
parts of the hole, slowing down the healing process. For all shapes, the
method deploys a statistically indistinguishable number of agents.

In this work, we modified the generation of the potential field and
the logic for filtering potential positions, to allow restoring holes next
to the ROI frontier. To confirm that healing such holes yields similar
performance to those within the ROI, we performed 70 simulations
considering a single hole with 𝑚 = 7, the default parameters, and
releasing 45 agents. Fig. 9c shows coverage at convergence statistically
indistinguishable, but with a transient duration slightly longer in case
of holes next to the frontier. This occurs because statistically, holes
at the border are more likely to be farther from the release point,
requiring more time for the swarm to reach them. Once reached, the
healing process proceeds at a similar rate, as confirmed by the slope
of the curves. In both cases, the number of deployed agents is very
similar (see Table 6). Despite we assumed to work with bounded holes,
we tested our algorithm also in presence of open holes, obtained by
the failure of frontier nodes (Fig. 9c, pink line). As expected, the
method still provides high coverage but converges on lower values. As
the ROI frontier cannot be defined, agents cannot ascertain whether
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Fig. 11. Examples of the multi-hole scenarios under analysis.
Table 7
Average number of deployed agents and corresponding 95% confidence interval for
different numbers of release points in a single 15-failures hole scenario.

No. of RPs

1 2 4 8 16 40

Avg. no. agents 69.97 76.10 76.36 76.48 76.76 76.94
95% CI 39.85 11.64 9.58 9.12 7.92 7.93

they will deploy inside or outside the ROI. The metric computation
only considers the area and agents deployed within the ROI, meaning
that only a fraction of the deployed agents actually contributes to the
coverage. However, these results suggest that by inserting virtual or
physical landmarks acting as ROI delimiters, our algorithm could be
used, without modifications, also in case of open holes.

Finally, we investigated how performance varies in presence of
multiple holes. We considered three categories: (i) small isolated holes
(12 single failures); (ii) a mixture of small and medium holes (6 holes
with 𝑚 = [4, 3, 2, 1, 1, 1]); (iii) three larger holes (𝑚 = 4 each). Despite
the variability, the overall uncovered area is comparable and similar
to the failure of 12 adjacent nodes. We used the default parameters in
Table 3, with 5 RPs of 16 agents each. Fig. 11 exemplifies the multi-
hole scenarios considered, while Fig. 9d shows the average coverage
over time. As it is possible to see, the curves behave similarly, achieving
high level of coverage at convergence, while using comparable number
of agents. This indicates that the method naturally adapts to different
hole layouts.

5.4. Internal factors analysis

In the evaluation of our algorithm, we assessed the impact that
factors under our control have on performance. In particular, we car-
ried out simulations varying the number of RPs in {1, 2, 4, 8, 16, 40}. We
included the last case to simulate an idle swarm randomly scattered
in the ROI. For each value, we released 80 agents, equally distributed
among the RPs. We used the default parameters in scenarios with a
single hole of 15 failures. The results in Fig. 12a for a single RP confirm
the phenomenon already discussed in Section 5.3 for massive holes.
Multiple RPs enable the swarm to approach the hole from various
directions. This not only accelerates the healing process through paral-
lelization, as indicated by the increasingly shorter transients, but also
allows the swarm to heal different parts of the hole simultaneously,
preventing entrapment, as indicated by the higher coverage at conver-
gence. However, when the number of RPs exceeds 8, the difference in
the transient duration drastically decreases: how the swarm approaches
the hole does not differ significantly. This enables releasing the swarm
from fewer points (a more realistic setting), without compromising on
the responsiveness of the solution or the number of deployed agents
(see Table 7).

To study the versatility of our method, we assessed performance
changes with different agent sensing capabilities. To model diverse
sensing hardware, we varied the sensing range in 𝑟 ∈ {5, 10, 15, 30}𝑚,
11

𝑠,𝑎
Fig. 12. Avg. coverage over time for different numbers of release points (a) and values
of the ratio between sensing ranges (b). The shaded bands represent the 95% confidence
interval.

representing {1∕6, 1∕3, 1∕2, 1} of the node sensing range, respectively.
To accommodate the different coverage power, we adjusted the size of
the swarm accordingly, i.e., using 140, 45, 20, and 8 agents, to heal
a single 7-failures hole. We used default parameters and a single RP.
According to Fig. 12b, there is no statistically significant difference
among the values of the coverage at convergence. This indicates the
adaptability of our algorithm to diverse agent sensor systems. The
duration of transients, on the other hand, is influenced by the coverage
of individual agents. As discussed in Section 5.3 for the variation in the
hole size, if the sensing disk is smaller, it will take the swarm a longer
time to cover the hole.

5.5. Robustness analysis

Employing swarm intelligence techniques brings the advantage of
inherent robustness against destructive factors. To support this claim,
we investigated how the algorithm performance reacts to two types of
disruption: corrupted data and agents failure.

To account for varying precision levels among RaB sensors of dif-
ferent quality and the errors introduced by environmental factors, we
varied the noise affecting the RaB readings. More precisely, the per-
centage error on the distance measurements was set to {0, 1, 1.5, 5, 20}%,
while the bearing noise to {0, 2, 5, 15, 20}◦, respectively. In this analysis,
we included also the case of ideal (0%, 0◦) and strongly perturbed
(20%, 20◦) perception, associated with extreme conditions. For all noise
levels, 45 agents from a single RP were tasked with healing a medium
hole caused by 7 adjacent failures. The average coverage over time,
shown in Fig. 13a, demonstrates that the higher the noise, the longer
the transient. Strong errors compromise the computation and evalua-
tion of potential deployment positions, generating conflicting decisions
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Fig. 13. Avg. coverage over time for different levels of noise affecting RaB readings (a); perception frequencies (b); percentages 𝑃𝑓 of agent failure (c). The shaded bands represent
he 95% confidence interval.
Table 8
Average number of deployed agents and corresponding 95% confidence interval for
different noise levels affecting RaB readings in a single 7-failures hole scenario.

(𝝆, 𝜸) [%,◦ ]

(0,0) (1,2) (1.5,5) (5,15) (20,20)

Avg. no. agents 33.22 33.38 33.61 33.39 31.99
95% CI 11.71 11.89 11.65 11.16 10.88

Table 9
Average number of deployed agents and corresponding 95% confidence interval for
different percentages of agent failure (𝑃𝑓 ) in a single 7-failures hole scenario.

𝑷 𝒇 [%]

0 5 10 25 50

Avg. no. agents 33.61 33.87 34.16 34.59 31.06
95% CI 11.65 11.68 11.85 11.29 10.37

that delay the swarm. However, the swarm eventually achieves very
high coverage, employing on average the same number of agents (see
Table 8) regardless of the noise level.

Data corruption can also be related to a lower update frequency of
RaB readings. Varying this frequency allowed us to model packet loss,
with consequent retransmission, and environmental factors that could
hinder the perception. In the same setting of the previous experiment,
we fed the agents with one reading every {0.5, 1, 2, 4, 10} seconds. By
keeping the default cruise driving speed of 5 m/s, this corresponds to a
cognitive speed (i.e., the ratio of perception frequency to motion speed)
of {0.4, 0.2, 0.1, 0.05, 0.02}𝑚−1, respectively. Fig. 13b highlights how the
uration of the transient is affected by the perception frequency. A
ore frequent evaluation of the environment enables the agents to

uickly respond to changes, such as others taking the chosen position
r altering their path to follow an updated potential field. Conversely,
sparser update forces the swarm to backtrack its last actions, thus

lowing the healing. The agents’ interchangeability allows achieving
igh coverage values with a similar number of deployed agents, even
hen access to the readings is extremely limited.

The interchangeability of the swarm was further evaluated by ana-
yzing performance variations to unpredictable and predictable agent
ailure. The first type of fault is aimed at modeling the abrupt and
nexpected failure of part of the swarm, e.g., due to malfunction-
ng hardware or hacking. To simulate agent failure, we conducted
imulations where a fraction 𝑃𝑓 of agents fail independently. We ac-
omplished this by making each agent fail with probability 𝑝 = 1 −
1 − 𝑃𝑓 )1∕𝑇 at every step of the simulation. We recall that 𝑇 is the
otal number of time steps in the simulation. To objectively assess
he algorithm recovery capability from agent failure, we increased
12
Fig. 14. Analysis of the effect of incremental release and proactive placement. Avg.
coverage over time for different values of 𝑇ℎ𝑒 and with or without incremental release
(a) and avg. energy left over time (b). The shaded bands represent the 95% confidence
interval.

the swarm size by precisely the number of agents expected to fail.
This approach ensures that any fluctuations in performance are not
attributed to a shortage of agents. We used the same scenario as the
previous experiment and the default parameters in Table 3. In Fig. 13c
we show the coverage trends for 𝑃𝑓 = {0, 5, 10, 25, 50}%. Except for
𝑃𝑓 = 50%, there is no statistically significant difference among the
different trends of the average coverage over time or the number of
deployed agents (reported in Table 9). This indicates that our algorithm
is highly robust to agent failure. In the last case, instead, the reduction
in the coverage toward the simulation end does not indicate poor
robustness. Instead, as agents replace failed peers, they have access to
a more restricted set of solutions, resulting in sub-optimal placement
compared to the initial hole. This implies that we might require more
agents than those deployed when we anticipate massive substitutions.

An example of predictable fault is energy depletion. In Section 4.3,
we outlined the agent battery model. We proposed a preventive mea-
sure where agents below a fixed energy threshold act as faulty and
we suggested releasing the swarm incrementally. To analyze the ef-
fectiveness of these countermeasures, we set the threshold 𝑇ℎ𝑒 =
{0, 0.1, 0.3, 0.5}. For each value, we compared the performance with
and without incremental release. In particular, we considered releasing
the swarm in 4 stages, with 40%, 30%, 10%, and 20% being released
every 250 time steps. The scenario is the same as the other robustness
experiments but with 60 agents involved, to account for their partial
failure. Fig. 14a reports the average coverage over time for all com-
binations. Irrespective of the threshold, solutions without incremental
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release suffer a decrease in the coverage, especially toward the end
of the simulations. This occurs because moving requires more energy
than sensing the environment after deployment. As a result, the agents
patrolling a healed hole waiting to replace their peers will run out
of energy sooner than those deployed. When these latter will require
a replacement, the majority of agents may no longer be available.
This phenomenon is corroborated by the curves of the average energy
left over time, reported in Fig. 14b. Without incremental release, the
swarm energy decreases monotonically, while with it, the decline is
slowed by the introduction of fresh agents (reflected in the peaks).
Fig. 14a suggests that choosing excessively high or low values for
𝑇ℎ𝑒 could have a detrimental effect. When agents signal their failure
rematurely (𝑇ℎ𝑒 = 0.5), a significant portion of the area is redundantly

covered by both the agents and their replacements. Given the limited
swarm size, this may leave more distant areas uncovered. In contrast,
if failure is signaled near actual energy depletion, the availability of
agents for replacement will be limited (especially for large holes). From
this experiment emerged that an incremental release of the swarm
is beneficial, not only to prevent agent failure but also for a more
efficient resource management when the size of the hole is unknown.
Furthermore, the 𝑇ℎ𝑒 value represents a trade-off between achieving a
higher coverage peak (lower values) and maintaining a more consistent
coverage (higher values). This is particularly relevant when dealing
with agents limited in both energy resources and number, allowing the
selection of a behavior that better aligns with the scenario.

5.6. State-of-the-art comparison

We compared the performance of our algorithm against several
state-of-the-art solutions: (i) Khalifa et al. [16], (ii) Yan et al. [17],
iii) Hallafi et al. [10], (iv) Khelil et al. [21], and (v) Simionato
t al. [6].

To ensure fairness in the comparison in terms of timing of move-
ent, we endowed the methods with the same dynamics and control

peeds of our approach, without affecting their logic. For all experi-
ents of 70 simulations each, we considered squared regions of interest

as requested by [10,17]). The methods were evaluated on the same
et of randomly generated scenarios, using the parameters in Table 3
or our algorithm and those reported in the corresponding studies for
he other methods. To allow meaningful confrontation, we provided
he same healing capacity (i.e., number of agents) for all methods. To
ccommodate the requirements of [16,21], the agent sensing range was
et equal to that of the nodes. The comparison methods necessitate GPS
ignal. Since our algorithm is affected by noise, we perturbed the GPS
ignal using a zero mean Gaussian model with standard deviation of
.9 m [51]. The algorithm of Hallafi et al. [10] explicitly outlines the
ub-regions within the ROI that mobile agents need to reach. However,
he method for identifying the location of the hole within that specific
rea, and where the agents deploy, is not clearly defined. To address
his issue, we endowed the agents with a basic navigation strategy,
.e., a random walk constrained within the associated region, and a
reedy deployment policy. We recall that, in all methods, coverage is
alculated as the ratio of the recovered area to the initial hole area,
n contrast to [16,17], where the reference area is the entire ROI. This
pproach ensures that the performance is not skewed by the massive
ontribution from the intact network.

To measure the scalability, we analyzed how performance compares
hen varying the size of a single hole. As in Section 5.3, we set
= {1, 5, 10, 20, 40} with a corresponding swarm size of {2, 6, 11, 21, 41}.

Fig. 15 shows the resulting coverage over time. The trends for various
𝑚 values indicate a decline in Khalifa et al.’s algorithm performance
with increasing hole size. This is because this method involves in the
healing process only nodes at the border of the hole, therefore drawing
on an insufficient amount of resources for tackling larger holes. The
peak for 𝑚 = 1 results from the excessive movements of healing nodes,
13

that leave new parts uncovered. Conversely, the method in Yan et al.
seems to benefit from larger holes. Since its fitness function is based
on the coverage of specific points (see Section 2), the larger the hole,
the more points it will include, leading to more informative values
for the objective function and thus to a more effective placement of
mobile agents. For a tiny hole, the probability that it contains these
points tends to zero, lacking on cues on where to place the agents. The
initial step displayed in Fig. 15 indicates the presence of mobile agents
resting inside the hole. Once activated, they instantly provide coverage.
Hallafi et al.’s algorithm performs better, especially for larger holes,
showcasing the power of swarm-inspired behaviors. However, the lack
of additional guidance inside the sub-regions translates into a much
longer transient. With only random movements to guide the agents,
the time required to find uncovered areas lengthens in the presence of
smaller holes. Khelil et al.’s method achieves consistent and high cover-
age across various hole sizes. However, as the hole size increases, there
is a proportional rise in the computational power required, following a
quadratic trend (see Section 5.6.1). The short transient period is a result
of the algorithm running only once to determine the final positions
that mobile agents can approach directly. Nevertheless, this makes it
less responsive to changes. As briefly shown in Section 5.2, Simionato
et al.’s approach exhibits similar behavior to our algorithm but with
longer transients and employing more agents. In general, our algorithm
outperforms all the methods, except for massive holes. As discussed in
Section 5.3, our algorithm seems to be particularly scalable. However,
for extremely large holes, the swarm might get trapped in some parts
of the hole, failing to complete the healing. In this case, the freedom of
movement of [10,21] allows overcoming this issue and reaching higher
coverage.

As a measure of flexibility, we then considered the same multi-hole
scenarios of Section 5.3 and 15 agents. The results in Fig. 16 show both
Khalifa et al. and Yan et al.’s methods performing better with fewer
holes. In the former, the nodes facing multiple holes cannot move, and
hence cannot participate in the healing process. For the latter, instead,
there is a slightly higher probability that fewer but bigger nodes will
contain more points useful for evaluating deployment configurations.
Hallafi et al.’s and our algorithms are not significantly influenced by
hole multiplicity. The algorithm in Khelil et al. achieves high coverage
for all multiplicities, performing slightly better in case of less, bigger
holes. For small holes, the vertices of the Voronoi diagram might not be
well-centered or not placed within the holes, thus penalizing the overall
coverage. As before, Simionato et al.’s method attains high coverage
at convergence, but at the cost of longer transients and more agents
required. In all cases, our algorithm outperforms the others.

We compared the robustness to agent failure by forcing the failure of
a fraction 𝑃𝑓 = {0, 5, 10, 25, 50}% of agents. In this case, we adapted the
formula in Section 5.5 considering the appropriate duration of activity
of the swarm and not just the simulation time. We selected a single hole
caused by the failure of 7 adjacent nodes and employed {8, 9, 9, 10, 12}
agents, respectively. The robustness of Yan et al.’s algorithm, inferred
by the trends in Fig. 17, is only apparent: the low coverage achieved
implies that the failure affected mostly mobile agents not actively
contributing to the healing. Khalifa et al.’s method, lacking a coun-
termeasure, confirms to be strongly affected by agent failure. Even in
Khelil et al.’s algorithm, the absence of a countermeasure for agent
failure results in a reduction of coverage. However, the decrease is
slower compared to Khalifa et al.’s method. This is because Khelil
et al.’s deployment approach allows for strong agent overlap, providing
redundancy in coverage when failures occur. Conversely, swarm-based
solutions exploit the interchangeability of their agents, showing high
robustness to agent failure.

Besides confronting the average coverage over time, we endowed
each method with the battery model in Section 4.3 and the battery
parameters of Table 2. For all methods, we employed the shortest
encoding possible for messages. This allowed comparing the average
energy spent by the different solutions. Table 10 collects the average

decay rate of agents’ energy. On average, Khalifa et al. and Yan et al.’s
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Fig. 15. Comparison among the methods on the avg. coverage over time for different hole sizes 𝑚. The shaded bands represent the 95% confidence interval.
Fig. 16. Comparison among the methods on the avg. coverage over time for different multi-hole scenarios. The shaded bands represent the 95% confidence interval.
Fig. 17. Comparison among the methods on the avg. coverage over time for different agent failure percentages 𝑃𝑓 . The shaded bands represent the 95% confidence interval.
Table 10
Average decay rate of battery level in [J/s] and corresponding 95%
confidence interval for the methods under comparison.
Method Avg. decay rate 95% CI

Ours 0.82 0.02
Khalifa et al. [16] 8.16 0.23
Yan et al. [17] 9.67 0.27
Hallafi et al. [10] 1.53 0.04
Khelil et al. [21] 0.24 0.09
Simionato et al. [6] 0.81 0.03

algorithms require similar, and higher, energy per second to accommo-
date the complex messaging protocol and the exchange of information
necessary for the optimization, as well as the movement of the nodes.
14
In Hallafi et al. and Khelil et al. the computations are delegated to
the base station or to the hole managers, respectively. Hence, agents
spend their energy solely on movement, with Hallafi et al.’s method
requiring more energy on average due to its agents extended mobility.
Our algorithm exhibits a decay rate comparable to that of Simionato
et al. indicating that the enhancements introduced in this work do not
cause higher energy consumption. Overall, our algorithm encompasses
informed movements and a low amount of data exchanged, resulting
in an efficient energy management.

5.6.1. Complexity analysis
Consider a network of 𝑁 nodes and 𝑘 mobile agents. In our algo-

rithm, nodes and agents operate on their RaB readings, that collect

information about the 𝑚 nodes and agents within their communication
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Table 11
Complexity analysis for the methods under comparison. Hallafi et al.’s values are
of the complexity of the computations performed by the base station and cell
agents, respectively. 𝑁 is the number of network nodes; 𝑛 that of the one-hop
neighbors; 𝑏 that of the nodes bordering the hole; 𝑚 that of the nodes and agents
within the communication radius; 𝑘 the number of the agents; 𝑗 that of the nodes
in the same cell and 𝑙 the pixels in the sensing disk.
Method Hole detection Hole healing

Ours (𝑚) (𝑚3)
Khalifa et al. [16] (𝑏𝑛2) (1)
Yan et al. [17] (𝑁𝑘2) (1)
Hallafi et al. [10] (𝑁), (𝑁𝑗𝑙) (𝑁𝑘), (1)
Khelil et al. [21] (𝑛2) ((𝑏 + 𝑘)2)
Simionato et al. [6] (𝑚) (𝑚3)

range (i.e., 𝑚 ≪ 𝑁 and 𝑚 ≤ 𝑘). To detect a hole, they filter out active
gents’ data from the readings and, for each of the remaining nodes
nd bound agents, they perform mathematical computations to obtain
he ACR and the level. In the worst case scenario, these operations are
(𝑚). To heal the holes, the agents filter the readings for the data of
odes or bound agents of level zero ((𝑚)). To find pairs of parents,

(𝑚
2

)

perations are needed. For each pair, mathematical computations are
erformed to find one or two solutions. Each solution is then checked
gainst every node and bound agent perceived. These operations have
n overall complexity of (𝑚3). Ranking the solutions is (𝑚 log𝑚),
hile moving toward the best one is (1). In case no solution is found,
oving in the direction of the closest location with minimum level is
(𝑚). The commitment strategy requires (𝑚) computations. Overall,

he healing process has (𝑚3) complexity.
Table 11 reports the complexity analysis for our method and those

nder comparison. Each approach operates on a different set of nodes
nd depends on particular parameter choices. Therefore, we express
omplexity in relation to these factors and establish relations among
hem to facilitate comparison. We denote by 𝑏 the number of nodes
hat border a hole and by 𝑛 the number of one-hop neighbors of a node.
represents the number of nodes in the same cell, when the network

s cellularized. This number depends on the chosen grid resolution. 𝑙
s the number of pixels contained in the sensing disk area and grows
ith higher sensing capabilities. These quantities are linked according

o 𝑛 ≤ 𝑏 ≤ 𝑚 < 𝑗 ≪ 𝑁 < 𝑙 and 𝑘 < 𝑁 . From Table 11, we draw that
ur method has the lowest complexity in detecting holes. For the hole
ealing stage, it exhibits a higher complexity than the methods where
he agents are just instructed to drive toward specific points ((1)). The
igher computational complexity in this stage arises from the online
lanning performed by the agents, which involves continuously re-
valuating environmental conditions but offers adaptability to changes
nd failures. Nevertheless, our method’s complexity is lower than some
ther approaches. We stress that our algorithm has the same complexity
f Simionato et al.’s, meaning that our improvements did not impose
dditional computational requirements.

. Conclusion

In this work, we proposed a swarm intelligence-based algorithm
or hole detection and healing in WSNs. The swarm navigates the
etwork toward the closest hole and deploys in it, starting from the
orders, until the restoration is complete. This approach focuses on
inimizing the number of agents deployed and enables the healing

f holes regardless of their position in the region. After conducting
thorough evaluation, we verified that the integration introduced in

his work, combining the deployment logic with a navigation strategy
ased on highly quantized bearing information, enhances performance.
his merge accelerates the healing process and introduces robustness
o sensor readings affected by noise, all while deploying fewer agents.
he algorithm exhibited good scalability and flexibility, achieving high
15

overage across various hole sizes, diverse shapes, and in the presence
f multiple holes. It also showed its applicability to different agent
ensing capabilities, and extreme robustness to data corruption, both
n terms of noise affecting the readings and of lower frequency in their
pdates. We demonstrated how the algorithm not only can sustain
assive agent failures (expected or unexpected), but it exploits the

nergy information, provided by the newly added battery model, to
roactively prevent further loss of coverage, thus extending the WSN
ifetime. These results highlight the applicability of our method even in
xtreme scenarios. Our algorithm demonstrated superior performance
ompared to several state-of-the-art methods in nearly all cases. How-
ver, in the event of significant node failures, we noticed a decline in
overage. This occurs as the swarm tends to branch out, resulting in
ome agents focusing on covering partially healed holes rather than
upporting the rest of the swarm in restoring coverage across larger
reas. To overcome this limitation, future research should focus on
eveloping strategies to redirect the swarm if no deployment occurs
ithin a specific time frame. Moreover, working toward the inclusion
f obstacles in the environment could further reduce the gap with
eal-world applications.
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