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Abstract. Global water resources are under increasing pressure due to demands
from population growth and climate change. As a result, the regime of the rivers
is changing and their ecosystems are threatened. Therefore, for effective water
management and mitigation of hazards, it is crucial to frequently and accurately
map the surface area of river water. Synthetic Aperture Radar (SAR) backscatter
images at high temporal resolution are nowadays available. However, mapping
the surface water of narrow water bodies, such as rivers, remains challenging due
to the SAR spatial resolution (few tens of meters). Conversely, Multi-Spectral
Instrument (MSI) images have a higher spatial resolution (few meters) but are
affected by cloud coverage. In this paper, we present a new method for automatic
detection and mapping of the surface water of rivers. The method is based on the
convolutional neural network known as U-Net. To develop the proposed approach,
two datasets are needed: (i) a set of Sentinel-2 MSI images, used to achieve target
values; (ii) a set of Sentinel-1A SAR backscatter images, used as input values. The
proposed method has been experimented to map the surface water of the Mijares
river (Spain) from April 2019 to September 2022. Experimental results show that
the proposed approach computes the total surface area covered by the river water
with a mean absolute error equal to 0.072, which is very promising for the target
application. To encourage scientific collaborations, the source code used for this
work has been made publicly available.

Keywords: Surface water of rivers - Synthetic aperture radar - Multispectral
images - Convolutional neural network - U-Net

1 Introduction

In the current era of global warming and climate change, a detailed and constant mon-
itoring of the surface water of rivers is key not only for the correct estimation and
management of river regimes but also for the mitigation of flooding risks. In the litera-
ture, free and open access Synthetic Aperture Radar (SAR) backscatter images, acquired
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at frequent revisit times, have been successfully applied to monitor changes of spatially
large and broad surface water bodies, such as wetland and flooded areas [1-5]. However,
mapping the surface extent of river water and its changes in time remains challenging [6]
as some rivers are relatively narrow compared to the spatial resolution of SAR images
(few tens of meters). In contrast, Multi-Spectral Instrument (MSI) data can offer spatial
resolution on the order of a few meters, allowing for a more detailed mapping of the
surface area of river water globally. However, MSI data are often affected by atmo-
spheric noise and cloud coverage, which prevents regular observations. On the other
hand, SAR satellites are capable of penetrating the atmosphere and measuring the radar
backscattered from the surface of the Earth during day, night and all-weather conditions
[7].

Modern deep learning techniques provide nowadays impressive results for detailed
mapping and identification of features in images [8]. Recently, deep learning has shown
great potential when applied to SAR data for the classification of sea and ice water,
as well as for the surface water of rivers [9, 10]. In particular, the U-Net convolutional
network is capable of resolving the extent of surface water bodies [11, 12], by combining
a semantic segmentation upon partitioning of the input image into several regions cor-
responding to different classes (surface water, vegetation, buildings, and so on). More
recently, a U-Net was experimented to detect the surface water of a narrow river [13]. For
image segmentation, depending on the type of target to recognize, the U-Net architecture
provides a spatial attention mechanism that allows highlighting only the relevant parts
of the image during the initial training phase, thus limiting the computational resources,
resulting in a better generalization capability [13].

In this research work, an experimental study is presented and discussed, in which a U-
Net architecture has been trained to return the surface water of the Mijares river in Eastern
Spain. The target dataset is made via MSI images, to generate the target surface water
of the river, whereas the input dataset is made via SAR backscatter images. Additional
images of both datasets have been used for testing. Overall, the experiment shows that
a U-Net architecture achieves adequate accuracy for the target application.

2 Study Area

Mijares is a river that flows for about 156 km in a SE direction, south of the city of
Castellon de la Plana, in Eastern Spain (Fig. 1). The river is fed by two major water
springs, Mas Royo and Babor in the Sierra de Gudar. Despite the permanent nature of
the river, its annual regime is irregular with lows in water flow in summers and floods
in autumn [14]. For this study, we focused on the last 20 km of the river (Fig. 1) where
Mijares flows across its alluvial plain [15]. This area is characterized by meandering
sequences of fine to coarse sediments, which grade to deltaic sequences in the Almazora
and Buriana plains. The alluvial deposits host the three main groundwater reservoirs of
Arenoso (93 Mm?), Sichar (49 Mm?) and Maria Cristina (18.4 hm?) [15, 16].

Since the 1960s, this part of the river and its associated reservoirs have been exploited
for the agricultural, industrial, and urban activities of the region, as well as for the main
water supply of the Sichar dam (0.2 Mm?) [14]. However, as a result of the changing
climate [15, 17], the region is recently experiencing warmer seasons, with the total
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rainfall between 1980 and 2012 having decreased by 3—7% compared to the previous
period, 1940-2012 [16]. Currently, the water resources in the areas are 335.7 hm?/year
and must face a water demand of 268.23 hm?/year [18]. Furthermore, during the latest
years a series of historical records in flooding events have been reached, with such events
being forecasted to occur more frequently in the future [19].
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Fig. 1. Study area (red rectangle) and river drainage network [13]. (Color figure online)

3 Material and Methods

3.1 Dataset

Two independent datasets are used, consisting of MSI and SAR backscatter images
acquired by the ESA satellites Sentinel-2 and Sentinel-1 A, respectively. The MSIimages,
acquired at 10 m spatial resolution, are used to derive maps of the surface water of the
Mijjares river during 2019-2022. Such maps are used as target output values for the
convolutional neural network. The SAR backscattered images are used as corresponding
input values.

The MSI dataset of the Mijares river consists of 36 Level 1C Sentinel-2 Multispectral
images spanning the time-period between October 2019 and August 2022. In particular,
the Level 1C images contain the spectral reflectance of 13 bands (B1-B12) acquired
in the visible, near infrared (NIR) and short-wave infrared (SWIR) bands. The spatial
resolution of the Sentinel-2 images varies between 10 m to 60 m, depending on the
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spectral band. In this study, bands B3 (green) and B8 (NIR) are used at a spatial resolution
of 10 m. The 36 images selected have the lowest cloud coverage.

The SAR dataset consists of 36 Single Look Complex (SLC) images of the Mijares
river, covering the time period between October 2019 and August 2022, and acquired
from the descending orbit 008, in Interferometric Wide (IW) swath beam mode.

The Sentinel-1A SAR satellite has a revisit time of 12 days and it operates in C-band,
corresponding to a signal wavelength (A) of 5.6 cm and a ground spatial resolution of
5m x 20 m [20]. The SAR signal contains two fundamental components of the polarized
radar backscattered from the Earth surface: the amplitude and the phase. While the latter
provides information about the targets positions on the ground, the amplitude can be used
to investigate other targets properties, such as geometry, roughness, and wetness [21].
This makes the amplitude suitable for the detection of water bodies and flooded areas
[11]. As a consequence, in this study, SAR amplitude images are used. In addition, in
order to minimize the effect of thermal noise and maximize the signal backscatter from
narrow surfaces of river water, the VV (Vertical Emitted-Vertical Received) polariza-
tion is selected, which is commonly characterized by stronger backscatter values than
the VH (Vertical Emitted-Horizontal Received) polarization [22]. A summary of the
characteristics of the two datasets is reported in Table 1.

3.2 Methods

In the following chapter, we describe the proposed method for detecting the surface
water of ricers, using the BPMN (Business Process Model and Notation) language, a
standard graphical representation for workflows [23]. Figure 1 shows the workflows for
using the water surface detector in a periodical river assessment (a) and for developing
the detector itself (b).

Specifically, in Fig. 1a the detection of the water surface of the river starts on the
left, every detection period, by collecting periodical data on the river. After a number of
historical data, during the assessment period a report is generated. The report is checked
and annotated by an expert, and sent to a Decision Support System (DSS).

The core technology of the workflow in Fig. 2a is the water surface detector, which
is developed for a given river according to the workflow of Fig. 2b. Specifically, the
development workflow starts when there is a new river to monitor (on top left in figure).
As a consequence, two parallel activities are carried out, i.e., get MSI image and get SAR
image, respectively. Each type of image is followed by a different sequence of tasks. The
next two subsections illustrate the two kinds of data ingestion and preparation.

MSI Image Ingestion and Preparation
A number of MSI images are first collected from the Sentinel-2 web service. Subse-
quently, to enhance the water feature, the Normalized Difference Water Index (NDWI)
is calculated, using the spectral reflectance of B3 and B8 bands, as follows [24]:
(B3 — BY)
NDWI = ———— (1
(B3 + B8)
In the formula, the combination of visible green (B3) and near-infrared (B8) bands
highlights the water content of different water bodies [24]. In the resulting NDWI maps,
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Table 1. Sentinel datasets.
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Fig. 2. The BPMN workflows for detecting the surface water of rivers: (a) the workflow for
developing the detector; (b) the workflow for using the detector in a periodical river assessment.

a pixel value can vary between —1 and 41, with lower values corresponding to non-
aqueous surfaces (soil or vegetation) and higher values corresponding to water. Finally,
to create the water surface mask of the river, the pixels with NDWI values larger than
a threshold are selected. In the case of the Mijares river, 36 MSI images are selected,
and the threshold is set to —0.1. This threshold is found by comparing each of the 36
NDWI maps to its corresponding optical image, where the surface water of the Mijares
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river can be seen directly. As a result, 36 masks with two classes of surfaces, “water”
and “non-water” are provided, 28 for training and 8 for testing.

In addition, to reduce the computational cost of the U-Net training, a single Water
Surface Mask (WSM) of the river is created for the entire study period, by selecting
pixels classified as “water” in at least one NDWI image. The WSM is helpful to keep
only the water pixels related to the river, instead of considering the whole study area.

SAR Backscatter Image Ingestion and Preparation

The SAR SLCs backscatter images are first collected from the Sentinel-1A web service.
Subsequently, a series of pre-processing steps are carried out via the Sentinel Applica-
tion Platform [25]. Specifically, a number of corresponding SAR amplitude images are
acquired in the same time window selected for the MSI images. Then, for each SAR
amplitude image, a thermal noise filter on the VV amplitude images is carried out,
normalizing the backscatter signal. Subsequently, the calibrated backscattered coeffi-
cient (00) is calculated: it represents the normalized radar backscatter from a distributed
target [26, 27]. Discontinuities between sub-swaths are then removed by merging the
bursts through the TOPSAR-Deburst preprocessing. A multi-looking filter followed by
a speckle noise filter are then applied: specifically, three different types of filters have
been tested: Lee, IDAN and Lee Sigma [28]. In the case in point, the Lee Sigma filter
has provided the best result, while IDAN and Lee have showed higher residual noise, as
represented in Fig. 3. Subsequently, the filtered images are projected from Slant Range
geometry to Ground Range (SRGR), and then geocoded using a 1 arc-sec (30 m) Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM) [29]. Finally, to
achieve a pixel-by-pixel image matching, the SAR images are resampled to 10 m pixel
size as the MSI images.

SAR Amplitude Semantic Segmentation via U-Net

After the MSI and SAR images ingestion and preparation, the machine learning sets are
generated, made of 36 prepared SAR images, with 36 corresponding water segmentation
images. As a consequence, the image segmentation task consists in separating a given
SAR image pixels into “water” and “non-water” classes. The task is developed via a
fully Convolutional Neural Network, known as U-Net [8].

In the literature, the U-Net architecture is well-known for biomedical image seg-
mentation, but widespread applications in various research fields have been successfully
developed: forest mapping [30], earthquakes damage mapping [31], coastal wetland
classification [32], and so on. A U-Net exhibits a low computational demand, an accu-
rate segmentation compared to other approaches, and a superior capability of working
with a small training dataset [8].

Animportant step related to the U-Net development is the setting of hyperparameters.
A detailed description of the final U-Net hyperparameters settings achieved for the
Mijares river is presented in Table 2. It is worth noting that the hyperparameters setting
is an iterative task, carried out after an improvement/optimization process, strongly
depending on the complexity of the machine learning set.

In the subsequent training of the segmentation task, the U-Net optimizes its internal
parameters to improve the mapping between the input samples (i.e., the 28 prepared SAR
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Fig. 3. SAR backscatter image of the Mijares river (background image) and detail of the SAR
backscatter image after speckle filtering: (a) SAR backscatter image after Lee filter; (b) SAR
backscatter image after IDAN filter; (¢) SAR backscatter image after Lee Sigma [13].

backscatter images) and the corresponding target output samples (i.e., the 28 water/non-
water surface maps generated from MSI images).

Specifically, the U-Net calculates the probability that a pixel belongs to a class.
For this purpose, the U-Net adopts an encoding path that detects the features from the
input dataset, and a decoding path that generates the output segmentation map. Both the
encoding and decoding paths consist of a series of layers that are repeatedly applied on
randomly sampled kernels of both the input dataset and the training dataset. In particular,
the encoding path consists of a convolutional layer and a max pooling layer, which
reduces the spatial dimension of the input maps multiple times, allowing the network
to capture increasingly complex features. For the convolution operation, 128 x 128
pixels kernels are used. The decoding path initially applies an up-convolutional layer,
which increases the spatial dimensions of the feature maps. Subsequently, it concatenates
the output with the corresponding feature map obtained from the encoding path. This
allows the network to compare the low-level and high-level features. This process of
up-convolution and concatenation is repeated multiple times, allowing the network to
refine the segmentation map.

The final output is a segmented image that assigns a class to each pixel in the input
image. In the case in point, the segmented image is a map of the surface water of the
Mijares river, where pixels pertaining to surface water of the river have a value of 1,
while the other pixels are 0.

For the segmentation task of the Mijares river, the training phase is made by a subset
of 28 of the 36 total images, while the remaining 8 images are used for testing. The
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Table 2. U-Net hyperparameters settings [ 13].

Parameter Description Value(s)
dim no. initial channels 8

dim mults no. channels multipliers [1,2, 4]
blocks per stage no. convolutional operations per stage [2,2,2]
self-attentions per stage no. self-attention blocks per stage [0, 0, 1]
channels input channels 1

resnet groups no. normalization groups 2
consolidate upsample fmaps feature maps consolidation true
weight standardize weight standardization false
attention heads no. attention heads 2
attention dim head size of attention head 16
training window size window size of training samples 128
training batch size no. of samples per iteration 32
learning rate amount of weight change in response to the error 0.001

performance of the predictions has been sampled between 5K and 50K iterations, on
10 test images acquired at different epochs, using an iteration stepping of 5K runs.
Figure 4 illustrates some significant examples of mapping of the surface water of the
Mijares river. In particular, Fig. 4a and Fig. 4b show the SAR image on Jan 20, 2020
and the corresponding MSI optical image (i.e., with lowest cloud coverage), on Feb 10,
2020, respectively. It is worth remembering that optical images are often affected by
atmospheric noise and cloud coverage, which prevents regular observations. Figure 4c¢
and Fig. 4d show the MSI-derived target output of the surface water (black), on Feb 10,
2020, and the Water Surface Mask generated for the entire study period via the training
set, respectively. Finally, Fig. 3e and Fig. 3f illustrate the outputs of the U-Net on Jan 20,
2020, after SK and 20K iterations, respectively: as the number of the iterations increases,
the map of the surface water includes more details.

After training the segmentation task, in Fig. 2b the workflow continues with the
performance evaluation: if the error can be improved, the hyperparameters setting is
repeated, and so on. Otherwise, the U-Nete is evaluated on the test set: if the test error is
adequate, the water surface detector is finally deployed and ready for use in the periodical
river assessment. Otherwise, the workflow restarts from the beginning, by collecting a
new data set.

4 Performance Evaluation and Discussion

To carry out the experimentation of the proposed research, an open-source implemen-
tation of the U-Net has been exploited [33] to develop the workflow of Fig. 2b. To
encourage scientific collaborations, the source code used for this work has been made
publicly available [34].

In Fig. 5 the graph of the cross-entropy loss vs. number of iterations is represented,
for the first 30K iterations. The figure highlights that the training performance is effective
after 5K iterations.
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In order to measure the effectiveness of the approach, the total surface area covered
by river water has been calculated, hereafter referred to as Normalized River Water
Extent (NRWE), for both SAR and MSI timeseries. Figure 6 shows an excerpt of the
two timeseries, with a clear similar progress. Overall, the Mean Absolute Error (MAE)
between the SAR and MSI based NRWE is equal to 0.072, which is very effective for
the target application.
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Fig. 4. Example of mapping of the surface water of the Mijares river: (a) Sentinel-1 SAR backscat-
ter input image acquired on Jan 20, 2020; (b) Sentinel-2 MSI optical image acquired on Feb 10,
2020; (c) target output of the surface water (black) derived from NDWI map, calculated via the
MSI image acquired on Feb 10, 2020; (d) Water Surface Mask generated via the training set; (e)
output of the U-Net on Jan 20,2020 after 5K iterations; (f) output of the U-Net on Jan 20, 2020
after 20K iterations.
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Fig. 5. Cross-entropy loss vs number of iterations [13].
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5 Conclusions

In this research work, the U-Net Convolutional Neural Network has been proposed to
detect the surface water of rivers via satellite data, using MSI and SAR images as target
and input data, respectively.

The paper illustrates the proposed method using the Mijares river in Spain as a
pilot study area. For the sake of reproducibility, a workflow has been formalized and
illustrated in BPMN language, to detail the Sentinel datasets and their preprocessing,
the development of the U-Net for the segmentation task, the hyperparameters settings,
as well as the periodical river monitoring for feeding a decision support system.
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The experimental studies on the Mijares river are promising, with a mean absolute
error of the total water surface area equal to 0.072, although the presented approach
represents an initial step towards a more comprehensive experimentation.

Further investigations can involve the extension of the time period of analysis, with
the aim of monitoring the temporal fluctuations and climate change impacts on river
ecosystems. To encourage scientific collaborations, the source code used for this work
has been made publicly available [34].
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