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Abstract—Coverage holes are a key problem in wireless sensor
networks. Methods that use relative localization techniques to
restore the service, or heal the holes, rely on accurate range
and bearing measurements. However, high-precision range and
bearing sensors are too heavy, expensive, and range-limited for
the agents tasked with healing. To overcome these limitations,
we propose a novel impressionist algorithm, inspired by a recent
swarm-based approach, that works with extremely coarse range
and bearing information and at low perception frequency, to
detect and heal the holes. In the proposed approach, a swarm
of agents uses quantized information to navigate a potential
field, generated by network nodes, to reach the nearest hole.
The swarm adopts a greedy deployment behavior, preventing
concurrent placement in close-by locations. After deployment,
agents use their coarse perception to update the potential field,
leading the rest of the swarm to unhealed area. Simulation
results demonstrate that our algorithm achieves similar or better
coverage compared to the state-of-the-art and to a benchmark
based on random walk. This is achieved using just three bearing
quantization levels and four times lower perception frequency.
Overall, our impressionist approach shows faster healing, albeit
at the expense of employing slightly more agents.

Index Terms—swarm robotics, limited perception, hole healing

I. INTRODUCTION

In Wireless Sensor Networks (WSNs), restoring the cov-
erage of a Region of Interest (ROI) in case of failure of
one or multiple nodes is a key problem for a wide range
of applications [1]–[4]. This is especially critical in case of
time-sensitive, emergency situations, in which holes in the
coverage must be detected and covered (or healed) quickly
and with minimal deployment cost [5]. Most of the existing
solutions to the hole detection and healing problem rely on
the relocation of a subset of the network nodes to the area left
uncovered [6]–[8]. However, this requires assuming that the
nodes are mobile and densely deployed, which is unrealistic
and impractical in case nodes include expensive or complex
hardware [9]–[11].

An recent alternative solution in [12] shows that a swarm
of resource-constrained agents can lead to a quick recovery of
the coverage, without a priori knowledge of the environment.
The agents can perceive the environment by the only means
of a Range and Bearing (RaB) sensor, that provides relative
distance and angle to targets within a certain range. However,

RaB devices providing precise measurements are too heavy
and expensive to be mounted on small agents (e.g., drones)
[13]. The technology behind portable RaB sensors is still in
its early stages: Current prototypes can not provide reliable
measurements in challenging scenarios, especially at long
ranges [14], [15]. Despite the algorithm in [12] demonstrated
good robustness to noisy perception, it ultimately needs reli-
able measurements. This limitation is shared by all available
solutions that use RaB sensors, or some form of relative
localization, to orient in the environment relying on the relative
position of surrounding nodes or agents.

In this work, we address such perception problem by
proposing a novel swarm intelligence algorithm, inspired by
the work in [12], to detect and heal holes in the coverage using
extremely coarse RaB information. Our approach belongs to
the class of impressionist algorithms, which work with quan-
tized information obtained at low perception frequency [16].
By adopting the impressionist paradigm, our aim is to lessen
the perception and computation burdens on the agents, while
providing extra robustness. Instead of having access to precise
RaB measurements as in [12] (Fig. 1a), our agents only have
a rough indication about the distance interval and the circular
sector where other nodes and agents are located (Fig. 1b). The
swarm uses the quantized information to navigate a potential
field generated by the nodes, following the logic introduced
in [12], until it reaches the closest hole. The agents rely on a
greedy deployment behavior, in which they place themselves
in the first uncovered location found. A commitment strategy
is adopted to prevent agents to concurrently deploy in close-
by locations. Upon deployment, the agents use their coarse
perception to update the potential field, driving the rest of the
swarm to the part of the hole not already healed.

We compared the performance of our algorithm against:
(i) [12], which has been shown to outperform state-of-the-
art solutions, and (ii) a benchmark based on random walk, a
behavior widely adopted as a baseline for swarm navigation
[17], [18]. Moreover, we analyzed the impact of the quan-
tization factor and the perception frequency, to evaluate the
robustness of our solution. Experimental results indicate that it
reaches comparable or higher coverage with respect to (i) and
(ii), while using only three quantization levels for the bearing
information, five levels for the distance, and one fourth of
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Fig. 1: RaB information provided to the agent in traditional relative
positioning (a) and in our impressionist algorithm (b). Here, targets
are perceived as being “on the right”, “on the left”, “in front” or
“behind”, and “close”, “in the middle” or “far”.

the perception frequency. Notably, our approach demonstrates
significantly faster healing, at the cost of a marginal increase in
the number of agents employed. This makes it highly suitable
for time-sensitive scenarios.

II. RELATED WORK

Hole Detection and Healing: Several studies addressed
the problem of hole detection and healing in WSNs [1]–[6].
Numerous works rely on Voronoi diagram or Delauney trian-
gulation as their main component in the recovery of coverage
holes [3], [6], [7], requiring, however, dense networks [3],
or centralized computations [6], [7]. Alternatively, geometry-
based approaches are proposed in [1], [2], [8], leveraging
information about intersection points among neighbors to
select, according to geometric criteria, which and where nodes
should move to restore the coverage. These solutions give
priority to minimize the energy consumption of the nodes over
maximizing the coverage: a secondary objective in temporary
solutions [1], [8]. A different perspective is presented in [19]–
[21], in which the problem is modeled as an optimization task,
where enhanced versions of particle swarm optimization [19],
[20], or the artificial fish swarm algorithm [21] are used to
compute the position of patching nodes that maximizes the
coverage. However, they necessitate global knowledge of the
network, that is an unrealistic requirement for large WSNs or
in highly dynamic environments. To account for this problem,
methods in [9]–[11] rely only on local information, combining
the advantages of geometry-based solutions with those using
virtual forces, such as [22]. These hybrid approaches need
GPS localization, which may be unavailable in mission-critical
scenario. The approach presented in [12], to which our algo-
rithm is inspired, uses RaB localization and local knowledge
to control the swarm. The swarm is activated by the exposure
to a potential field, locally generated by nodes upon detection
of a hole, and pointing to its border. The agents follow this
field using their RaB information until they reach the hole
and then deploy in locally optimal positions computed using
geometric criteria. Upon deployment, the agents update the

potential field to reflect the changes in the hole border, thus
recruiting other agents, until coverage is restored.

Sparse and Imperfect Perception: Robot swarms usually
rely on external technologies, such as global positioning
systems or base stations, to gather accurate data and process
it with high frequency [23]–[25]. However, these technologies
are not always available, especially in emergency scenarios.
There exists a limited literature on the design of swarm-based
algorithms that rely on low-frequency, quantized information,
e.g., to search for heat sources [26], reach consensus on
environmental features [27], or trail following [28], but none
to address hole detection and healing in WSNs. Designing
algorithms resilient to sparse, discretized updates is not only
important, but can be also beneficial for swarm performance
[28], [29]. To this end, [16] introduced the class of impression-
ist algorithms, capable of working with minimal information
where traditional algorithms are prone to fail. The authors
validated their findings bringing alignment, dispersion and
milling behaviors as case study.

III. METHODOLOGY

In this work, we consider a 2D obstacle-free ROI in which
a network of static nodes is randomly deployed. The failure
of some of these nodes generates holes in the coverage.
To heal the holes, we employ a swarm of mobile agents
embodying robots. Both nodes and agents are treated as point-
like objects with heading. Their position corresponds to that
of the center of mass of the device they represent. They both
have communication and sensing (i.e., coverage) capabilities,
modeled as Boolean disks: We assume reliable functioning
within a disk of radius rc or rs, respectively, and no service
outside [30]. As in [12], we account for different sensing
ranges, with that of the nodes being much greater than that
of the agents, i.e., rs,n ≫ rs,a. Moreover, we impose the
communication radius to be at least twice the longest sensing
radius to guarantee connectivity [31].

Agents’ movement is governed by non-holonomic dynam-
ics, with cruise driving v̄ and steering ω̄ speed as control
inputs. Agents, marked with unique IDs, select their behavior
based on coarse RaB perceptions, provided by the sensor
system every Tp seconds. The perception area, set equal to
the communication disk, is divided into K adjacent circular
sectors, with 2π/K central angle, and L concentric circular
crowns, representing distance intervals. The circular sectors
align with the agent’s heading through the bisector of the first
sector. For all nodes and agents within rc,a, the quantized
range and bearing information indicates the specific circular
sector and distance interval in which they are located. Fig. 1b
shows an example of perception with K = 4 and L = 3. This
could be implemented with a minimal number of adjacent,
low-precision range-only sensors, obtaining a coarse bearing
information by knowing which sensor detected the target.

Since RaB sensors limitations mainly affect small agents,
we used the same perception setting of [12] for the nodes. That
is, agent oi is provided with the relative distance dij and angle
φij to each node and agent oj within its communication range,



as shown in Fig. 1a. The proposed impressionist algorithm
comprises two stages: hole detection and hole healing.

A. Hole Detection

Hole formation is detected by network nodes using the logic
in [12]. They use their perception to periodically compute the
Angular Coverage Ratio (ACR) c ∈ [0, 1], a coefficient that
measures how much the node is surrounded by neighboring
nodes, or later, deployed agents. To do so, a node oi filters
its perception, including only nodes and deployed agents oj
whose sensing disk overlaps with its own (oj ∈ Ni). For each
neighbor, it computes θj , the semi-central angle of the circular
sector delimited by the two intersection points between the
borders of their sensing disks, as in Eq. (1a), where rs,oi is
the sensing radius of oi. Then, it obtains angular intervals by
centering θj in the corresponding bearing measurement, and
it merges them together following Eq. (1b). If ci, obtained
using Eq. (1c), is lower than a threshold Thc, the node is not
completely surrounded, and is on the border of a hole (oi ∈ B)

θj = arccos

(
r2s,oi + d2ij − r2s,oj

2rs,oidij

)
, (1a)

Θi =
⋃

oj∈Ni

[φij − θj , φij + θj ], (1b)

ci = |Θi|/2π. (1c)

Each node oi uses the ACR value to maintain its one-hop
distance to the closest hole, the level ℓi, computed as follows

ℓi =

0, if oi ∈ B
min
oj∈Ni

ℓj + 1, otherwise. (2)

This information generates a potential field of increasing
integer values pointing toward holes border (having minimum
level), that can be perceived and followed by the swarm.

B. Hole Healing

As in [12], the agents are initially resting in randomly
scattered Release Points (RPs) in inactive state. They passively
listen communications among nearby nodes, waiting to hear
about the formation of a hole to activate. Upon activation,
the agents use their quantized information to drive toward the
closest hole, following the potential field created by nodes
levels as in Eq. (2). In [12], the agents move toward the
direction of the closest node with minimum level among
those perceived. With the nodes at the border having absolute
minimum level (i.e., 0), the agents will eventually reach a hole.
However, with quantized information, more than one node
with minimum level can be perceived in the same distance in-
terval, therefore indistinguishable from a distance perspective.
Moreover, these closest nodes may belong to different circular
sectors, introducing ambiguity in the direction. Selecting the
bearing sector that requires less rotation for the agent reduces
this ambiguity. However, with this type of navigation logic,
the agent might approach the hole border tangentially to the
zero-level curve, ending up trapped by a zero-level node and

Min. Avg. 
Sector-wise 
Follower

Closest Min. 
Follower

Fig. 2: Graphical representation of the difference between the naviga-
tion logic in [12] with quantized information (Closest Min. Follower)
and the impressionist logic (Min. Avg. Sector-wise Follower) with
K = 4.

remaining outside the hole (Fig. 2 - Closest Min. Follower).
For this reason, as navigation logic, we propose to average the
levels perceived by the agent in each sector, imposing forward
motion as soon as the agent faces the sector with minimum
average and selecting the one that requires less rotation as tie-
breaking rule. In this way, the agent is aware of the shape
of the level curves, being able to cross the zero-level one,
and remaining inside the hole (Fig. 2 - Min. Avg. Sector-
wise Follower). We stress that no distance measurements are
involved in this navigation process.

While navigating, if an agent perceives at least a node, or
deployed agent, of level 0 (on the border), it starts evaluating
its current position for deployment. If the position of agent ai
does not lie within the sensing disk of any perceived nodes or
deployed agent oj , i.e., dij > rs,oj∀oj ∈ Pi, the position is
free and the agent can deploy there. To evaluate the freedom of
a position, the agent needs only tertiary distance information:
if a measurement is less than rs,a, to check if it is within the
sensing disk of an agent, or rs,n for a node. The distance is
therefore quantized into L = 3 intervals.

Before deploying, an agent that has found a free position,
changes its state to committed. This behavior was introduced
to avoid concurrent placement in the same area, thus wasting
resources. A committed agent collects the IDs of all committed
agents within its sensing radius. If it has the lowest ID [32],
it deploys in the network, changing its state to deployed.
Otherwise, it switches back to the active state and continues
to follow the potential field. This behavior does not require
additional quantization of the distance.

Since the first free position is selected for deployment,
the healing starts from the border of the hole, changing its
shape. Upon deployment, the agents start acting as nodes,
calculating their ACR and their level, to attract other agents.
The ACR, as computed in Eq. (1), strongly relies on good
RaB information. We propose four solutions, of increasing
complexity, to compute the ACR using quantized information:



1) ACR-1: All deployed agents believe to be on the border
of a hole, taking level zero. This solution does not require any
computation nor information from the environment.

2) ACR-2: This heuristic groups perceived nodes and de-
ployed agents by sector. If a sector has a node, it gets weight
wn ∈ [0, 1], while, if it has an agent, it gets weight wa ∈ [0, 1].
If the sum of weights is less than K/π, the agent may be at
the border of a hole. The level is calculated using Eq. (2),
except the minimum level is determined among all nodes and
deployed agents perceived, not just adjacent ones, to prevent
extra quantization of distance measurements.

3) ACR-3: It uses quantized RaB information from neigh-
bors. Adjacency is established based on whether the distance
is within twice the agents’ sensing radius for agent-agent
adjacency or within rs,a + rs,n for agent-node adjacency.
When combined with position check intervals, it brings the
distance quantization levels to five. We assign each distance
measurement as the mean point of its corresponding interval,
and use it to compute the discretized θ̃j = 2θj as in Eq. (1a).
These quantities are summed sector-wise to check if the
sector is sufficiently covered. Summing angle intervals corre-
sponds to considering the best case, that is no overlapping.
For a sector ki with i = 1, . . . ,K, and oj a neighbor, if∑

oj∈ki
θ̃j ≥ 2π

K Thc the agent considers that sector covered.
Otherwise, the agent checks whether the two adjacent sectors
may offer additional coverage. To do so, it checks whether∑

oj∈{ki−1,ki,ki+1} θ̃j ≥ 6π
K Thc. If it is the case, the sector

is considered covered, otherwise is not. An agent is on the
border of a hole if at least one sector is not covered. The level
is computed as in Eq. (2).

4) ACR-4: It requires the sensor system to be placed on a
base, rotating at a fixed speed ωs for the sector central angle.
During rotation, it collects a number of samples of distance
measurements. By comparing the samples, it is possible to ob-
tain a bearing resolution fov , much lower than the sector angle.
For each perceived neighbor, the agents consider the bisector
of their new sectors of width fov as bearing, and perform the
same distance quantization of ACR-3. The quantized ACR and
level are then computed according to Eq. (1) and Eq. (2). More
accurate bearing measurements come at the cost of delays in
the computation of ACR (time required to perform rotation)
and energy consumption due to sensors movement.

Fig. 3 showcases the complexity of computing the ACR with
quantized information: Opposite situations may yield equal
perception. Quantized ACRs approximate those obtained with
exact measurements, occasionally leading to wrong levels.

C. Frontier and Loop Avoidance

The impressionist navigation logic may drive the agents
outside the ROI if the RPs are too close to its frontier, since a
sector without readings has a lower average than a sector with
readings. To prevent this, the agents are instructed to move
away from the nodes at frontier by keeping them in the rear
sectors. A node communicates that it is at the frontier when
its ACR is lower than Thc right after network displacement
(i.e., prior to holes formation).

(a) (b)

Fig. 3: Graphical example of two opposite situations generating equal
perception, with K = 4 and the agent oi being (a) and not being (b)
on the border of holes.

The impressionist navigation logic may generate loops in
the agents’ behavior. We call short-term loops those caused
by two consecutive perceptions demanding opposite actions,
thus stalling the agents. To break these loops, the agents are
subjected to a random impulse that allows them to escape from
such perceptions. The impulse is realized imposing uniformly
random control speeds in [−v̄, v̄] and [−ω̄, ω̄].

The agents can navigate along orbits of arbitrary length,
created by a sequence of perceptions resulting in locations that
yield identical perceptions. We call these long-term loops. To
avoid them, we programmed a wiggling behavior that consists
of initially ni

w consecutive instants in which the agents are
subjected to random impulses (as in the short-time case). Since
these loops are usually observed when the hole is partially
healed, the wiggle is triggered only after tiw instants and
repeated with a period of Tw instants. At each repetition of
the wiggle, its duration is increased by one instant.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of our algorithm, we used
HDHSim [33], a discrete-time simulator introduced in [12],
explicitly designed for hole detection and healing problems.
Our analysis served two purposes: (i) comparing the perfor-
mance of the impressionist algorithm against the one in [12]
(denoted as Exact), that accesses the full set of information
and (ii) studying its impressionistic traits, that is how its
performance varies with different spatial and temporal reso-
lutions. As in [16], the former is represented by the number
K of quantization levels of the bearing, while the latter is
measured through the Cognition Speed (CS), that is defined
as the ratio of perception frequency to motion speed, i.e.,
(TP v̄)

−1. To further validate our approach, we also compared
it against a benchmark based on random walk behavior (see
Section IV-A).

We adopted the same default configuration of [12]: a failure
of 7 adjacent nodes out of 125 randomly placed in the ROI.
The swarm is composed of 50 agents released from a single
RP. We carried out 100 simulations of T = 1000 time steps
(of 1s each), for each experiment. The simulation parameters
are reported in Tab. I.



TABLE I: Parameters used in the simulations. The default values
are highlighted in bold font.

Parameter Symbol Value

Node sensing range rs,n 30 m
Node comm. range rc,n 60 m
Agent sensing range rs,a {5, 10, 15} m
Agent comm. range rc,a 60 m
Cruise driving speed v̄ 5 m/s
Cruise steering speed ω̄ 0.1 rad/s
Sensors rotation speed ωs 0.1 rad/s
No. bearing sectors K {2, 3, 4, 5, 6}
Cognitive speed CS {0.4, 0.2, 0.1, 0.05} m−1

Coverage threshold Thc 0.95

We measured performance by the average coverage over
time, defined as the fraction of hole area covered by deployed
agents, and by the average number of deployed agents. We will
refer as convergence, the attainment of a stable value by the
coverage trend before the end of the simulation. To ensure
a fair comparison in terms of number of deployed agents,
we endowed the Exact method with the same commitment
behavior of our algorithm, without altering the measure of
efficacy of its navigation and deployment logic.

A. Random Walk Benchmark

To benchmark our algorithm, we designed an approach in
which random walk is the primary healing strategy. Since a
pure random walk over the whole ROI would not be particu-
larly informative, we limited its application in the vicinity of
the hole. To do so, we leveraged the impressionist navigation
strategy every time the agent is not perceiving any level zero.

The rotating motion of the random walk is obtained sam-
pling the turning angle from a wrapped Cauchy distribution
with zero mean and concentration ρ, using the inversion
sampling method in [34]. For the straight motion, we sampled
the number of instants, instead of the distance to cover as in
[35], from a log-normal distribution with zero-mean and 0.5
standard deviation. The sampled number was then scaled by
a factor λ to match the dimension of the ROI.

This Random Walk (RW) algorithm uses the same posi-
tioning logic, commitment strategy, and ACR computation
methods as the impressionist approach. We included the logic
in Section III-C to counteract frontier crossing and short-time
loops. Due to its random nature, this method is not affected
by long-term loops.

As the impressionist algorithm, RW works with K circular
sectors and 3 to 5 levels of quantization of distance measure-
ments (depending on the computation strategy of the ACR).

B. Family-wise Analysis

The impressionist and RW algorithms differ in the naviga-
tion logic, but share the four ACR computation strategies. For
this reason, we identified them as two families of four variants
each (e.g., impressionist + ACR-i with i = 1, 2, 3, 4) and
we compared these variants to individuate the most promising
combinations.

1) Parameters Optimization: To properly detect which
variants were the most effective in hole healing, we firstly
performed parameters optimization using the Tree-structured
Parzen Estimator (TPE) implementation in the Optuna frame-
work [36]. We set a limit of 200 iterations to maximize the
value of coverage at convergence. To identify the initial data
necessary to run TPE, we applied few steps of random search
algorithm, as suggested in [37]. The parameters involved in
the optimization, along with their range of variation (in the
format [min, max, step] or list of values), and the resulting best
values are reported in Tab. II for the navigation parameters and
in Tab. III for the ACR parameters.

2) Comparison: For each of the eight variants, we carried
out 100 simulations on the same set of randomly generated
scenarios, with the optimized parameters and the default
configuration of Tab. I. Fig. 4a shows the average coverage
over time for the four variants of the impressionist family.
There is no statistically significant difference among variants
with the same number of quantization levels for distance
measurements: strategies with L = 3 (ACR-1 and ACR-2)
result in slightly less coverage at convergence with longer
transient. For L = 5 variants, ACR-3 reaches convergence
sooner than ACR-4, slowed by the delay in the update caused
by the sensors rotation (Fig. 4a - zoom). For this reason, we
selected the impressionist + ACR-3, Imp-3 henceforth, for the
rest of the evaluation. RW + ACR-1 has longer transient com-
pared to other variants, because it lacks additional guidance
from deployed agents, as shown in Fig. 4b. Since there is
no statistically significant difference among the other variants,
we selected RW + ACR-3 (RW-3) as default, to match the
impressionist algorithm. We compared the best performing
variants of the two families with the Exact algorithm (Fig. 4c).
All methods achieve similar high values of coverage at conver-
gence, with Imp-3 being the quickest to converge and Exact
the slowest. This speed up is caused by the greater dispersion
of the swarm in Imp-3 and RW-3, that allows tackling the hole
from different directions, thus parallelizing the healing. To
demonstrate this, we computed the Global Shannon Entropy
(GSE) as in [38]. We divided the ROI in q cells and, for each
time step, we counted the number xi of agents within the i-th
cell for i = 1, . . . , q. The GSE of the empirical distribution is

GSE = − 1

log(q)

q∑
i=1

pi log(pi), pi =
xi∑q
i=1 xi

. (3)

The closer GSE is to 1, the smaller is the departure from
the complete spatial randomness, hence the more the swarm is
dispersed. Conversely, the closer to 0, the more clustered the
agents are. The entropy values in Tab. IV show that on average,
during the navigation, the Exact swarm is much more compact
than the other solutions. The excess in the entropy of RW-3, in
comparison to Imp-3, is caused by the additional randomness
in the movements.

Since the methods achieve similar values of coverage at
convergence, we can compare the number of deployed agents
(Tab. IV). The Exact method uses less agents, with respect



TABLE II: Optimization space for navigation logic parameters.

Parameter Best Value

Logic Name Symbol Range ACR-1 ACR-2 ACR-3 ACR-4

Impressionist
Wiggle period Tw [50, 300, 50] 250 250 200 150
Wiggle initial strength ni

w [1, 10, 3] 10 10 4 10
Wiggle initial instant tiw [0, 1000, 250] 250 250 0 1000

Random Walk RW concentration ρ [0, 1, 0.2] 0.4 0.8 0.8 0.8
RW scaling factor λ [1, 51, 10] 11 21 21 21

TABLE III: Optimization space for ACR computation parameters.

Parameter Best Value

Logic Name Symbol Range Impressionist Random Walk

ACR-2 Agents weight wa [0, 1, 0.2] 0.2 0
Nodes weight wn [0, 1, 0.2] 0.8 0.4

ACR-4 Resolution fov [0.79, 0.52, 0.39, 0.26, 0.2] 0.2 0.52
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Fig. 4: Average coverage over time for the impressionist (a) and RW
(b) families. Comparison among best variants for each family and
Exact algorithm (c). The shaded bands represent the 95% confidence
interval.

to Imp-3 and RW-3, to heal the hole. Their higher number
of agents used results from the greater overlap in the agents’
sensing disks, caused by their greedy deployment strategy.

C. Single Hole Analysis

We expanded the comparison by analyzing the impact that
different hole size and sensing ratios have on the performance.
We define the sensing ratio Rs as the ratio between the
agents’ sensing range and that of the nodes, i.e., rs,a/rs,n.
Specifically, we varied m, the number of adjacent nodes which
failure creates the hole. For each value of m = {1, 7, 15},
we performed a set of 100 simulations by keeping fixed the
nodes’ sensing range and varying Rs in {1/6, 1/3, 1/2}. For
each combination of sensing ratio and hole size, we carefully
calibrated the swarm size to avoid undue inflation caused by
an excessive number of agents, while ensuring that healing
was not compromised due to the lack of agents (regardless of
the quality of the algorithm).

TABLE IV: Average number of deployed agents and average
maximum GSE variation in the default scenario.

Deployed Agents Max. GSE Variation

Avg. 95% CI Avg. 95% CI

Imp-3 40.10 0.82 0.59 0.02
RW-3 40.86 0.81 0.78 0.02
Exact 33.61 0.82 0.25 0.03

The results in Fig. 5 show that an influential factor in the
healing process is the relationship between the dimension of
the agents’ sensing disk and that of the hole. The smaller
the disk is with respect to the dimension of the hole, the
slower the healing process will be. This is caused by the
limited contribution that small agents individually bring to
the healing of massive holes. The difference in the transient
duration is more pronounced when the swarm is clustered and
the healing cannot be parallelized further, as for the Exact
algorithm (Fig. 5b and Fig. 5c - Rs = 1/6). Conversely, the
bigger the agents’ sensing disk is with respect to the hole, the
more difficult is to find a viable placement position, resulting
in a decrease of the coverage at convergence, as shown by
Fig. 5a and Fig. 5b for Rs = 1/2. Bigger agents tend to leave
sparse tiny area uncovered, difficult to detect and reach. This
drawback is emphasized in the RW: the probability of crossing
an uncovered area with random movements decreases with
the dimension of the area. This results in longer transients
and lower coverage at convergence, as reported in Fig. 5a.
For all hole sizes, high values of coverage were achieved,
independently from the sensing ratio and especially for Imp-
3. This means that the algorithm is suitable to various sensing
hardware. By comparing the results in Fig. 5 with those of
Section IV-B, we concluded that the three algorithms exhibit
similar high coverage, with the Imp-3 occasionally achieving
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Fig. 5: Average coverage over time for different hole sizes and Rs.
The shaded bands represent the 95% confidence interval.

even higher values. Notably, our algorithm demonstrates a
much shorter transient period than both the benchmark and
the algorithm in [12], albeit at the expense of employing a
slightly higher number of agents.

D. Impressionist Analysis

We investigated the effect of different temporal and spa-
tial resolutions, to determine the presence of thresholds at
which the global behavior deteriorates. We considered K in
{2, 3, 4, 5, 6} and CS in {0.4, 0.2, 0.1, 0.05}m−1, that cor-
responds to receiving data every {0.5, 1, 2, 4}s, respectively.
For each combination, we performed 100 simulations using
the default configuration and the parameters in Tab. I. To
summarize the resulting trends of the average coverage over
time, we used three indicators: (i) Rise Speed (RS): the average
slope of the transient; (ii) Settling Time (ST): the time required
to reach convergence; (iii) Value at Convergence (VC): the
value reached by the trend at convergence. Fig. 6c shows that
our algorithm achieves high coverage regardless of the degree
of bearing quantization and perception frequency, except for
K = 2. This is a very restrictive setting, in which an agent can
only perceive if something is in front of or behind it, resulting
in a drop to 59% of coverage in the worst case. However, with
as little as 3 sectors, and the appropriate CS, the algorithm can
reach up to 97% of coverage. Higher number of sectors helps
to compute more precise ACR values, but has detrimental
effect on the navigation logic, slightly decreasing the attained
coverage. In case of too high CS, the frequent perceptions
might conflict, stalling the agents, and thus resulting in gradual
incline transients and longer time to convergence (Fig. 6a and
Fig. 6b). The RW-3 presents slower transients with respect
to Imp-3 (cf. Fig. 6a with Fig. 6d), achieving similar values
of coverage for K in {3, 4, 5} and much lower for too wide
or too narrow resolutions, as shown in Fig. 6f. As discussed
in Section IV-B2, the Exact method usually presents longer
transients (Fig. 6g and Fig. 6h), but it achieves very high
coverage, as reported in Fig. 6i, independently from the
cognition speed. Overall, the Exact method performs better
with more frequent perception, while our algorithm achieves
similar results even with three quantization levels for the
bearing and receiving updates only every four seconds.
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Fig. 6: Summary of the average coverage over time for different
values of K and CS. SR is measured in % increase in coverage per
second, ST in seconds. Better outcomes are closer to blue.

V. CONCLUSIONS

In this work, we addressed the problem of hole detection
and healing in case of limited access to a low amount of
information. We proposed a new swarm-based impressionist
algorithm, in which the agents rely on severely quantized range
and bearing information as their only way to perceive the
environment. They use this data to navigate toward the hole
and place in the first viable position to restore the coverage.
Experimental results show that our solution reaches similar
or higher coverage than the state-of-the-art and a benchmark
based on random walk. Moreover, it reaches convergence
much faster, at the cost of using slightly more agents. The
investigation of its impressionist traits revealed that it can
reinstate up to 97% of the coverage with as little as three
quantization levels for the bearing and five for the distance,
while perceiving the environment with a frequency four times
lower: being ideal for time-sensitive and prohibitive missions.
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