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ABSTRACT
Most of the applications of wireless sensor networks require the
continuous coverage of a region of interest. The irregular deploy-
ment of the nodes, or their failure, could result in holes in the
coverage, thus jeopardizing such requirements. Methods to recover
the sensing capabilities usually demand the availability of redun-
dant full-fledged nodes whose relocation should heal the holes.
These solutions, however, do not consider the high cost of ob-
taining redundant, typically complex, devices, nor that they could
in turn fail. In this work, we propose a bio-inspired and emer-
gent approach toward hole detection and healing using a swarm
of resource-constrained agents with reduced sensing capabilities,
whose behavior draws inspiration from the concepts underlying
blood coagulation. The swarm follows three rules: activation, adhe-
sion, and cohesion, adapted from the behavior exhibited by platelets
during the human healing process. Relying only on local and rel-
ative information, the mobile agents can detect the holes border
and place themselves in locally optimal positions to temporarily
restore the service. To validate the algorithm, we have developed
a distributed, multi-process simulator. Experimental results show
that the proposed method efficiently detects and heals the holes,
outperforming two state-of-the-art solutions. It also demonstrates
good robustness and flexibility to agent failure.
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1 INTRODUCTION
Wireless Sensor Networks (WSNs) are widely adopted for sensing
and monitoring physical characteristics of a specific Region of Inter-
est (ROI). Their pervasive nature makes them particularly suitable
for a wide variety of applications, such as military surveillance
[28, 33], environmental monitoring [27, 32], wildlife protection
[17, 26], tracking [4, 11] and agriculture and farming [16, 23, 34].

Guaranteeing full coverage over time is a crucial requirement in
many WSNs. However, establishing and maintaining such coverage
can be challenging. Suboptimal deployment of the network nodes
can result in portions of the ROI left uncovered [2, 15]. Moreover,
nodes can undergo unexpected failures, caused, e.g., by hardware
malfunctioning or energy depletion [8, 26]. Whenever one or more
nodes fail, the corresponding area of the ROI can no longer be
sensed, thus creating undesired holes in the network coverage. Most
of the existing approaches to this problem assume that: (i) the WSN
nodes are mobile, and can be relocated on-the-fly to restore the
coverage (heal the holes); (ii) the WSN includes redundant nodes
from the start, so that the relocation can take place without leaving
other areas uncovered [13, 14, 27]. Such assumptions are unrealis-
tic, as WSNs typically include static nodes, and adding redundant
devices significantly increases the initial deployment cost. For these
reasons, recovering from node failures in a short amount of time,
with limited resources, is a challenging open problem.

In this work, we address the problem of hole detection and heal-
ing in time-sensitive and mission-critical scenarios, where a prompt
response is fundamental but no nodes are preemptively deployed.
We propose a novel swarm intelligence algorithm to temporarily
restore the coverage using a swarm of resource-constrained agents
with reduced sensing capabilities. Our approach is inspired by a par-
allelism between network coverage and human tissue, where holes
can be thought of as wounds. The proposed emergent algorithm
is based on the concepts underlying blood coagulation (Figure 1).
To the best of our knowledge, this is the first study that presents a
swarm intelligence algorithm based on the behavior of biological
platelets in the context of WSNs. The agents are modeled as arti-
ficial platelets, that are initially released from one or more release
points around the ROI. The swarm behaves according to three rules:
(i) activation: upon detection of holes in the coverage, the agents
activate, initiating the healing process. This strictly mirrors the
behavior of blood platelets that activate and initiate coagulation
after perceiving the injury; (ii) adhesion: when the agents reach
the holes border, they start adhering to it, attracting other active
agents. Similarly, the platelets adhere to the border of the injury
and start secreting attractive substances; (iii) cohesion: active agents
cohere to already deployed agents until the holes are completely
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Figure 1: Visual parallelismbetween (a) the simplified process
of blood coagulation and (b) the hole healing process inWSNs.
Colors are used to better convey the parallelisms.

healed, thus restoring the coverage. This mimics the formation of
the platelet plug responsible for healing the wounds.

To evaluate the performance of our algorithm, we developed a
simulator for hole detection and healing problems. We performed
several experiments under challenging scenarios, including noisy
sensors, and the presence of multiple holes. Our results show the
flexibility and robustness of the approach, which can quickly restore
coverage even when the agents themselves are subject to failure.
We stress that this last aspect has not been considered by previous
works. Experimental studies show that the proposed method also
outperforms two state-of-the-art solutions, namely [13] and [33].

The remainder of this paper is organized as follows. In Section 2,
the literature is reviewed, while in Section 3 the behavior of biologi-
cal platelets is introduced along with the context and notation. The
proposed approach is thoroughly presented in Section 4, while in
Section 5 experimental results are outlined and discussed. Finally,
in Section 6 conclusions are drawn.

2 RELATEDWORK
Hole Detection and Healing. Several studies have proposed ways

to address hole detection [17, 18] or healing [2, 15] in WSNs. Works
[14, 23] proposed two algorithms that minimize the energy con-
sumption of mobile nodes, using a distributed Voronoi-based co-
operation scheme [23] and insights from the intersection points
among nodes [14]. However, both approaches only work with dense
networks (i.e., way more nodes are deployed than what is needed
to guarantee the coverage), a requirement that is usually not met.
In [4], an additively weighted Voronoi diagram is used to detect
the holes and to compute the patching positions, while [28] resorts
to the Delaunay triangulation of the network combined with a vir-
tual edge-based method. Both solutions are centralized, therefore
lacking robustness, as opposed to our decentralized approach. Tree-
based and chord-based hole and healing algorithms are proposed
in [18, 26] as an alternative to Voronoi-based approaches. However,
they require homogeneous networks, i.e., all nodes must have equal
sensing capabilities. In [24] instead, a complex messaging protocol

is used to detect the hole, which is then healed by driving nodes
toward it using virtual forces. However, healing performance de-
grades in presence of multiple holes. To combine the advantages
of geometry-based and virtual forces-based approaches, hybrid so-
lutions were introduced [9, 16, 27], which however rely on the
availability of GPS. Finally, [20, 32] use Particle Swarm Optimiza-
tion (PSO) or an enhanced version of PSO to compute new positions
for the patching nodes. Both approaches assume global knowledge,
as opposed to our solution that only relies on local information.

Next, we describe in more detail two state-of-the-art methods
that are closely related to our approach, i.e., [13, 33], although
requiring several restrictive assumptions. Khalifa et al. [13] intro-
duces DHDR, a solution that assumes a dense network of mobile
nodes. The nodes move toward the hole when alerted by the miss-
ing reception of the heartbeat message from one of their neighbors.
Therefore, only the nodes adjacent to the hole take part in the healing
process. The displacement is computed using geometric criteria,
taking as reference the intersection points between the sensing
range of each node and that of its neighbors, following a heuristic
priority scheme. Conversely, Yan et al. [33] treat the problem as an
optimization task, proposing the FSHR algorithm. This enhances
the artificial fish swarm algorithm [22] introducing the leap and
rebirth behaviors. FSHR works with a set of inactive, mobile nodes
scattered among a network of static nodes, relocating some of them
to heal the holes. The WSN sink nodes compute the target positions
and provide control inputs to guide the closest mobile nodes there.
To do so, it discretizes the ROI into a grid and optimizes a fitness
function given by the fraction of grid points covered by the union
of the static nodes and the activated mobile nodes.

The abovementioned approaches share important limitations:
i) they rely on GPS localization, which may not be available in
mission-critical scenarios, whereas our method uses only local in-
formation; ii) they assume the availability of mobile, redundant
nodes in the original network that can be relocated at need, while
we use more practical external agents, independent of the network
characteristics; and iii) they preemptively compute the new po-
sitions, without considering unexpected impairments that could
prevent nodes from reaching their final locations. This type of
offline planning usually fails when the environment is highly dy-
namic. Our method instead performs online planning, allowing the
agents to dynamically adapt to the changes in the environment. We
used [13] and [33] to benchmark our solution (Section 5.2.4).

Artificial Platelets. There exists a limited body of literature using
the concepts behind biological platelets to model the behavior of
robot swarms. The authors of [10] propose an algorithm based on
PSO to control a swarm of artificial platelets to repair wounds in
a simulated human vessel. [3] describes a control mechanism for
nanorobots searching for wounds within the human body based
on colored perceptive PSO. [21], instead, presents a theoretical ap-
proach to repair structures in inhospitable environments by means
of a swarm of active particles. None of these works, however, deals
with the problem of hole detection and healing in WSNs.

3 PRELIMINARIES
In this section we briefly introduce the concepts underlying blood
coagulation, the context, and notation used throughout this paper.
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3.1 Biological Platelets
Primary hemostasis is the process whereby a blood clot is formed to
prevent the excessive loss of blood caused by vascular injuries [19].
The clot is made of platelets, that circulate in the human vasculature
in inactive state. Upon vascular injury, the platelets become acti-
vated by the contact with collagen, a substance normally present
in the extravascular space, but no longer isolated from the blood
stream by the integrity of the endothelium [19]. Active platelets
adhere to the injury, where the concentration of the collagen is
highest. Upon adhesion, they start recruiting other platelets by
emitting attractive substances, such as the adenosine diphosphate
(ADP). The bound platelets, i.e., those adhered to the injury, provide
surface for other platelets to cohere as to increase the size of the clot
[19]. Bound platelets secrete also fibrins that bind them to stabilize
the plug. By contrast, intact parts of the vessel produce prostacyclin
that repulses the platelets, preventing the unnecessary and danger-
ous formation of clots [10]. Finally, to disband the platelets plug,
the clot activates the plasmin that dissolves the bindings, forcing
the platelets to return flowing in the vessels. For a more thorough
explanation of the coagulation process, please refer to [1, 19].

3.2 Context Definition
In this work, we consider 2D obstacle-free environments where
lies a network of fixed nodes with communication and sensing
capabilities. The nodes are randomly deployed in the region of
interest, ensuring full coverage while keeping limited the density
of the network. The nodes can be treated as point-like entities,
whose location coincides with the center of mass (CoM) of the
device embodying it. For this reason, the network can be seen
as a graph where a subset of nodes fails, generating holes in the
service. To restore the coverage and heal the holes, we employ a
swarmS = {𝑠1, · · · , 𝑠𝑛} of moving agents, mounted on autonomous
robots, e.g., drones, with limited resources and restricted sensing
capabilities. To model the agents we resorted to a non-holonomic
point-like representation, in which the agent pose coincides with
that of the robot CoM. This abstraction provides broad applicability
to different robots, whichmore complex dynamics can be eventually
mapped back to the one we used to model the movement. The
variables used as control inputs are the steering and driving speed.
We will refer to each node or agent in the environment as element.
Each element has two ranges, whose extent depend on whether it
is a node or an agent. The communication range 𝑟𝑐 is the maximum
distance to which an element can exchange packets with other
elements. The sensing range 𝑟𝑠 is the maximum distance covered by
the element. To model the communication and sensing capabilities
we resort to the Boolean disk coverage model, that is a disk of range
𝑟𝑐 , or 𝑟𝑠 , centered in the CoM of each element. Inside the disk we
assume perfect communication or sensing, while no communication
or coverage can take place outside [31]. Since we consider agents
with limited coverage capabilities, we suppose that their sensing
radius 𝑟𝑠,𝑎 is much less than the one of the nodes 𝑟𝑠,𝑛 , i.e., 𝑟𝑠,𝑛 ≫ 𝑟𝑠,𝑎 .
We assume that the range of communication is at least twice the
sensing radius, i.e., 𝑟𝑐,𝑎 ≥ 2𝑟𝑠,𝑎 and 𝑟𝑐,𝑛 ≥ 2𝑟𝑠,𝑛 for agents and nodes,
respectively. In this way, the connectivity among the elements in
the restored area is guaranteed [35].

Table 1: Parallel between the biological and the swarm space.

Biological Space Swarm Space

First hemostasis Hole detection and temporary healing
Inactive/Active/Bound states Inactive/Active/Bound states
Collagen for pl. activation Positive 𝜁 for agents activation
Concentration of collagen Inverse of the ℓ values
Release of ADP to recruit Bound agents updating ℓ to recruit
Prostacyclin to repel platelets Considering only free virtual solutions
Release of fibrin for binding Establishing links with the network

Apart from the sensor enabling the sensing in the chosen sce-
nario, each element is equipped with a range and bearing (RaB)
sensor to perceive the environment [6]. For an element 𝑒𝑖 , the RaB
provides, in its reference frame, the relative distance 𝑑𝑖 𝑗 and angle
𝜑𝑖 𝑗 to all the other elements 𝑒 𝑗 within its communication range.

Throughout this paper, we will refer as adjacent, two elements
with overlapping sensing disks. The neighbors set N𝑒𝑖 of an element
𝑒𝑖 is the set of all the elements adjacent to it.

4 ALGORITHM DESIGN
The proposed method comprises two stages: hole detection and hole
healing. During the former, the swarm is initially resting in ran-
domly scattered release points (RPs) in inactive state, mimicking the
inactivity of the platelets normally flowing in the vessels. Mirroring
the biological counterpart, the swarm is activated by the exposure
to artificial collagen (AC), a virtual information forwarded over the
network. For the healing stage, the active agents move toward the
border of the hole, thanks to the information gathered through their
RaB sensors. The resulting movement follows, therefore, the direc-
tion that can be interpreted as the gradient of the concentration of
the artificial collagen: the higher the concentration of the AC, the
closer they are to the hole. This strictly reminds biology, where a
higher concentration of collagen means proximity to the wound.
When the agents reach the frontier, they compute and move toward
a locally optimal position, based on the information retrieved from
the RaB sensor and on geometric criteria. Inspired by the repulsive
action of prostacyclin, that prevents the platelets from adhering
outside the wound, the target locations for the agents deployment
cannot lie in areas already covered by either nodes or agents (out-
side the hole). Upon deployment, the agents switch to the bound
state and establish connections with the rest of the network, mimik-
ing the effects of the release of fibrin as plug stabilizer. The bound
agents update their AC information, to reflect the changes in the
hole border. This results in the agents being part of the recruitment
process of other agents, as happens biologically with the release
of the attractive ADP by bound platelets. The temporary network
composed by a sufficient number of bound agents, thus fully cov-
ering the desired area, will remain in place until the damages are
fixed. Upon the restoration of the faulty nodes, the swarm returns
to its RPs or flies to cover new holes, as happen when the tissue
heals and the clot dissolves in the blood (see Section 3.1). We will
refer to nodes of the network or bound agents as deployed elements.
Table 1 reports the parallelisms between the biological and swarm
space, while the pseudocode of the proposed method is reported in
Algorithm 1.
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4.1 Hole Detection
In order to detect the presence of holes in the network, each node
and bound agent periodically computes the Angular Coverage Ra-
tio (ACR) 𝑐 ∈ [0, 1], a coefficient representing the fraction of the
boundary of its sensing area covered by its deployed neighbors.
The ACR of a deployed element 𝑜𝑖 , i.e., 𝑐𝑖 , is computed using infor-
mation provided by its RaB sensor, namely (𝑑𝑖 𝑗 , 𝜑𝑖 𝑗 ) ∀𝑜 𝑗 ∈ N𝑜𝑖 . At
first, all the angular spans corresponding to the arcs covered by the
neighbors are computed according to Equation (1a), where 𝑟𝑠,𝑜𝑖 is
the sensing range of the deployed element 𝑜𝑖 and 𝑟𝑠,𝑜 𝑗

of 𝑜 𝑗 . The an-
gular spans are then centered in the respective relative bearing 𝜑𝑖 𝑗
and the resulting intervals are merged as in Equation (1b). Finally,
𝑐𝑖 is obtained as in Equation (1c). Figure 2 shows the geometric
relations among the quantities involved. If the ratio 𝑐𝑖 is below a
certain threshold 𝑇ℎ𝑐 , the deployed element 𝑜𝑖 is on the boundary
of a hole, i.e., 𝑜𝑖 ∈ B.

𝜃 𝑗 = arccos

(
𝑟2
𝑠,𝑜𝑖
+ 𝑑2

𝑖 𝑗
− 𝑟2

𝑠,𝑜 𝑗

2𝑟𝑠,𝑜𝑖𝑑𝑖 𝑗

)
(1a)

Θ𝑖 =
⋃

𝑜 𝑗 ∈N𝑜𝑖

[𝜑𝑖 𝑗 − 𝜃 𝑗 , 𝜑𝑖 𝑗 + 𝜃 𝑗 ] (1b)

𝑐𝑖 = |Θ𝑖 |/2𝜋 (1c)

Each deployed element retains a Boolean value 𝜁 representing
whether at least one hole is present in the network. This information
is spread in the network originating from the deployed elements
in B, through a custom version of a gossip protocol [12]. A positive
value of 𝜁 represents the presence of artificial collagen that, once
spread, reaches the RPs causing the agents to switch their state
from inactive to active (Alg. 1, lines 1-4).

Each deployed element 𝑜𝑖 is also associated with a level ℓ𝑖 , an
integer value representing the hop-distance to the boundary of the
nearest hole and computed according to Equation (2). This can be
seen as the inverse of the concentration of the artificial collagen.

ℓ𝑖 =


0, if 𝑜𝑖 ∈ B

min
𝑜 𝑗 ∈N𝑜𝑖

ℓ𝑗 + 1, otherwise (2)

The levels give rise to a form of potential field in the network, that
the swarm can follow to reach the nearest hole. Each deployed
element has access to the type, the state (if agent), the level ℓ , the
value 𝜁 , the distance and bearing of all the elements within its
communication range. These quantities can be retrieved from the
range and bearing sensor or through wireless communication.

4.2 Hole Healing
Upon activation, the swarm leaves the release points and uses the
information provided by the RaB sensors to follow the inverse of the
gradient of the potential field generated by the levels of the deployed
elements. To do so, the agents move toward the nearest deployed
element with minimum level among those perceived (Alg. 1, line 15,
17). With the deployed elements at the boundary of the holes having
global minimum level, the swarm will eventually reach a hole. They
move in the computed direction imposing adaptive control values to
their actuators. Unless different values of the controls are explicitly

Algorithm 1: Agent Logic
1 𝑠𝑡𝑎𝑡𝑒 ← 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ;
2 if 𝑏𝑟𝑜𝑘𝑒𝑛 ∈ 𝑔𝑜𝑠𝑠𝑖𝑝_𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ( ) then
3 𝑠𝑡𝑎𝑡𝑒 ← 𝑎𝑐𝑡𝑖𝑣𝑒 ;
4 end
5 while 𝑠𝑡𝑎𝑡𝑒 is 𝑎𝑐𝑡𝑖𝑣𝑒 do
6 𝑅𝑎𝐵 ← 𝑟𝑎𝑛𝑔𝑒_𝑎𝑛𝑑_𝑏𝑒𝑎𝑟𝑖𝑛𝑔 ( ) ;
7 𝑛𝑜𝑑𝑒𝑠 ← 𝑜𝑖 ∈ 𝑅𝑎𝐵 | ℓ𝑖 = 0 𝑎𝑛𝑑 𝑜𝑖 is 𝑛𝑜𝑑𝑒 ;
8 𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑜𝑖 ∈ 𝑅𝑎𝐵 | ℓ𝑖 = 0 𝑎𝑛𝑑 𝑜𝑖 is 𝑎𝑔𝑒𝑛𝑡 ;
9 𝑝𝑛, 𝑝𝑎, 𝑝𝑚, 𝑝𝑑 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑟𝑒𝑛𝑡𝑠 (𝑛𝑜𝑑𝑒𝑠, 𝑎𝑔𝑒𝑛𝑡𝑠 ) ;

10 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝑝𝑛, 𝑝𝑎, 𝑝𝑚, 𝑝𝑑 ) ;
11 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑓 𝑟𝑒𝑒 (𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙𝑠 ) ;
12 if 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ≠ ∅ then
13 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑟𝑎𝑛𝑘_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ) ;
14 else
15 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑚𝑖𝑛_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (𝑅𝑎𝐵) ;
16 end
17 𝑑𝑟𝑖𝑣𝑒_𝑡𝑜 (𝑡𝑎𝑟𝑔𝑒𝑡 ) ;
18 if 𝑑 (𝑎𝑔𝑒𝑛𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡 ) ≤ 𝑇ℎ𝑏 then
19 𝑠𝑡𝑎𝑡𝑒 ← 𝑏𝑜𝑢𝑛𝑑 ;
20 end
21 end

Figure 2: Geometric interpretation of the ACR.

required to accomplish maneuvers or to approach a destination
point, the agents move with a constant steering �̄� and driving 𝑣

speed.
When an agent perceives at least two adjacent deployed ele-

ments with level 0 (named parents), it geometrically computes a
list of virtual targets that represent its locally optimal deployment
positions. Specifically, it creates a list of parents from the zero-level
deployed elements perceived using its RaB sensor (line 9). To de-
termine the adjacency of two deployed elements, their distance is
obtained through triangulation techniques. For each pair of parents,
the agent computes two solutions (line 10). In case of two parents
of the same type (two nodes or two bound agents), the locally op-
timal positions are reported in Figure 3a. We consider oi and oj
as the vectors of Cartesian coordinates of the two parents 𝑜𝑖 and
𝑜 𝑗 , respectively, in the reference frame of the agent. To determine
the two solutions we compute the displacements 𝑑𝑏 along the unit
vector k joining the CoMs of the two parents, and 𝑑ℎ along the
unit vector perpendicular to k, i.e., k⊥, as in Equation (3). The two
solutions are then computed according to Equation (4).
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(a) (b) (c)

Figure 3: Locally optimal virtual targets in case of parents with (a) same or (b) different sensing radius. (c) Additional target.

k =
oi−oj
∥oi−oj ∥ =

oi−oj
𝑑

𝑑𝑏 = 𝑑/2 𝑑ℎ =

√︃
𝑟2
𝑠,𝑜 𝑗
− 𝑑2

4 + 𝑟𝑠,𝑎
(3)

t1,2 = oj + 𝑑𝑏k ± 𝑑ℎk⊥ (4)
For two parents of different type, the locally optimal solutions

are shown in Figure 3b and computed as in Equation (5) and (4).

k =
oi−oj
∥oi−oj ∥ =

oi−oj
𝑑1

𝑑2 = 2

√︄
𝑟2
𝑠,𝑎 −

(
𝑑2

1−𝑟 2
𝑠,𝑛−𝑟 2

𝑠,𝑎

2𝑟𝑠,𝑛

)2

𝑝 =
2𝑑1+𝑑2

2 𝐴 =
√︁
𝑝 (𝑝 − 𝑑1)2 (𝑝 − 𝑑2)

𝑑ℎ = 2𝐴/𝑑1 𝑑𝑏 =

√︃
𝑑2

2 − 𝑑
2
ℎ

(5)

To improve the coverage, we considered additional virtual so-
lutions, originating from pairs of non-adjacent deployed elements
with zero level but with distance 𝑑𝑖 𝑗 ≤ 𝑟𝑠,𝑜𝑖 + 𝑟𝑠,𝑜 𝑗

+ 2𝑟𝑠,𝑎 . For
each pair of such parents, the positioning point is the midpoint of
the segment joining the two intersections of the boundaries of the
sensing disks with the segment joining the CoMs of the parents, as
depicted in Figure 3c. Equation (6) shows the computation of the
additional solution t.

k =
oi−oj
∥oi−oj ∥ k′ = oj−oi

∥oi−oj ∥

df1 = oj + 𝑟𝑠,𝑜 𝑗
k df2 = oi + 𝑟𝑠,𝑜𝑖 k′ t = (df1 + df2 )/2

(6)
The list of solutions is then filtered (line 11), removing all those

lying within the sensing disk of a perceived deployed element. This
results in keeping only the free solutions, i.e., all the solutions t such
that 𝑑 (t, oj) > 𝑟𝑠,𝑜 𝑗

∀𝑜 𝑗 ∈ O, where O is the set of all the deployed
elements perceived by the agent. The free solutions are ranked (line
13) according to a ranking policy based on the distance and type
of parents. Each agent moves toward the highest ranking solution
in the list, until either the selected target is not free anymore or
its distance is lower than a threshold 𝑇ℎ𝑏 (line 18). In the former
case, the agent repeats the process and selects a new target, while
in the latter, it stops and deploys itself in the network, establishing
connections with its neighbors and switching its state to bound (line
19). This deployment restores the service in the area covered by the
agent. When part of the network, the agent starts computing the
ACR as in Equation (1c), thus updating its level ℓ and contributing to

the gossip protocol. The deployment of the agents in the network,
therefore, changes the shape of the boundary of the holes and
modifies the potential field. This attracts other agents, mirroring
the ADP release in the biological counterpart.

5 PERFORMANCE EVALUATION
In this section we present an intensive evaluation of the perfor-
mance of the proposed algorithm.

5.1 Experimental Setup
To perform the experiments we have developed a discrete-time
simulator, whose architecture was purposely designed for handling
multi-agent applications with a high level of scalability. The sim-
ulator and our approach was implemented in Python and made
available in [25] to foster reproducibility.

In the experiments we considered a network of 125 randomly
placed nodes. For the communication and sensing capabilities of
nodes and agents, we used quantities that meet the assumptions
of Section 3.2 and are compliant with existing technologies, see,
e.g., [29]. The control speeds of the agents were set to comparable
values to those of commercial quadrotors [5]. We modeled the
error affecting the RaB sensors with two Gaussian noises having
fixed variance (bearing) and variance proportional to the measured
distance (range). Specifically, by default, we set the distance noise
standard deviation to 1.5% of the measurement value, and the angle
standard deviation to 5◦. However, to evaluate the robustness of
the proposed method we also experimented with different noise
levels as detailed in Section 5.2.3 and Table 2.

For each experiment we performed 100 simulations lasting 𝑇 =

1000 time steps each. We set the duration of a time step to 1 s. As
a default configuration, we considered a single release point of 50
agents to heal a single hole caused by the failure of 7 adjacent nodes.
The simulation parameters are reported in Table 2.

The layout of the network, the position of the RPs, the shape and
position of the holeswere randomized for each simulation.We stress
that using a single release point represents a more realistic situation
in emergency scenarios, where it is usually difficult to access the
ROI. This also represents the most challenging configuration for
evaluating our approach, as further discussed in Section 5.2.2.

To evaluate the performance, we analyzed the trend of the av-
erage coverage over time. That is, the average fraction of the area
left uncovered by failed nodes that was restored by the agents. In
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Table 2: Parameters used in the simulations. The default
values are highlighted in bold font.

Parameter Symbol Value

Node sensing range 𝑟𝑠,𝑛 30 m
Node communication range 𝑟𝑐,𝑛 60 m
Agent sensing range 𝑟𝑠,𝑎 10 m
Agent communication range 𝑟𝑐,𝑎 60 m
Agent cruise driving speed 𝑣 5 m/s
Agent cruise steering speed �̄� 0.1 rad/s
Avg. Perc. RaB distance error 𝜌 {0, 1 1.5, 5, 20} %
Avg. error on RaB bearing 𝛾 {0, 2, 5, 15, 20} ◦
Bound threshold 𝑇ℎ𝑏 0.3 m
Coverage threshold 𝑇ℎ𝑐 {0.85, 0.90, 0.95, 1.0}
Avg. Perc. agent failure 𝑃𝑓 {0, 5, 10, 25} %

addition, we considered the average number of agents required to
heal the holes. We will refer as convergence, the attainment of a
stable value by the coverage before the simulation ends.

5.2 Results and discussion
In the following, we report the experiments and results that were
carried out to evaluate different aspects of the proposed approach.
A visual representation of the healing process in case of multiple
holes in the network is provided in Figure 4.

5.2.1 Parameters Variation. To evaluate our approach, we analyzed
the impact of the variation of the two parameters that yielded the
most variance in the performance [7]: the ranking policy and 𝑇ℎ𝑐 ,
introduced in Section 4.

Regarding the former, we carried out sets of simulations with
the policies DNAM, NAMD, AMND, closest and random. The name
of the first three strategies reminds the descending priority given
to the computed virtual solutions according to the type of their
parents, i.e., Nodes, Agents, Mixed and aDditional solutions. Among
solutions of the same type, priority is given to the closest one. closest
always selects the closest computed solution, while random chooses
the closest solution among those of a randomly selected type of
parents. We used the default configuration and the parameters
in Table 2. Figure 5a shows the trends of the average coverage
over time. We observe that AMND and NAMD do not reach the
same level of coverage as the other policies, due to the fact that
some agents keep moving between the same solutions (of higher
priority). This is caused by the limited range of the RaB sensor, not
always allowing the agent to perceive that the chosen solution is not
free until it gets sufficiently close. The random strategy, randomly
combining all the approaches, provides high coverage with slightly
less deployed agents on average. However, it shows longer transient
to convergence, therefore not representing the best strategy for
time sensitive scenarios. Overall, the closest policy achieves the best
results, therefore we selected it for our experiments.

Figure 5b, instead, shows the trends of the average coverage over
time for the values of 𝑇ℎ𝑐 reported in Table 2. As for the previous
experiments, we have relied on the default configuration. We recall
from Section 4.1 that 𝑇ℎ𝑐 is the threshold for the ACR 𝑐𝑖 under
which a node or a bound agent 𝑜𝑖 knows it is on the border of a
hole. For low values of𝑇ℎ𝑐 , e.g., 0.85, most of the deployed elements

Table 3: Results of multi-hole and multi-RPs experiments.

3 RPs 5 RPs

Avg. 95% CI Avg. 95% CI

Coverage 81.56% 2.96% 87.96% 2.46%
Bound agents 34.84 1.49 36.34 1.34

keep a level ℓ different from 0, therefore not offering enough surface
for the active agents to adhere. Conversely, for values of 𝑇ℎ𝑐 too
high, such as 1.0, the majority of bound agents set their level to 0,
representing ubiquitous attractive signals that could overwhelm the
active agents. The best performance is obtained with 𝑇ℎ𝑐 = 0.95,
so we kept this value for the rest of the evaluation process.

5.2.2 Scalability and Flexibility Analysis. To capture the scalability
of our approach we firstly studied the variations in the coverage
trends for different sizes of the hole. Specifically, we varied 𝑚,
the number of adjacent nodes that, failing, generate the hole. For
𝑚 = {1, 4, 7, 10, 15}, the results are shown in Figure 5c. To ensure
a fair comparison among experiments, we increased the number
of agents in the RP accordingly (i.e., 𝑛 = {5, 25, 50, 75, 125}). In this
way, the possible lack of convergence in the coverage cannot be
caused by the scarcity of agents. As expected, the larger the hole,
the longer the transient will be, since incrementally bigger areas
need to be covered. Our method appears to be quite scalable for
holes of different dimensions, even in presence of massive failures
(e.g.,𝑚 = 15), since it usually converges to values greater than 96%.
However, in case of a single failure, we observe a reduction of the
coverage at convergence. This is caused by the restricted pool of
available positions where to deploy the agents. In this case, the area
left uncovered is usually so small that spending an agent to cover
it would be counterproductive.

Concerning the flexibility, we performed sets of simulations with
the number of release points varying in {1, 3, 5} but keeping the
total size of the swarm constant to 50 for a fair comparison. We used
the default configuration of Table 2. As expected, with multiple RPs
we observed a speed up to the convergence, shown in Figure 5d.
The shorter transient is explained by the fact that, on average, the
probability of having a release point closer to the hole is higher.
Moreover, different RPs allow approaching the hole from different
directions, accelerating the healing process.

Finally, to further prove the flexibility of the algorithm, we car-
ried out experiments withmultiple holes and multiple release points
(i.e., 3 and 5). Specifically, we considered three holes caused by the
failure of groups of 3, 3, and 4 adjacent nodes. As in the previous
cases, we kept constant the size of the swarm, to ensure fairness in
the comparison. When compared to Figure 5d, the results reported
in Table 3 show that our algorithm still provides good coverage in
nearly the same time required for single hole scenarios.

5.2.3 Robustness Analysis. To evaluate the robustness of our al-
gorithm, we performed a set of experiments varying the standard
deviation of the errors affecting the RaB measurements, as sum-
marized in Table 2. These values are comparable to the errors that
typically affect sensors of different quality. We also included the
case of ideal (𝜌 = 0, 𝛾 = 0) and heavily perturbed (𝜌 = 20%, 𝛾 = 20◦)
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(a) (b) (c) (d)

Figure 4: Snapshots of a multi-hole healing process for subsequent time steps. Agents are represented as triangles. Nodes are
depicted as points. Active agents are colored in black, while nodes and bound agents follow the palette that visually conveys
the gradient formed by their level ℓ . Only sensing ranges are shown for clarity. (a) t = 10 s; (b) t = 472 s; (c) t = 634 s; (d) t = 913 s.
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(c) Hole dimension.
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(d) Multiple RPs.
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(f) Agents failure.

Figure 5: Average coverage over time. The shaded bands represent the 95% confidence interval.

perception. Figure 5e shows the coverage trends for these exper-
iments, presenting slower convergence with increasing severity
of the error. The reason is that a higher error introduces higher
variation between consequent perceptions. This results in the agent
frequently changing its target deployment position, and thus direc-
tion of movement. This, in turn, will end up in a swinging behavior
that can stall the agent, slowing down the healing process. Inter-
estingly, in the case of ideal perception, we observe slightly worse
performance. This happens because the optimal positions selected
by the agents are only locally optimal, and therefore might not
coincide with the globally optimal ones. For this reason, the noise
introduced by the sensor may allow the agents to escape from
points of local maximum coverage that are globally suboptimal.
Overall, our method is quite robust to different levels of perception
error: precise localization is only needed at short distances (where
the error is usually limited), while on longer distances a rough
indication about the direction is sufficient.

One of the most promising features of our algorithm is its ability
to recover from agent failure. To support our claim we carried
out experiments in which, on average, a fraction 𝑃𝑓 of agents will
independently fail during each simulation. To do so, we make each
agent fail with probability 𝑝 = 1 − (1 − 𝑃𝑓 )1/𝑇 at every step of
the simulation. In Figure 5f we show the coverage trends for 𝑃𝑓 =

{0, 0.05, 0.1, 0.25}. In this evaluation, we used the default parameter
setting of Table 2. For a fair comparison among different values of

Table 4: Comparison for single-hole single-failure experi-
ments, with (w/) and without (w/o) noisy perception.

DHDR [13] FSHR [33] ours

Avg. % 95% CI Avg. % 95% CI Avg. % 95% CI

w/o noise 57.19 11.27 17.84 6.62 76.17 7.86
w/ noise 58.71 9.37 9.60 5.16 88.08 5.87

𝑃𝑓 , as described in Section 5.2.2, we increased the size of the swarm
by exactly the average amount of agents that will fail in that set of
simulations. Figure 5f shows no statistically significant difference
in the trends, meaning that our algorithm is robust enough to cope
with the loss of agents during the healing process. This is achieved
because there is no pre-defined assignment of the target positions to
the agents: if one fails, another one can carry out the healing process.
If a bound agent fails, other agents that are currently healing the
hole are close enough to promptly take its place.

5.2.4 State-of-the-art comparison. We compared our approachwith
two recent hole detection and healing algorithms: DHDR [13] and
FSHR [33] (see Section 2). To ensure a fair comparison in terms of
the duration of the healing process, we endowed the two methods
with the same dynamics of movement of our approach, without
affecting their logic. We evaluated all methods using nodes and
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Figure 6: Average coverage over time for different hole size.
The shaded bands represent the 95% confidence interval.

agents with equal sensing range, as to comply with DHDR require-
ments. For each set of experiments, of 130 runs each, we tested the
three methods on the same set of randomly generated scenarios.
We deployed the same number of agents (ours), redundant nodes
(DHDR), and mobile nodes (FSHR), to guarantee equal healing ca-
pacity. We used the default parameters in Table 2 for our method
and those reported in [13] for DHDR and [33] for FSHR. We recall
that, for all methods, the coverage is computed as the ratio between
the recovered area over the initial hole area, as opposed to [13, 33],
where the reference area is the whole ROI. In this way, the perfor-
mance is not misled by the massive contribution brought by the
intact network.

We performed 130 simulations in the case of a single hole caused
by a single node failure, as in [13, 33]. We conducted the experi-
ments in case of ideal and noisy perception, deploying 4 agents for
each method. Results are reported in Table 4. We perturbed the GPS
of DHDR and FSHR using a zero mean Gaussian model with st.dev.
of 4.9m [30]. Table 4 shows that our method, as previously dis-
cussed, performs slightly better with noisy perceptions. Conversely
to DHDR, FSHR strongly relies on precise positioning information,
therefore with noisy values it yields worse performance.

Keeping the perception perturbed, we carried out experiments
varying the number of failed nodes causing the hole in𝑚 = {7, 15}.
For all methods, we increased the number of agents to 10 and 25,
respectively, as to guarantee sufficient healing capacity. The results
are reported in Figure 6. Our method always achieve high coverage,
especially when the size of the hole is bigger (Section 5.2.2). DHDR
for𝑚 = 1 (Figure 6a) shows a peak in the coverage representing its
potential healing capacity. The decrease in the coverage is caused
by the undue movement of the nodes chosen for recovery: their
final positions cross the optimal points (corresponding to the peak),
leaving other parts uncovered. This method seems to reach simi-
lar level of coverage at convergence in case of𝑚 = 1 and𝑚 = 7,
however the absence of the peak in the latter case (Figure 6b) sug-
gests that the attained coverage is the maximum reachable by this
method and not caused by misplacement. The trend is corroborated
by Figure 6c, where for bigger holes DHDR reaches lower cover-
age. This is caused by the involvement of only the nodes at the
hole border for healing: they can only move by a certain extent to
avoid leaving other parts uncovered. Instead, FSHR achieves better
performance when increasing𝑚: the bigger the hole the more grid

Table 5: Results of the comparison for single-hole 7-failure
experiments, for different 𝑃𝑓 values.

DHDR [13] FSHR [33] ours

𝑷𝒇 Avg. % 95% CI Avg. % 95% CI Avg. % 95% CI

0 60.38 1.96 38.80 3.76 97.53 1.62
0.05 33.48 4.62 34.77 3.69 97.13 1.76
0.1 8.29 6.34 34.23 3.65 97.58 1.63
0.25 5.10 6.80 30.90 3.64 97.12 1.59

points of the discretized ROI can be used to guide the optimization
problem, resulting in better positions for the mobile nodes. Overall,
our approach shows higher coverage than DHDR and FSHR, but
slower transient to convergence. DHDR and FSHR make use of the
closest nodes for healing (on the border or scattered in the area),
while our method release the agents from farther RPs.

Finally, we tested the three approaches for the robustness to
agent failure, when healing a hole caused by 7 faulty nodes and
relying on perturbed perception. We used the same setting of Sec-
tion 5.2.3, with again 𝑃𝑓 = {0.05, 0.1, 0.25}. As previously stated,
to guarantee sufficient healing capacity, we increased the number
of agents to 11, 12, 13, respectively. The results shown in Table 5
highlights the robustness of our method, while showing the severe
drop in the coverage for DHDR and FSHR. This latter seems to be
more resilient to agent failure. However, as suggested by the overall
low coverage achieved, the failure mainly interests mobile nodes
deployed on parts of the ROI already covered by static nodes. For
this reason, their failure does not strongly impact the coverage.

The experiments showed that, on average, our method involves
56.3% less agents than DHDR and 36.23% less agents than FSHR.

6 CONCLUSIONS
In this work we addressed the problem of hole detection and heal-
ing in WSNs. We proposed a novel swarming approach inspired
by the concepts underlying blood coagulation. The agents in the
swarm, modeled as artificial platelets, use relative localization and
information gathered from the network, to detect the holes and
place in locally optimal positions, restoring the coverage. Experi-
mental results demonstrate that our algorithm efficiently reinstate
the service in uncovered areas, showing good flexibility and robust-
ness. Future research directions point to the inclusion of collision
avoidance capabilities and a model for the residual energy level of
the agents. Finally, we will work toward the addition of obstacles
in the space while exploring different positioning approaches.
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