

Driver Distraction Detection on Edge Devices

via Explainable Artificial Intelligence

Mario G.C.A. CIMINO

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

Antonio DI TECCO

Department of Information Engineering, University of Florence, University of Pisa

Florence, 50139, Italy

Pier Francesco FOGLIA

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

Tommaso NOCCHI

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

Cosimo Antonio PRETE

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

Marco RALLI

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

Lorenzo TONELLI

Department of Information Engineering, University of Pisa

Pisa, 56122, Italy

ABSTRACT

Driver Attention Monitoring is a challenging research task, with

several complex behavioral distractions to recognize, and the

need to use non-invasive on-board systems. Recent advances in

deep learning have great potential in this field. This research aims

to propose an architectural solution based on a deep

convolutional neural network, deployed on an edge device. For

this purpose, a publicly available dataset has been exploited to

recognize various distracting driver behaviors. The model has

been validated using explainable AI techniques. Experimental

studies show that the proposed architectural solution, deployed

on an NVIDIA Jetson Nano board, achieves a throughput of 11

frames per second and an accuracy of 92%. In contrast to the

recent state-of-the-art solutions, the proposed approach covers all

the relevant requirements: (i) it is non-invasive; (ii) it has a

complexity suitable for popular edge devices; (iii) it allows a

reliable validation of the different driver distractions via

explainable AI; (iv) it achieves a competitive accuracy.

edge device, convolutional neural network, explainable artificial

intelligence.

1. INTRODUCTION

The proposed Driver Attention Monitoring System (DAMS)

aims to efficiently classify driver behavior to detect distractions.

In the last years, due to their non-invasiveness, computer vision
techniques based on deep learning have become more promising
than physiological-based and hybrid DAMS. Indeed, the former
requires only a camera, whereas the latter requires that sensors are
attached to the driver. On the other hand, management and
execution efforts are important requirements for popular and
resource-constrained systems such as vehicles.

The industry is highly interested in operational DAMS. For
instance, manufacturers such as Volvo have recently developed
safety systems in their car series [1]. Some of these systems use
electric signals from mechanical aspects such as pressure on the
pedals, angular acceleration during curves as well as hand
placement. Although camera-based techniques are still in the
experimental phase, Volvo recently introduced into production a
hybrid system, i.e., combining mechanical signals with those
detected by camera monitoring. These systems mainly work on
image sequences that detect the driver’s head position to
determine the driver’s status, trying to understand when the user
is not focused on driving [6]. In recent years, the maturity
achieved by Artificial Intelligence (AI) techniques has piqued
interest into the automotive field. One promising feature of AI
systems is the possibility to develop architectures for behavioral
recognition, and in particular to recognize dangerous behaviors
that distract the driver.

In the literature, this problem has been mainly considered
from a proof-of-concept point of view: to demonstrate that a
suitable deep neural network can achieve adequate accuracy.
However, research works focused on how to deploy DAMS in

Keywords: driver distraction detection, image recognition,

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

95 https://doi.org/10.54808/WMSCI2023.01.95ISBN: 978-1-950492-73-2
ISSN: 2771-0947

constrained situations are still in the preliminary phase. The
automotive sector, in fact, is characterized by energy,
computational, and physical constraints that make it difficult to
create and deploy complex models. A viable solution could be the
integration of the model into a cloud system. However, this
introduces a number of related problems in terms of security,
privacy, and response time.

In this research work, a non-invasive DAMS based on camera
and deep learning is developed and implemented on an edge
system. The edge system is able to perform both image acquisition
and behavioral recognition. Different architectural settings have
been analyzed, to select the best model via different metrics. In
order to validate the solution, Explainable AI techniques have
been used to understand the behavior of the model during
classification. The achieved accuracy is promising with respect to
the state-of-the-art. In addition, the proposed DAMS exhibits a
fast response time, while it is deployed in resource-constrained
environment. Specifically, the system has been implemented on
an edge device, namely a Raspberry 4B with hardware
accelerators, and evaluated also on an NVIDIA Jetson Nano
board, achieving the best performance. It can be integrated with
industrial systems to give a complete view of what is happening
inside the cockpit.

The paper is structured as follows. Section II focuses on
related work. The dataset and its preprocessing are covered in
Section III. In Section IV, the proposed architecture and its
development are detailed. Experimental results are discussed in
section V. Section VI summarizes the implementation aspects,
whereas the driver’s behavior detection pseudocode is studied in
Section VII. A performance analysis of the implemented system
is carried out in Section VIII. Finally, Section IX draws some
conclusions.

2. RELATED WORK

This section is devoted to review the relevant work from the

literature on driver state monitoring, with a focus on the use of
convolutional neural networks fed by images taken by an in-dash
camera.

A well-known example of distracting behavior is the use of a
smartphone [2], [19], [20]. One of the first research works and
datasets developed with images made through onboard cameras
was published by Zhang et al. [3]. Specifically, the authors
proposed an approach to detect the use of a mobile phone based
on the hands, face and mouth features of the drivers. Another
relevant research was developed in 2015, by Nikhil et al. [4]. The
authors created a dataset for hand detection in the automotive
environment, achieving an average precision of 70% via the
Aggregate Channel Features (ACF) object detector. On the other
hand, Le et al. [5] proposed a hand and face detector based on the
Faster RCNN architecture, outperforming the existing methods by
achieving an accuracy of 94.2%. Specifically, the proposed
system was able to perform hands-on-wheel detection at a rate of
0.09 frames per seconds (fps), i.e., it required about 11 s to
elaborate a frame. Another approach named Automatic
Identification of Driver's Smartphone [18] was developed to find
the position of the smartphone in the car, by analyzing and fusing
information from sensors available on commodity smartphones.

In general, neural networks allow to develop systems capable
of recognizing the driver’s behavior with greater precision.
Today, some works analyze this approach [6]. Different deep
learning architectures are today available for this purpose:
YOLOv4 [7], SSD [8], Faster-RCNN [9], and so on. An essential
requirement concerns the dataset used for the creation of models,

which must be based on images captured directly inside the car,
under different environmental circumstances. However, several
studies in the literature have investigated how various deep neural
networks can classify images without considering their
deployment in an embedded system for a car. With regard to this
requirement, the work presented in [10] reports the analysis of
some neural network architectures, such as VGG, Resnet, Alex
Net, and Google Net, applied on a Jetson TX1 board, an
embedded system-on-module (SoM) with quad-core ARM
Cortex-A57, 4GB LPDDR4 and integrated 256-core Maxwell
GPU. It is suitable for deploying computer vision and deep
learning. The authors achieved an accuracy of around 86% via the
faster neural network. In addition to the networks described
above, other models can be considered. In [11], the authors
analyzed the problem using a neural network architecture called
VGG19. However, the system was developed on high-
performance hardware: Intel i5 quad-core 3.5 GHz, RAM 16 GB,
and NVIDIA GPU GTX 1070 8 GB. In contrast, the focus of this
research is to develop a DAMS on an effective edge device.

Other approaches in the literature [12] are based on the
analysis of the user’s face, focusing on the perceived fatigue rather
than on the type of distraction. The approach is based on image
inspection, focusing on the mouth and eyes. The proposed
solution does not require the use of artificial intelligence, but it is
knowledge-based: it is mainly based on the use of analytical
models processing portions of the face.

In a research work [13] Sahoo et al. developed a Squeeze Net
neural network that classifies driver’s images provided by a
camera. The neural network can be loaded and executed directly
on a Raspberry. A limitation of the proposed approach is that it
classifies the driver through a single image (frame). In contrast,
the approach proposed in this paper generates a classification
based on a sequence of images, to better represent the driver’s
behavior. Another difference is on the dataset: in this paper, the
dataset is enriched with images taken in the wild by the Raspberry
Camera. The purpose is to improve the generalization capabilities
of the network by considering additional real-life scenarios. The
next Section focuses on the dataset preparation.

3. DATASET AND ITS PREPROCESSING

In order to cover the most relevant distracting driver’s behavior,

an initial dataset has been enriched. The initial dataset consists of

a collection of images divided into 10 different classes,

exemplified in Figure 1:

• C0: safe driving;

• C1: driver is texting using the right hand;

• C2: driver is talking on the phone using the right hand;

• C3: driver is texting using the left hand;

• C4: driver is talking on the phone using the left hand;

• C5: driver is operating the radio;

• C6: driver is drinking;

• C7: driver is reaching behind;

• C8: driver is tidying up hair or applying makeup;

• C9: driver is talking to passenger.

To differentiate the images of the dataset, the images are first
subsampled, for selected drivers and for chromatic effects.
Numerous cases of accidents are caused by distraction induced by
activities related to mobile phone use [19], [20]. To give more
focus on the use of the phone, the dataset is then divided into three
different classes: safe driving, using the phone, distraction (e.g.
operating the radio, or taking your eyes off the road momentarily).

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

96

Specifically, all images of classes C1, C2, C3, and C4 are
categorized into a new class Phone, whereas images of classes C5,
C6, C7, and C8 are categorized into a new class Distraction.
Finally, Class C0 is categorized into a class Safe. It is worth noting
that Class C9 has been ignored as it is similar to Class C0.
Furthermore, to better generalize the network classification
capability, the dataset has been enriched with novel in-car images
captured in the wild by the Raspberry Pi Camera v2 (Figure 2).

C0 C1 C2 C3 C4

C5 C6 C7 C8 C9

Figure 1: Images of Driver Distraction dataset [26].

Class Phone Class Distraction Class Safe

Figure 2: Images taken in the wild by Pi Camera.

In order to mitigate textural bias, data augmentation has been

also applied to all classes, by carrying out a number of
transformations such as flipping (horizontally and vertically) and
rotation (90°, 180°, and 270°). To standardize the input size, all
images have been resampled to 224×224 pixels. To build the final
dataset, 3,261 images have been randomly selected: 1,172 for
Class Phone, 986 for Class Distraction, and 1,103 frames for
Class Safe. At this point, the dataset has been split into training,
validation, and test sets. Each set with a different number of
frames per class as summarized in Table 1.

Table 1: Dataset distribution per set and class.

Set Phone Dist. Safe Total

Training 987 826 881 2,694

Validation 104 85 130 319

Test 81 75 92 248

Total 1,172 986 1,103 3,261

4. PROPOSED ARCHITECTURE AND

ITS IMPLEMENTATION

The architecture adopted in this work is the VGG16 deep

neural network model [14], pre-trained with the ImageNet dataset
[14]. We tuned the VGG16 via transfer-learning techniques [24].
The VGG16 is a convolutional model used for object detection
and classification. Figure 3 shows the overall architecture of the
VGG16 network. Specifically, the convolutional base consists of
five blocks with either two or three convolutional layers, with 3×3
filters. All hidden layers are equipped with ReLU layers.
Furthermore, max-pooling is performed on a 2×2 window
between blocks, with stride 2. The convolutional base is followed
by a classifier made of three fully connected layers. The final layer

is a softmax layer. The network expects a fixed dimension input
of 3×224×224, and 1,000 probability output values.

With respect to the standard VGG16 classifier, in the
developed architecture the classification layer is comprised of two
fully connected layers of 25,088 and 128 neurons, and a softmax
layer, which outputs three probability values, corresponding to the
three classes.

The training process has been based on two strategies:

(i) feature extraction: the VGG16 convolutional base is frozen,

and feature extraction is carried out by taking its output for

training the classification layer;

(ii) fine-tuning: the VGG16 convolutional base has been fine-

tuned, by optimizing the convolutional blocks and freezing

the others, to train the classification layer.

Figure 3: VGG16 model architecture [14].

According to the two training strategies, three models have

been trained: (i) standard model, trained with feature extraction;
(ii) first fine-tuned model, trained via the fine-tuning strategy with
5th convolutional block optimized; (ii) second fine-tuned model,
trained via the fine-tuning strategy with 5th and 4th convolutional
block optimized.

The architectural implementation has been based on Python
3.9 64-bit [22] and the Pytorch package [23]. As a loss function,
the cross-entropy has been used. As an adaptive parametric
optimizer, the RMSprop algorithm has been used, with learning
rate lr=10-5 and epsilon eps=10-7. Early stop on validation set loss
has been used to appropriately stop the training process, with
patience equal to 6 consecutive epochs. The training has been
carried out on an Intel CPU i7-12700K, 32 GB of DDR4 DRAM,
and NVIDIA GPU 3060 Ti.

5. EXPERIMENTAL RESULTS

The different architectural models have been sequentially

trained. In the following, some training processes are summarized
and represented. The standard model achieved the best
performance at epoch 33 with a validation loss of 0.5802 and an
accuracy of 0.9781 (Figure 4). The first fine-tuned model
achieved the best performance at epoch 15, with a validation loss
of 0.5789 and an accuracy of 0.9749 (Figure 5). Finally, the
second fine-tuned model achieved at epoch 26 a validation loss of
0.5728 with an accuracy of 0.9749 (Figure 6). As a matter of fact,
the three modes achieve similar validation accuracy. In order to
understand the generalization capabilities, the three models have
been evaluated on the test set. Results are illustrated in terms of
confusion matrixes in Figure 7 (standard model), Figure 8 (first
fine-tuned model), and Figure 9 (second fine-tuned model).

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

97

In each confusion matrix, the last column reports, for each
class: (i) the total number of outputs generated by the classifier;
(ii) Precision rate [28], i.e., TP/(FP+TP), where TP and FP are the
number of True Positive and False Positive samples, respectively.
The last row reports, for each class: (i) the total number of inputs
belonging to that class; (ii) Recall rate [28], i.e., TP/(TP+FN),
where FN is the number of False Negative samples. Finally, the
last box along the main diagonal represents the overall Accuracy,
i.e., the fraction of correct classifications. A good classifier must
have both precision and recall with high values [28], [29]: the
precision represents the classifier's effectiveness in recognizing
the class (proportion of positively classified identifiers that are
correctly predicted), while the recall represents the classifier's
ability to correctly detect samples belonging to the class
(proportion of real positives that are correctly predicted).

(a)

(b)

Figure 4: Standard model accuracy (a) and loss (b) for

training and validation sets.

The number of correct classifications (True Positive) for each

class is represented on confusion matrices by the values in the

green boxes. The lowest value is achieved by the standard model

(Figure 7). The first fine-tuned model achieves better results, in

particular for classes Distraction and Safe (Figure 8). However,

for this model, while the Recall rate increases or remains constant

for each class, the Precision rate decreases for the phone class. In

contrast, in the second fine-tuned model the number of correct

classifications increases for each class, and the Precision and

Recall rates also increase for each class (Figure 9). The better

performance of the second fine-tuned model is also confirmed in

Table 2, where the overall model accuracy and weighted F1-

score, i.e., the harmonic mean of Precision and Recall rates, are

shown. Specifically, the model with the best accuracy is the

second fine-tuned model, which achieves an accuracy of 0.9234.

(a)

(b)

Figure 5: First fine-tuned model accuracy (a) and loss (b) for

training and validation sets.

In order to understand how the best-performing model classifies

images, the class activation heatmaps have been generated [27].

This technique is useful to understand which parts of a given

image (represented in hot colors) led a convolutional model to its

classification output [27]. To this aim, Figures 10-12 show some

pairs of sample images to compare. For each pair, the first image

is correctly classified, whereas the second one is erroneously

classified. Specifically, Figure 10 represents safe driving: both

heatmaps focus on the driver’s hand positions, correctly kept on

the wheel, and directed towards the road; however, the second

heatmap is partially activated by the front panel, which has been

confused with a phone. On the other hand, Figure 11 represents

distracted driving: the driver is taking his hands off the wheel,

rotating his body in Figure 11a; however, in Figure 11b the

heatmap is partially activated by the external environment,

leading to the class Phone. Finally, Figure 12 shows a driver who

is talking on or picking up the phone: the heatmap in Figure 12a

correctly focuses on the driver’s right hand, which is holding the

phone; however, the heatmap in Figure 12b does not recognize

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

98

the phone in the driver’s left hand, but it focuses on the free

steering, giving the Distraction class.

(a)

(b)

Figure 6: Second fine-tuned model accuracy (a) and loss (b)

for training and validation sets.

Figure 7: Standard model confusion matrix on test set.

Figure 8: First fined-tuned model confusion matrix on test set.

Figure 9: Second fined-tuned model confusion matrix on test set.

Table 2: Accuracy and weighted F1-score for each model.

Model Accuracy F1-score

Standard 0.8347 0.8352

First fine-tuned 0.8710 0.8716

Second fine-tuned 0.9234 0.9239

 (a)

(b)

Figure 10: The model correctly classifies it as Safe (a). The

model misclassifies it as Phone (b).

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

99

 (a)

 (b)

Figure 11: The model correctly classifies it as Distraction (a).
The model misclassifies it as Phone (b).

 (a)

(b)

Figure 12: The model correctly classifies it as Phone (a). The
model misclassifies it as Distraction (b).

It is worth noting that one frequent cause of misclassification
occurs when the driver is moving very fast with respect to the
framerate.

6. IMPLEMENTATION ASPECTS

The proposed DAMS require an onboard device capable of

executing a neural network based on the second fine-tuned model.
For this purpose, a Raspberry Pi 4B [16] has been used as an edge
device. It is a compact device with low energy consumption, but
it is limited in terms of computing capacity.

Since the architectural model is based on a complex CNN
network, it does not achieve an acceptable throughput (in frame
per second, fps) on this device. To improve its performance, the
Raspberry has been equipped with a Neural Compute Stick 2
(NCS2) [17]. NCS2 is a USB stick that provides a dedicated deep
neural network hardware accelerator for DNN inference, based on
the Intel Movidius Myriad VPU processor.

To run the model on NCS2, it is necessary to install on the
Raspberry a toolkit called Openvino [25], for optimizing and
deploying deep learning models on Intel devices. Specifically, the
Openvino version installed is 2021.4.2. It accepts models
according to a format of graph representation and operation set.
The graph is represented with XML and binary files, and this
representation is referred to as the Intermediate Representation
(IR). IR version 10 has been adopted, because the next version is
not compatible [21].

The training of the model is carried out on a development
server and then deployed on Raspberry for its execution. For this
purpose, the Pytorch implementation is converted to the Open
Neural Network Exchange (ONNX) format via Python libraries,
and then to IR 10.

7. DRIVER’S BEHAVIOR DETECTION

PSEUDOCODE

Figure 13 represents in pseudocode the control flow using the

classifier for detecting the driver’s behavior. Specifically, the
configuration parameters of the control flow are the following: (i)
the classificationModel, set to the second fine-tuned model, as
motivated in Section V; (ii) the fps, which indicates how many
frames per second are captured and processed by the system. The
last parameter indicates the frame block dimension used to
estimate the driver’s behavior. Specifically, a frame block is
composed of N classified frames. After the acquisition (function
getFrame), the pre-processing and classification of N frames, the
system output (variable Status in the control flow) is achieved via
a majority voting policy for each frame block. In other terms, the
most frequently predicted classes will be the block output
(classified driver’s behavior), as exemplified in Figure 14.

Figure 13: Control flow for classifying the driver’s behavior via

the trained neural network.

Specifically, N indicates how many classified frames are
needed to determine the overall driver's behavior. This is an
important value (also related to the value assigned to fps): a low
value would result in many false positives, whereas a high value
would capture transient statuses instead of the driver’s behavior,
thus returning an incorrect classification. In addition, N can
control the noise due to the fast driver’s movements. It is worth
noting that, when multiple outputs (e.g., 5) are provided with the
same label for both Safe and Phone, the system output is
Distraction for safety reasons. For the purpose of testing, the
values of fps and N have been set to 1 and 10, respectively.

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

100

Figure 15 shows a pilot test made on 91 seconds of in-car
video, via a Pi-Camera, with the related system output, for fps=1
and N=10. In the end, the system output coincides with the actual
driver’s behavior.

Figure 14: An example of three consecutive frame blocks with

fps=1 and N=10 shows that the outputs of the blocks 3, 4, and 5

are Safe, Phone, and Phone, respectively.

Figure 15: System outputs of in-car video. Note that points 3, 4

and 5 correspond to frame blocks 3, 4 and 5 in Figure 14.

8. PERFORMANCE ANALYSIS OF

THE IMPLEMENTATION

This section discusses an overall analysis of the model,
deployed on different hardware architectures. Specifically, a
Raspberry Pi 4B with NCS2 and NVIDIA Jetson Nano [30] has
been used. The performance is measured in terms of time,
throughput, and classification accuracy. Timings were recorded
on 1,000 images chosen randomly by the training set. Three
timings measured in milliseconds have been recorded, varying the
set of functions used (FUN): (i) model inference (I); (ii) image
pre-processing (PI); (iii) photo capture (CPI). The throughput is
computed based on CPI time, and measured in frames per second
(FPS). Timings in milliseconds and throughput are summarized in

Tab. 3. Here, the best performance is achieved by the Jetson Nano
device.

The Openvino model has been evaluated on Raspberry Pi
using the testing set and compared to the Pytorch model.
According to the results shown in Table 4, the accuracy of the two
models is equivalent.

Table 3: Timings (in ms) and FPS for different trials on

Raspberry Pi 4B with NCS2, and Jetson Nano.

Device I PI CPI FPS

Pi with NCS2 144.09 176.97 197.82 5.05

Jetson Nano 63.82 86.77 88.57 11.28

Table 4: Frameworks' performance comparison.

Framework Accuracy F1-score

Pytorch 0.9234 0.9240

Openvino 0.9234 0.9240

9. CONCLUSIONS

In this paper, by adopting transfer learning and fine-tuning

techniques, a VGG16 neural network has been adapted to
recognize three classes of distracting driver’s behavior: Safe,
Phone (i.e., the driver is using a mobile phone), and Distraction.
The best setting has achieved an accuracy of 92.34% on the test
set. The best performing model is deployed on a Raspberry 4B
edge device, equipped with an NCS2 accelerator, without loss of
accuracy. An approach is proposed for detecting driver
distraction, on the basis of a majority voting policy. The voting
policy has been tested by using sample videos. The throughput in
FPS has been evaluated. Specifically, the throughputs achievable
on both Raspberry and Jetson Nano boards have been evaluated.

As a future work, the effectiveness of the proposed approach
could be evaluated by varying its parameters (fps and N). Besides,
it is worth noting that from the heatmap analysis (and the dataset),
it can be said that the developed network does not consider the
driver's face to detect the driver's behavior. As a consequence, in
case the driver is not focusing on the road, and his hands are on
the wheeling, the model will misclassify the driver's behavior.
This phenomenon could be investigated as a future work,
eventually utilizing a network that also focuses on the driver's
gaze, to improve the detection accuracy of driver’s behavior.

ACKNOWLEDGEMENTS

Work partially supported by: (i) the Italian Ministry of

Education and Research (MIUR) in the framework of the
FoReLab project (Departments of Excellence); (ii) PNRR - M4C2
- Investment 1.3, Partenariato Esteso PE00000013 - "FAIR -
Future Artificial Intelligence Research" - Spoke 1 "Human-
centered AI", and Investment 1.5 "Creating and strengthening of
"innovation ecosystems", building "territorial R&D leaders",
project "THE - Tuscany Health Ecosystem", Spoke 6 "Precision
Medicine and Personalized Healthcare", funded by the European
Commission under the NextGeneration EU programme; (iii) the
Italian Ministry of University and Research (MUR) in the
framework of the National Recovery and Resilience Plan, in the
National Center for Sustainable Mobility MOST/Spoke10; (iv)
the University of Pisa, in the framework of the PRA_2022_101
project “Decision Support Systems for territorial networks for

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

101

managing ecosystem services”; (v) the Italian Ministry of
University and Research (MUR), in the framework of the
"Reasoning" project, PRIN 2020 LS Programme, Project number
2493 04-11-2021.

REFERENCES

[1] Volvo Car Corporation, In-car cameras and intervention against
intoxication distraction: Animation,
https://www.media.volvocars.com/global/en-
gb/media/videos/250162/in-car-cameras-and-intervention-against-
intoxication-distraction-animation, accessed on April 2023

[2] U.S. Department of Transportation, Distracted Driving Dangers and
Statistics, https://www.nhtsa.gov/risky-driving/distracted-driving/.

[3] X. Zhang, et. al. Visual recognition of driver hand-held cell phone
use based on hidden crf. In 2011 IEEE Int. Conf. on Vehicular
Electronics and Safety, pp 248–251, July 2011.

[4] N. Das, E. Ohn-Bar, and M. M. Trivedi. On performance evaluation
of driver hand detection algorithms: Challenges, dataset, and metrics.
In 2015 IEEE 18th Int. Conf. on Intelligent Transportation Systems,
pp. 2953– 2958, Sept 2015.

[5] T. H. N. Le, et al.. Multiple scale faster-rcnn approach to driver cell-
phone usage and hands on steering wheel detection. In 2016 IEEE
Conf. on Computer Vision and Pattern Recognition Workshops,.

[6] A. Kashevnik, R. Shchedrin, C. Kaiser and A. Stocker, "Driver
Distraction Detection Methods: A Literature Review and
Framework," IEEE Access, vol. 9, pp. 60063-60076, 2021.

[7] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, "YOLOv4:
Optimal speed and accuracy of object detection", arXiv:2004.10934,
2020, http://arxiv.org/abs/2004.10934.

[8] W. Liu, D. Anguelov, et al., SSD: Single Shot MultiBox Detector,
Cham, Switzerland: Springer, vol. 9905, pp. 21-37, 2015.

[9] S. Ren, K. He, et al. "Faster R-CNN: Towards real-time object
detection with region proposal networks", IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39(6), 1137-1149, Jun. 2017.

[10] Duy Tran, et al. Real-time detection of distracted driving based on
deep learning. IET ITS, Vol. 12(10), pp. 1210-1219.

[11] Ou, C., Ouali, C., Karray, F. . Transfer Learning Based Strategy for
Improving Driver Distraction Recognition. In: Image Analysis and
Recognition. LNCS, vol 10882. Springer, Cham.

[12] R. Manoharan and S. Chandrakala, "Android OpenCV based
effective driver fatigue and distraction monitoring system," 2015
Intern. Conf. on Computing and Communications Technologies
(ICCCT), Chennai, India, 2015, pp. 262-266.

[13] Sahoo, G.K., Das, S.K. & Singh, P. A deep learning-based distracted
driving detection solution implemented on embedded system.
Multimed Tools Appl (2022).

[14] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional
networks for large-scale image recognition. 3rd International
Conference on Learning Representations (ICLR 2015), 1–14.

[15] Deng, J., Dong, W., et al.. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and
pattern recognition (pp. 248-255).

[16] Raspberry Pi Fundation, Raspberry Pi 4 Model B,
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[17] Intel, Intel Neural Compute Stick 2,
https://www.intel.com/content/www/us/en/products/sku/140109/int
el-neural-compute-stick-2/specifications.html.

[18] H. Park, D. Ahn, et al. "Automatic Identification of Driver’s
Smartphone Exploiting Common Vehicle-Riding Actions," IEEE
Transactions on Mobile Computing, vol. 17(2), pp. 265-278, 2018,

[19] European Road Safety Observatory, Road Safety Thematic Report –
Driver distraction, March 2022, available on line at https://road-
safety.transport.ec.europa.eu/system/files/2022-
04/Road_Safety_Thematic_Report_Driver_Distraction_2022.pdf,

[20] National Center for Statistics and Analysis. (2022, May). Distracted
driving 2020 (Research Note. Report No. DOT HS 813 309).
National Highway Traffic Safety Administration

[21] Intel, Unable to Use Intermediate Representation (IR) v11 with
OpenVINO 2021.3 on Raspberry Pi,
https://www.intel.com/content/www/us/en/support/articles/0000931
46/software.html, accessed on April 2023

[22] Python software fundation, Python, https://www.python.org/.

[23] Linux fundation, Pytorch, https://pytorch.org/

[24] Zhuang, F., Qi, Z., et al. (2020). A comprehensive survey on transfer
learning. Proceedings of the IEEE, 109(1), 43-76.

[25] Intel, Openvino documentation,
https://docs.openvino.ai/latest/home.html, accessed on April 2023

[26] Ezzouhri, et al (2021). Robust deep learning-based driver distraction
detection and classification. IEEE Access, 9, 168080-168092.

[27] R. R. Selvaraju, et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization, 2017 IEEE Inter. Conf.
on Computer Vision Venice, Italy, 2017, pp. 618-626.

[28] Olson, D.L.; Delen, D. Advanced Data Mining Techniques, 1st ed.;
Springer: Berlin/Heidelberg, Germany, 2008; p. 138.

[29] De Vitis, G.A.; et al. Fast Blob and Air Line Defects Detection for
High Speed Glass Tube Production Lines. J. Imaging 2021, 7, 223.
https://doi.org/10.3390/jimaging7110223

[30] NVIDIA, Jetson Nano Developer Kit,
https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

Proceedings of the 27th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2023)

102

	SA300MJ

