
 

Driver Distraction Detection on Edge Devices 

via Explainable Artificial Intelligence 

 
Mario G.C.A. CIMINO 

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

Antonio DI TECCO 

Department of Information Engineering, University of Florence, University of Pisa 

Florence, 50139, Italy 

 

Pier Francesco FOGLIA 

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

Tommaso NOCCHI  

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

Cosimo Antonio PRETE 

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

Marco RALLI 

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

Lorenzo TONELLI 

Department of Information Engineering, University of Pisa 

Pisa, 56122, Italy 

 

 

 

ABSTRACT 

 

Driver Attention Monitoring is a challenging research task, with 

several complex behavioral distractions to recognize, and the 

need to use non-invasive on-board systems. Recent advances in 

deep learning have great potential in this field. This research aims 

to propose an architectural solution based on a deep 

convolutional neural network, deployed on an edge device. For 

this purpose, a publicly available dataset has been exploited to 

recognize various distracting driver behaviors. The model has 

been validated using explainable AI techniques. Experimental 

studies show that the proposed architectural solution, deployed 

on an NVIDIA Jetson Nano board, achieves a throughput of 11 

frames per second and an accuracy of 92%. In contrast to the 

recent state-of-the-art solutions, the proposed approach covers all 

the relevant requirements: (i) it is non-invasive; (ii) it has a 

complexity suitable for popular edge devices; (iii) it allows a 

reliable validation of the different driver distractions via 

explainable AI; (iv) it achieves a competitive accuracy. 

 

edge device, convolutional neural network, explainable artificial 

intelligence. 

1. INTRODUCTION  

 
The proposed Driver Attention Monitoring System (DAMS) 

aims to efficiently classify driver behavior to detect distractions. 

In the last years, due to their non-invasiveness, computer vision 
techniques based on deep learning have become more promising 
than physiological-based and hybrid DAMS. Indeed, the former 
requires only a camera, whereas the latter requires that sensors are 
attached to the driver. On the other hand, management and 
execution efforts are important requirements for popular and 
resource-constrained systems such as vehicles. 

The industry is highly interested in operational DAMS. For 
instance, manufacturers such as Volvo have recently developed 
safety systems in their car series [1]. Some of these systems use 
electric signals from mechanical aspects such as pressure on the 
pedals, angular acceleration during curves as well as hand 
placement. Although camera-based techniques are still in the 
experimental phase, Volvo recently introduced into production a 
hybrid system, i.e., combining mechanical signals with those 
detected by camera monitoring. These systems mainly work on 
image sequences that detect the driver’s head position to 
determine the driver’s status, trying to understand when the user 
is not focused on driving [6]. In recent years, the maturity 
achieved by Artificial Intelligence (AI) techniques has piqued 
interest into the automotive field. One promising feature of AI 
systems is the possibility to develop architectures for behavioral 
recognition, and in particular to recognize dangerous behaviors 
that distract the driver. 

In the literature, this problem has been mainly considered 
from a proof-of-concept point of view: to demonstrate that a 
suitable deep neural network can achieve adequate accuracy. 
However, research works focused on how to deploy DAMS in 
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constrained situations are still in the preliminary phase. The 
automotive sector, in fact, is characterized by energy, 
computational, and physical constraints that make it difficult to 
create and deploy complex models. A viable solution could be the 
integration of the model into a cloud system. However, this 
introduces a number of related problems in terms of security, 
privacy, and response time. 

In this research work, a non-invasive DAMS based on camera 
and deep learning is developed and implemented on an edge 
system. The edge system is able to perform both image acquisition 
and behavioral recognition. Different architectural settings have 
been analyzed, to select the best model via different metrics. In 
order to validate the solution, Explainable AI techniques have 
been used to understand the behavior of the model during 
classification. The achieved accuracy is promising with respect to 
the state-of-the-art. In addition, the proposed DAMS exhibits a 
fast response time, while it is deployed in resource-constrained 
environment. Specifically, the system has been implemented on 
an edge device, namely a Raspberry 4B with hardware 
accelerators, and evaluated also on an NVIDIA Jetson Nano 
board, achieving the best performance. It can be integrated with 
industrial systems to give a complete view of what is happening 
inside the cockpit. 

The paper is structured as follows. Section II focuses on 
related work. The dataset and its preprocessing are covered in 
Section III. In Section IV, the proposed architecture and its 
development are detailed. Experimental results are discussed in 
section V. Section VI summarizes the implementation aspects, 
whereas the driver’s behavior detection pseudocode is studied in 
Section VII.  A performance analysis of the implemented system 
is carried out in Section VIII. Finally, Section IX draws some 
conclusions. 

 

2. RELATED WORK 

 
This section is devoted to review the relevant work from the 

literature on driver state monitoring, with a focus on the use of 
convolutional neural networks fed by images taken by an in-dash 
camera. 

A well-known example of distracting behavior is the use of a 
smartphone [2], [19], [20]. One of the first research works and 
datasets developed with images made through onboard cameras 
was published by Zhang et al. [3]. Specifically, the authors 
proposed an approach to detect the use of a mobile phone based 
on the hands, face and mouth features of the drivers. Another 
relevant research was developed in 2015, by Nikhil et al. [4]. The 
authors created a dataset for hand detection in the automotive 
environment, achieving an average precision of 70% via the 
Aggregate Channel Features (ACF) object detector. On the other 
hand, Le et al. [5] proposed a hand and face detector based on the 
Faster RCNN architecture, outperforming the existing methods by 
achieving an accuracy of 94.2%. Specifically, the proposed 
system was able to perform hands-on-wheel detection at a rate of 
0.09 frames per seconds (fps), i.e., it required about 11 s to 
elaborate a frame. Another approach named Automatic 
Identification of Driver's Smartphone [18] was developed to find 
the position of the smartphone in the car, by analyzing and fusing 
information from sensors available on commodity smartphones. 

In general, neural networks allow to develop systems capable 
of recognizing the driver’s behavior with greater precision. 
Today, some works analyze this approach [6]. Different deep 
learning architectures are today available for this purpose: 
YOLOv4 [7], SSD [8], Faster-RCNN [9], and so on. An essential 
requirement concerns the dataset used for the creation of models, 

which must be based on images captured directly inside the car, 
under different environmental circumstances. However, several 
studies in the literature have investigated how various deep neural 
networks can classify images without considering their 
deployment in an embedded system for a car. With regard to this 
requirement, the work presented in [10] reports the analysis of 
some neural network architectures, such as VGG, Resnet, Alex 
Net, and Google Net, applied on a Jetson TX1 board, an 
embedded system-on-module (SoM) with quad-core ARM 
Cortex-A57, 4GB LPDDR4 and integrated 256-core Maxwell 
GPU. It is suitable for deploying computer vision and deep 
learning. The authors achieved an accuracy of around 86% via the 
faster neural network. In addition to the networks described 
above, other models can be considered. In [11], the authors 
analyzed the problem using a neural network architecture called 
VGG19. However, the system was developed on high-
performance hardware: Intel i5 quad-core 3.5 GHz, RAM 16 GB, 
and NVIDIA GPU GTX 1070 8 GB. In contrast, the focus of this 
research is to develop a DAMS on an effective edge device. 

Other approaches in the literature [12] are based on the 
analysis of the user’s face, focusing on the perceived fatigue rather 
than on the type of distraction. The approach is based on image 
inspection, focusing on the mouth and eyes. The proposed 
solution does not require the use of artificial intelligence, but it is 
knowledge-based: it is mainly based on the use of analytical 
models processing portions of the face. 

In a research work [13] Sahoo et al. developed a Squeeze Net 
neural network that classifies driver’s images provided by a 
camera. The neural network can be loaded and executed directly 
on a Raspberry. A limitation of the proposed approach is that it 
classifies the driver through a single image (frame). In contrast, 
the approach proposed in this paper generates a classification 
based on a sequence of images, to better represent the driver’s 
behavior. Another difference is on the dataset: in this paper, the 
dataset is enriched with images taken in the wild by the Raspberry 
Camera. The purpose is to improve the generalization capabilities 
of the network by considering additional real-life scenarios. The 
next Section focuses on the dataset preparation. 

 

3. DATASET AND ITS PREPROCESSING 

 
In order to cover the most relevant distracting driver’s behavior, 

an initial dataset has been enriched. The initial dataset consists of 

a collection of images divided into 10 different classes, 

exemplified in Figure 1: 

• C0: safe driving; 

• C1: driver is texting using the right hand; 

• C2: driver is talking on the phone using the right hand; 

• C3: driver is texting using the left hand; 

• C4: driver is talking on the phone using the left hand; 

• C5: driver is operating the radio; 

• C6: driver is drinking; 

• C7: driver is reaching behind; 

• C8: driver is tidying up hair or applying makeup; 

• C9: driver is talking to passenger. 

 

To differentiate the images of the dataset, the images are first 
subsampled, for selected drivers and for chromatic effects. 
Numerous cases of accidents are caused by distraction induced by 
activities related to mobile phone use [19], [20]. To give more 
focus on the use of the phone, the dataset is then divided into three 
different classes: safe driving, using the phone, distraction (e.g. 
operating the radio, or taking your eyes off the road momentarily). 
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Specifically, all images of classes C1, C2, C3, and C4 are 
categorized into a new class Phone, whereas images of classes C5, 
C6, C7, and C8 are categorized into a new class Distraction. 
Finally, Class C0 is categorized into a class Safe. It is worth noting 
that Class C9 has been ignored as it is similar to Class C0. 
Furthermore, to better generalize the network classification 
capability, the dataset has been enriched with novel in-car images 
captured in the wild by the Raspberry Pi Camera v2 (Figure 2). 

 

C0 C1 C2 C3 C4 

C5 C6 C7 C8 C9 

Figure 1: Images of Driver Distraction dataset [26]. 

 
 

   

   
Class Phone Class Distraction Class Safe 

Figure 2: Images taken in the wild by Pi Camera. 

 
In order to mitigate textural bias, data augmentation has been 

also applied to all classes, by carrying out a number of 
transformations such as flipping (horizontally and vertically) and 
rotation (90°, 180°, and 270°). To standardize the input size, all 
images have been resampled to 224×224 pixels. To build the final 
dataset, 3,261 images have been randomly selected: 1,172 for 
Class Phone, 986 for Class Distraction, and 1,103 frames for 
Class Safe. At this point, the dataset has been split into training, 
validation, and test sets. Each set with a different number of 
frames per class as summarized in Table 1. 

 

Table 1: Dataset distribution per set and class. 

Set Phone Dist. Safe Total 

Training 987 826 881 2,694 

Validation 104 85 130 319 

Test 81 75 92 248 

Total 1,172 986 1,103 3,261 

 

4. PROPOSED ARCHITECTURE AND  

ITS IMPLEMENTATION 

 
The architecture adopted in this work is the VGG16 deep 

neural network model [14], pre-trained with the ImageNet dataset 
[14]. We tuned the VGG16 via transfer-learning techniques [24]. 
The VGG16 is a convolutional model used for object detection 
and classification. Figure 3 shows the overall architecture of the 
VGG16 network. Specifically, the convolutional base consists of 
five blocks with either two or three convolutional layers, with 3×3 
filters. All hidden layers are equipped with ReLU layers. 
Furthermore, max-pooling is performed on a 2×2 window 
between blocks, with stride 2. The convolutional base is followed 
by a classifier made of three fully connected layers. The final layer 

is a softmax layer. The network expects a fixed dimension input 
of 3×224×224, and 1,000 probability output values. 

With respect to the standard VGG16 classifier, in the 
developed architecture the classification layer is comprised of two 
fully connected layers of 25,088 and 128 neurons, and a softmax 
layer, which outputs three probability values, corresponding to the 
three classes. 

The training process has been based on two strategies: 

(i) feature extraction: the VGG16 convolutional base is frozen, 

and feature extraction is carried out by taking its output for 

training the classification layer; 

(ii) fine-tuning: the VGG16 convolutional base has been fine-

tuned, by optimizing the convolutional blocks and freezing 

the others, to train the classification layer. 

 

 
Figure 3: VGG16 model architecture [14]. 

 
According to the two training strategies, three models have 

been trained: (i) standard model, trained with feature extraction; 
(ii) first fine-tuned model, trained via the fine-tuning strategy with 
5th convolutional block optimized; (ii) second fine-tuned model, 
trained via the fine-tuning strategy with 5th and 4th convolutional 
block optimized. 

The architectural implementation has been based on Python 
3.9 64-bit [22] and the Pytorch package [23]. As a loss function, 
the cross-entropy has been used. As an adaptive parametric 
optimizer, the RMSprop algorithm has been used, with learning 
rate lr=10-5 and epsilon eps=10-7. Early stop on validation set loss 
has been used to appropriately stop the training process, with 
patience equal to 6 consecutive epochs. The training has been 
carried out on an Intel CPU i7-12700K, 32 GB of DDR4 DRAM, 
and NVIDIA GPU 3060 Ti. 

 

5. EXPERIMENTAL RESULTS 

 
The different architectural models have been sequentially 

trained. In the following, some training processes are summarized 
and represented. The standard model achieved the best 
performance at epoch 33 with a validation loss of 0.5802 and an 
accuracy of 0.9781 (Figure 4). The first fine-tuned model 
achieved the best performance at epoch 15, with a validation loss 
of 0.5789 and an accuracy of 0.9749 (Figure 5). Finally, the 
second fine-tuned model achieved at epoch 26 a validation loss of 
0.5728 with an accuracy of 0.9749 (Figure 6). As a matter of fact, 
the three modes achieve similar validation accuracy. In order to 
understand the generalization capabilities, the three models have 
been evaluated on the test set. Results are illustrated in terms of 
confusion matrixes in Figure 7 (standard model), Figure 8 (first 
fine-tuned model), and Figure 9 (second fine-tuned model). 
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In each confusion matrix, the last column reports, for each 
class: (i) the total number of outputs generated by the classifier; 
(ii) Precision rate [28], i.e., TP/(FP+TP), where TP and FP are the 
number of True Positive and False Positive samples, respectively. 
The last row reports, for each class: (i) the total number of inputs 
belonging to that class; (ii) Recall rate [28], i.e., TP/(TP+FN), 
where FN is the number of False Negative samples. Finally, the 
last box along the main diagonal represents the overall Accuracy, 
i.e., the fraction of correct classifications. A good classifier must 
have both precision and recall with high values [28], [29]: the 
precision represents the classifier's effectiveness in recognizing 
the class (proportion of positively classified identifiers that are 
correctly predicted), while the recall represents the classifier's 
ability to correctly detect samples belonging to the class 
(proportion of real positives that are correctly predicted). 

 

(a) 
 

(b) 

Figure 4: Standard model accuracy (a) and loss (b) for 

training and validation sets. 
 

 

The number of correct classifications (True Positive) for each 

class is represented on confusion matrices by the values in the 

green boxes. The lowest value is achieved by the standard model 

(Figure 7). The first fine-tuned model achieves better results, in 

particular for classes Distraction and Safe (Figure 8). However, 

for this model, while the Recall rate increases or remains constant 

for each class, the Precision rate decreases for the phone class. In 

contrast, in the second fine-tuned model the number of correct 

classifications increases for each class, and the Precision and 

Recall rates also increase for each class (Figure 9). The better 

performance of the second fine-tuned model is also confirmed in 

Table 2, where the overall model accuracy and weighted F1-

score, i.e., the harmonic mean of Precision and Recall rates, are 

shown. Specifically, the model with the best accuracy is the 

second fine-tuned model, which achieves an accuracy of 0.9234. 

 
 

(a) 

(b) 

 

Figure 5: First fine-tuned model accuracy (a) and loss (b) for 

training and validation sets. 
 

 

In order to understand how the best-performing model classifies 

images, the class activation heatmaps have been generated [27]. 

This technique is useful to understand which parts of a given 

image (represented in hot colors) led a convolutional model to its 

classification output [27]. To this aim, Figures 10-12 show some 

pairs of sample images to compare. For each pair, the first image 

is correctly classified, whereas the second one is erroneously 

classified. Specifically, Figure 10 represents safe driving: both 

heatmaps focus on the driver’s hand positions, correctly kept on 

the wheel, and directed towards the road; however, the second 

heatmap is partially activated by the front panel, which has been 

confused with a phone. On the other hand, Figure 11 represents 

distracted driving: the driver is taking his hands off the wheel, 

rotating his body in Figure 11a; however, in Figure 11b the 

heatmap is partially activated by the external environment, 

leading to the class Phone. Finally, Figure 12 shows a driver who 

is talking on or picking up the phone: the heatmap in Figure 12a 

correctly focuses on the driver’s right hand, which is holding the 

phone; however, the heatmap in Figure 12b does not recognize 
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the phone in the driver’s left hand, but it focuses on the free 

steering, giving the Distraction class. 
 

 

(a) 

(b) 

Figure 6: Second fine-tuned model accuracy (a) and loss (b) 

for training and validation sets. 
 

 

 

 

Figure 7: Standard model confusion matrix on test set.  

 

 
Figure 8: First fined-tuned model confusion matrix on test set. 

 

 
Figure 9: Second fined-tuned model confusion matrix on test set. 

 
 

Table 2: Accuracy and weighted F1-score for each model. 

Model Accuracy F1-score 

Standard 0.8347 0.8352 

First fine-tuned 0.8710 0.8716 

Second fine-tuned 0.9234 0.9239 

 

 
 (a) 

 
(b) 

Figure 10: The model correctly classifies it as Safe (a). The 

model misclassifies it as Phone (b). 
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 (a) 

 
 (b) 

Figure 11: The model correctly classifies it as Distraction (a). 
The model misclassifies it as Phone (b). 

 

 
 (a) 

 
(b) 

Figure 12: The model correctly classifies it as Phone (a). The 
model misclassifies it as Distraction (b). 

 

It is worth noting that one frequent cause of misclassification 
occurs when the driver is moving very fast with respect to the 
framerate. 

 

6. IMPLEMENTATION ASPECTS 

 
The proposed DAMS require an onboard device capable of 

executing a neural network based on the second fine-tuned model. 
For this purpose, a Raspberry Pi 4B [16] has been used as an edge 
device. It is a compact device with low energy consumption, but 
it is limited in terms of computing capacity.  

Since the architectural model is based on a complex CNN 
network, it does not achieve an acceptable throughput (in frame 
per second, fps) on this device. To improve its performance, the 
Raspberry has been equipped with a Neural Compute Stick 2 
(NCS2) [17]. NCS2 is a USB stick that provides a dedicated deep 
neural network hardware accelerator for DNN inference, based on 
the Intel Movidius Myriad VPU processor.  

To run the model on NCS2, it is necessary to install on the 
Raspberry a toolkit called Openvino [25], for optimizing and 
deploying deep learning models on Intel devices. Specifically, the 
Openvino version installed is 2021.4.2. It accepts models 
according to a format of graph representation and operation set. 
The graph is represented with XML and binary files, and this 
representation is referred to as the Intermediate Representation 
(IR). IR version 10 has been adopted, because the next version is 
not compatible [21].  

The training of the model is carried out on a development 
server and then deployed on Raspberry for its execution. For this 
purpose, the Pytorch implementation is converted to the Open 
Neural Network Exchange (ONNX) format via Python libraries, 
and then to IR 10.  

 

7. DRIVER’S BEHAVIOR DETECTION 

PSEUDOCODE 

 
Figure 13 represents in pseudocode the control flow using the 

classifier for detecting the driver’s behavior. Specifically, the 
configuration parameters of the control flow are the following: (i) 
the classificationModel, set to the second fine-tuned model, as 
motivated in Section V; (ii) the fps, which indicates how many 
frames per second are captured and processed by the system. The 
last parameter indicates the frame block dimension used to 
estimate the driver’s behavior. Specifically, a frame block is 
composed of N classified frames. After the acquisition (function 
getFrame), the pre-processing and classification of N frames, the 
system output (variable Status in the control flow) is achieved via 
a majority voting policy for each frame block. In other terms, the 
most frequently predicted classes will be the block output 
(classified driver’s behavior), as exemplified in Figure 14. 

 

 
 

Figure 13: Control flow for classifying the driver’s behavior via 

the trained neural network. 
 

Specifically, N indicates how many classified frames are 
needed to determine the overall driver's behavior. This is an 
important value (also related to the value assigned to fps): a low 
value would result in many false positives, whereas a high value 
would capture transient statuses instead of the driver’s behavior, 
thus returning an incorrect classification. In addition, N can 
control the noise due to the fast driver’s movements. It is worth 
noting that, when multiple outputs (e.g., 5) are provided with the 
same label for both Safe and Phone, the system output is 
Distraction for safety reasons. For the purpose of testing, the 
values of fps and N have been set to 1 and 10, respectively. 
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Figure 15 shows a pilot test made on 91 seconds of in-car 
video, via a Pi-Camera, with the related system output, for fps=1 
and N=10. In the end, the system output coincides with the actual 
driver’s behavior. 

 

 
Figure 14: An example of three consecutive frame blocks with 

fps=1 and N=10 shows that the outputs of the blocks 3, 4, and 5 

are Safe, Phone, and Phone, respectively. 

 

 
Figure 15: System outputs of in-car video. Note that points 3, 4 

and 5 correspond to frame blocks 3, 4 and 5 in Figure 14. 

 

8. PERFORMANCE ANALYSIS OF  

THE IMPLEMENTATION 

 

This section discusses an overall analysis of the model, 
deployed on different hardware architectures. Specifically, a 
Raspberry Pi 4B with NCS2 and NVIDIA Jetson Nano [30] has 
been used. The performance is measured in terms of time, 
throughput, and classification accuracy. Timings were recorded 
on 1,000 images chosen randomly by the training set. Three 
timings measured in milliseconds have been recorded, varying the 
set of functions used (FUN): (i) model inference (I); (ii) image 
pre-processing (PI); (iii) photo capture (CPI). The throughput is 
computed based on CPI time, and measured in frames per second 
(FPS). Timings in milliseconds and throughput are summarized in 

Tab. 3. Here, the best performance is achieved by the Jetson Nano 
device. 

The Openvino model has been evaluated on Raspberry Pi 
using the testing set and compared to the Pytorch model. 
According to the results shown in Table 4, the accuracy of the two 
models is equivalent. 

 

Table 3: Timings (in ms) and FPS for different trials on 

Raspberry Pi 4B with NCS2, and Jetson Nano. 

Device I PI CPI FPS 

Pi with NCS2 144.09 176.97 197.82 5.05 

Jetson Nano 63.82 86.77 88.57 11.28 

 

Table 4: Frameworks' performance comparison. 

Framework Accuracy F1-score 

Pytorch 0.9234 0.9240 

Openvino 0.9234 0.9240 

 

9. CONCLUSIONS 

 
In this paper, by adopting transfer learning and fine-tuning 

techniques, a VGG16 neural network has been adapted to 
recognize three classes of distracting driver’s behavior: Safe, 
Phone (i.e., the driver is using a mobile phone), and Distraction. 
The best setting has achieved an accuracy of 92.34% on the test 
set. The best performing model is deployed on a Raspberry 4B 
edge device, equipped with an NCS2 accelerator, without loss of 
accuracy. An approach is proposed for detecting driver 
distraction, on the basis of a majority voting policy. The voting 
policy has been tested by using sample videos. The throughput in 
FPS has been evaluated. Specifically, the throughputs achievable 
on both Raspberry and Jetson Nano boards have been evaluated.  

As a future work, the effectiveness of the proposed approach 
could be evaluated by varying its parameters (fps and N). Besides, 
it is worth noting that from the heatmap analysis (and the dataset), 
it can be said that the developed network does not consider the 
driver's face to detect the driver's behavior. As a consequence, in 
case the driver is not focusing on the road, and his hands are on 
the wheeling, the model will misclassify the driver's behavior. 
This phenomenon could be investigated as a future work, 
eventually utilizing a network that also focuses on the driver's 
gaze, to improve the detection accuracy of driver’s behavior. 
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