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Abstract—The increasing availability of Satellite technology 
for Earth observation enables the monitoring of land subsidence, 

achieving large-scale and long-term situation awareness for 

supporting various human activities. Nevertheless, even with the 

most-recent Interferometric Synthetic Aperture Radar (InSAR) 
technology, one of the main limitations is signal loss of coherence. 

This paper introduces a novel method and tool for increasing the 

spatial density of the surface motion samples. The method is based 

on Transformers, a machine learning architecture with dominant 

performance, low calibration cost and agnostic method. This paper 

covers development and experimentation on four-years surface 
subsidence (2017-2021) occurring in two Italian regions, Emilia-

Romagna and Tuscany, due to ground-water over-pumping using 

Sentinel-1 data processed with P-SBAS (Parallel Small Baseline 

Subset) time-series analysis. Experimental results clearly show the 

potential of the approach. The developed system has been publicly 

released to guarantee its reproducibility and the scientific 

collaboration. 

Keywords—InSAR, Transformers, ground-water extraction, 

subsidence, situation awareness. 

I. INTRODUCTION AND BACKGROUND 

SAR (Synthetic Aperture Radar) remote sensing satellites for 

Earth observation are widely recognized as a key method for 
monitoring our planet. SAR satellites are capable of providing 

large-scale and long-term situational observations to a variety of 

surface processes.  In the literature, situational awareness refers 
to the process of aggregating spatial-temporal variables and 
measurements to raise the abstraction (i.e., semantic) level of 

operational models, making them more adaptive to the global or 

long-term circumstances [1][2]. Let us consider land subsidence, 

that can occur both in a continuous time-progressive manner or 

as a sudden sinking of the ground surface and, as it is well known 
in literature, it can be caused by human activities (e.g. ground-

water over-pumping, exploitation of underground reservoirs for 

oil and gas withdrawal, collapse of tailing dams) with a 

significant and irreversible impact on ecosystems [3]. 

Concerning the ground-water over-pumping, irrigation can be 

considered as one of the main purposes. However, an inadequate 

exploitation of underground water resources can lead to 
irreversible phenomena, such as the deceleration of the 

recharging time of an aquifer [4]. Thus, the monitoring of land 

subsidence can be considered as strategic for many stakeholders 
ensuring actions for environmental, socio-economic and 

technological interests, as well as for policy makers promoting 

sustainable practices in land and water management [4][5]. 

Conventional techniques of monitoring of land subsidence 
occurring in areas interested by ground-water extraction use a 

spatially limited sampling via piezometric levels [5], which is 

often restricted to a few small areas. Moreover, in many 

countries, such as Italy, most of the data collected is owned by 
singular municipalities or private users. Thus, despite 

anthropogenic water consumption being one of the main reasons 

of anthropogenic land subsidence, detailed information at a 

broad scale is often lacking [4]. In the last twenty years satellite 

Interferometric Synthetic Aperture Radar (InSAR) has emerged 
as a promising technology for studying and monitoring surface 

motions in different fields of the Geohazards, including 

subsidence in ground-water extraction. InSAR methods are 

capable of obtaining measures of surface displacements with 

sub-cm accuracy at an unprecedented level of spatial detail (tens 
of m pixel size over hundreds of km wide areas) and temporal 
resolution. Specifically, interferograms are generated by 

differencing SAR images taken at different times from the same 

orbital position. With Sentinel-1A/B satellites constellation, the 
revisit time can be as short as 6 days [5][6]. 

Nevertheless, even with the most-recent missions, one of the 

main limitations of InSAR is signal loss of coherence, largely 

due to changes in the surface conditions between the 
acquisitions. As a result, InSAR-derived surface displacement 

time-series are characterized by a low spatial density of point-

like targets, especially in non-urban areas, where vegetation and 

cultivated fields can make the estimation of the surface 

deformation a task not easy to solve [5].  
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In the literature, many advanced processing algorithms have 

been proposed to improve InSAR data, e. g. to reduce the 
atmospheric effects, such as Multi-Temporal (MT-)InSAR, 

Permanent Scatterer Interferometry (PSI), Small Baseline 

Method (SBAS)  [7]. In addition, many open-source time-series 

analysis software packages have been developed, e.g. for 

Sentinel-1 data SNAP, GMTSAR, STaMPS, GIANT, MintPy 
[7]. As a result, many data pipeline have been developed in this 

field, with different levels of efficiency in terms of parallel 

computing, and with different accuracy. With the increase of 
complexity of such approaches, an important design problem is 
to consider their management costs, in terms of parametric 

sensitivity (i.e., calibration cost), knowledge needed, reusability 

on multiple application domains, and so on. Consequently, 

researchers started addressing the problem via machine learning 

based methods, which are well-known in the literature for the 
dominant performance, the low calibration cost, and the agnostic 

method [8][9]. 

This paper presents a novel approach to overcome 

incoherence and enhance the spatial density of InSAR-derived 
surface displacement time-series. The approach is based on 
Transformers [10]. With respect to conventional deep learning 

models for sequential data, a transformer processes sequential 

input according to a self-attention mechanism, i.e., a weighting 
of the significance of an input of the sequence. As a result, 

parallelization during training is facilitated and made efficient 

for large dataset. In addition, traditional deep learning 

architectures, such as Long-Short Term Memory (LSTM) and 

Convolutional Neural Networks (CNN), exhibits the so-called 
vanishing / exploding gradient problem, which makes the design 

and calibration very costly [11][12]. In contrast, the transformer 

architecture employs exclusively attention building blocks, with 

very good results with far less engineering tuning time. 

The proposed system has been developed and publicly 

released to guarantee its easy adoption and reproducibility [13]. 

Experimental studies, with a focus on Central Italy, in the 

regions of Emilia-Romagna and Tuscany, have been carried out. 
The proposed approach clearly shows promising results, 

effectiveness and efficiency.  

The paper is structured as follows. Section II is devoted to 

materials and methods. Experimental results and discussion are 

covered by Section III. Finally, Section IV draws conclusions. 

II. MATERIALS AND METHODS 

A. InSar dataset and pre-processing 

In this paper, the utilized Single Look Complex (SLC) 
images, acquired in Interferometric Wide swath mode (IW), 

come from the European Space Agency (ESA) Sentinel-1A/B 

satellites (which work in the C-band in 12-day revisit cycle) in 

both Ascending and Descending tracks. The combined use of 
two acquisition geometries has been adopted in order to provide 

the best identification of the components of the surface 

displacement with cm-scale accuracy. 

Concerning the area of study, it lies on track 117 for 
Ascending and on track 168 for Descending, with a total of 211 

and 261 images analyzed, respectively (Table I). Thus, the 

number of interferograms processed for this study was 591 for 
the ascending and 740 for the descending tracks. 

TABLE I.  THE SENTINEL-1 INSAR DATA INGESTION 

Region Period of time Geometry Path 

Emilia-Romagna 04/2017-11/2021 Ascending 117 

Emilia-Romagna 06/2017-12/2021 Descending 
168 

Tuscany 04/2017-06/2021 Ascending 117 

Tuscany 06/2017-12/2021 Descending 168 

 

Data processing was performed through the ESA’s 

Geohazards Exploitation Platform (GEP). The approach used, P-

SBAS (Parallel Small BAseline Subset) Interferometry, is a 
processing chain for the generation of Earth deformation time-

series and maps of the yearly mean velocity of the surface 

displacement [14]. It is an implementation of the SBAS 

approach, a well-established multi-temporal InSAR technique, 

and it revealed to be useful also in other fields of the Geohazards, 
such as the monitoring of coastal land subsidence and landslides 

phenomena [15]. For this study, among all the parameters to be 
set in the pre-processing step, it has been chosen 0.75 for the 

threshold of the coherence, VV (Vertical, Vertical) mode for the 
polarization and, finally, concerning the Digital Elevation Model 

(DEM), the one coming from the Shuttle Radar Topography 

Mission at 1 arcsec spatial resolution has been chosen (30 

m/pixel). 

B. The generation of the machine learning set 

Given an area of observation, let us consider a surface 

subsidence time-series generated via InSAR data pre-

processing. For each sampling time, the surface frame is made 
by geolocated samples of subsidence in cm/year. As a first step, 

a lattice made by 20k × 30k elements, with cell size of 100 m × 

100 m, is superimposed to the frame. A sparse matrix is then 

generated from the lattice by taking, for each cell, the average 

subsidence. Finally, a cells mask is generated and applied by 
taking the intersection of all matrices: only cell values that are 

non-null in all matrices are considered as reliable subsidence 

values, whereas the other values are deleted.  

 Given the collection of masked sparse matrices {��} 
generated, the machine learning set is generated as follows. 

Select a random submatrix of 20×20 cells ��
��×��, corresponding 

to a 2km×2km surface. If more than a minimum density of 100 

non-null values is available in the submatrix, then a submatrix 

vectorial record � is generated. To guarantee an upper limit to 

the batch size, if more than 300 non-null values are available 

(with respect to the total 400), only 300 of them are considered. 
A vectorial record is made by the sequence of coordinates 

(
� , 
�) followed by the respective subsidence values ��: 

� = [
�, 
�, 
�, 
�, . . . . , 
� , 
�][��, ��, . . . ��]   (1) 

Finally, the machine learning set is made by the collection of 

vectorial records generated from the available matrices. The 



training and the testing sets are made by the 80% and 20% of 

randomly extracted vectorial records, respectively. 

The machine learning task is a regression, i.e., to predict the 

value  �� by having the previous elements of the vectorial record: 

 
�, 
�, 
�, 
�, … . , 
� , 
� , ��, , … ���� ⟹ ��  (2) 

C. The Transformer architectures 

Given the machine learning task of Formula (2), different 

Transformer architectural models have been developed. For the 

sake of brevity, this section summarizes such models. The 
interested reader is referred to the relevant publication [10] and 

to our developed code [13] for detailed information.  

Let us call token an element of the vectorial record. The task 

of Formula (2) is then to predict the next token of a sequence. A 
first approach called Masked Language Modeling (MLM) is to 
substitute part of the tokens with a mask token and to train the 

network to predict the correct value of the masked tokens given 

all the others. A Second approach called Causal (or 

Autoregressive) Language Modeling (CLM) is to forcefully 
mask all the subsequent tokens in the attention matrix and then 

to predict the next token given all the previous ones. Well-known 

examples of MLM and CLM are BERT (Bidirectional Encoder 

Representations from Transformers)[16] and GPT (Generative 

Pre-trained Transformer)[17], respectively. Since transformers 
operate in the space of large real-valued vectors, the first and last 

steps are called input and output embeddings, which convert the 
input and output tokens into vectors, respectively. Moreover, 

since a Transformer does not contain recurrence or convolution, 
to allow the model to make use of the order of the sequence, 

some information about the relative or absolute position of the 

tokens in the sequence is injected by the positional encoding. 

Fig. 1 shows a CLM architecture called Encoder-Decoder. Here, 
as an input embedding of the coordinates and of the subsidence 

value, linear projections ℝ� ⟶ ℝ��� and ℝ ⟶ ℝ��� are used, 

respectively. Similarly, as an output embedding, a linear 

projection ℝ��� ⟶  ℝ provides the predicted subsidence. The 

positional encoding is implemented by summing to each element 
of the input embedding sine and cosine functions whose 

wavelengths form a geometric progression from 2π to 10000·2π. 

Multi-head attention consists of several attention layers running 

in parallel (6 layers in the proposed approach). An attention 

function is a mapping of a query and a set of key-values pairs to 
an output, where the query, keys, values and outputs are all 

vectors. The output is the weighted sum of the values V, where 

the weight assigned to each value is computed by a compatibility 

function of the query Q with the corresponding key K: 

 ��� !�"#!($, %, &) = '#(�)*
($%+/-./) & (3) 

where Q, K and V are matrices packing together multiple 
queries, keys of dimension ./  and values of dimension .0 , 
respectively. In addition to attention sub-layers, a fully 
connected feed-forward network is applied to each position 
separately and identically. In the structure of Encoder-Decoder 
attention layer, represented in Fig. 1, the encoder is made by a 
stack of 8 identical layers, each made by a multi-head self-
attention sub-layer and a feed forward network. Moreover, the 

output of each sub-layer and a residual connection are 
normalized. Similarly, the Decoder is made by 8 identical layers, 
each having, with respect to the Encoder, a third sub-layer 
performing multi-head attention over the output of the encoder. 
Finally, two approaches have been investigated: Encoder-
Encoder (trained via MLM) and Encoder-Decoder (trained via 
CLM). 

 
Fig. 1. Architecture of the Encoder-Decoder Transformer (adapted from [10]) 

In addition, a different approach has been also developed, 

based on Vision Transformers (ViT)[18]. ViTs are purposely 
designed for computer vision tasks, as an alternative to CNNs. 

The idea is to break down images in a series of patches, that are 

then transformed into vectors, and considered as words in a 

conventional transformer. In the approach developed in this 

paper, the DEM of the area under observation has been added to 
the other inputs, as an image representing the elevation data. 

Two approaches are possible: ViT-Encoder (trained via MLM) 

and ViT-Decoder (trained via CLM). 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

To show the effectiveness of the proposed approach, 

experimental studies have been carried out with different input 

dimensions. In particular, since the performance of the various 

Transformers architectures are similar, for the sake of simplicity 
in the following only Encoder-Decoder will be considered as a 

representative. The transformer has been compared with KNN 

regression, a non-parametric method that predict the output 

value by using the average (weighted by distance) among the 

neighborhoods. The size of the neighborhood has been set to the 
25% of the training set, using cross-validation, as the size that 
minimizes error. Fig. 2 and Fig. 3 show the Mean Absolute Error 

(MAE) and the R-squared coefficient (i.e., the determination 

coefficient) on the testing set, for different input dimensions. It 

is clear that Transformers achieves promising results, up to a 



MAE of .26 cm (MSE of 0.17), versus a MAE of .42 cm (MSE 

of 0.44) with KNN. 

 

Fig. 2. Mean Absolute error of subsidence (in cm) on testing set for different 

points: KNN vs Transformer.  

 

Fig. 3. R-square on testing set: KNN vs Transformer.  

To better show the output provided by the method, a scenario 

is also illustrated. Fig. 4 and Fig. 5 are maps of the yearly mean 
velocity of the surface displacement (cm/year) in both ascending 

and descending tracks, respectively. As it was mentioned before, 

the combined use of both ascending and descending geometries 

can lead to a better identification of the surface displacement 

components. In this case, the maps show deformation signals 
corresponding to some of the main cities in Central Italy, such 

as Bologna, Modena, Reggio-Emilia and Pistoia, areas where for 

both tracks the deformation pattern is a circular range increase 

(ground motion away from the satellite in the Line Of Sight 
(LOS)) and thus consistent with ground subsidence. Other local 

deformations occur in a few limited areas on the Apennines 

mountain range, likely caused by landslides. Generally, the level 

of coherence is good in urban areas but at some locations loss of 

coherence still occurs. 

In particular, in  Fig. 6, regarding the municipality of Carpi 

(Emilia Romagna region) the density of the coherence points is 

very low, because a lot of deformation signal is lost, in both 

Ascending (a) and Descending (b) tracks, leading to a poor 
interpretation of the results. On the other hand, in Fig. 6 (c)(d) 

the additional surface motion samples released by the model on 

the neighborhood points sensibly increases the interpretability of 
the results in both Ascending and Descending geometries. 

Indeed, the enhanced density of the surface displacement time-

series may help to detecting the areas affected by subsidence, 

from both quantitative and qualitative point of views. As a final 

outcome, Fig. 7 shows the subsidence of a single point occurring 
in the same area, over the time period of analysis, for both 

ascending (a) and descending (b) tracks. 

 
Fig. 4. Map of the yearly mean velocity of the surface displacement (cm/year) 

in the LOS direction across Central Italy from Ascending Sentinel-1 

(04/2017-11/2021). Background by Copernicus Land Service DEM, of 25 

m/pixel resolution. 

 

Fig. 5. Map of the yearly mean velocity of the surface displacement (cm/year) 

in the LOS direction across Central Italy from Descending Sentinel-1 

(06/2017-12/2021). Background by Copernicus Land Servie DEM, 25 

m/pixel resolution. 

IV. CONCLUSIONS 

Monitoring land subsidence can be considered strategic for 

many stakeholders ensuring actions for environmental, socio-
economic and technological interests, as well as for policy 

makers promoting sustainable practices in water management. 

In addition to traditional ground sensors, InSAR technology can 

enable an effective situational awareness supposed to provide a 



 

(a) 

 

(b) 

 
(c) 

 
(d) 

Fig. 6. Scenario of pattern of surface subsidence occurring in the western side of Carpi (Italy), in the ascending (1/06/2019) and descending (18/05/2020) tracks: 

(a)(b) original data, (c)(d) additional data generated by the proposed model.  

 
(a) 

 
(b) 

Fig. 7. Time-series of a single point within one of the most subsidence-affected areas in Carpi, occurring over the time period of analysis, both in Ascending (a) 

and Descending (b) tracks. 

 



high density of surface motion samples. However, one of the 
main limitations of this technique is represented by the 
interferometric coherence. To overcome this problem, this study 
shows that a solution based on Transformers can achieve 
promising results in terms of reconstruction of missing samples. 
Future works will focus on more experimentation and validation 
of the proposed method to show its effectiveness. 
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