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Abstract—Swarms of Unmanned Aerial Vehicles (UAVs) are 

increasingly adopted to provide early situational awareness in 

environmental monitoring missions. Currently, a challenging 

problem is to manage swarms via responsive and adaptive 

coordination mechanisms. This study considers a cutting-edge 

swarm coordination algorithm called SFE, based on three 

strategies: stigmergy, flocking and evolution. Stigmergy is the 

release of digital pheromone by drones to generate a potential field 

that influences the steering in the spatial-temporal proximity. 

Flocking is a formation mechanism to spatially organize drones 

into local groups. Evolution is the parametrical adaptation of 

Stigmergy and Flocking to a specific type of mission. A novel 

algorithm called P-SFE is proposed, to overcome the limit of SFE 

related to the static priority of the three strategies. This 

prioritization is managed through an Artificial Immune System. A 

simulation testbed is developed and publicly released, based on 

commercially available technology and real-world scenarios. 

Experimental results show that the proposed P-SFE extends and 

sensibly outperforms the SFE. 

Keywords—environmental monitoring, drones swarm, stigmergy, 

flocking, differential evolution, artificial immune system 

I. INTRODUCTION AND BACKGROUND 

Nowadays, air, water and soil are under observation for the long-

term degradation processes and the destructive incidents often 

caused by human activities. It is essential to keep control of such 

processes and events before they become irreversible. In the last 
decade, environmental monitoring based on aerial survey has 

evolved in technological, economic and legislative aspects [1]. 

A variety of novel aerospace platforms have become available 

for environmental monitoring, such as satellites, aircraft, 

helicopters, and, more recently, unmanned aerial vehicles 

(UAVs). A single aerial platform cannot provide both high and 

low altitude, both broad coverage and high resolution. In 

addition, the capabilities of medium-high altitude and long 

endurance platforms are often limited “by design” from the on-

board technology and from the need to assign human operators 

[2]. To match various environmental mission profiles, an aerial 

platform should consider requirements such as the morphology 

of near-ground and sub-urban flight areas, low velocity and high 

maneuverability, adaptability of on-board sensors and, above 

all, compact size. For this reason, small UAVs (sUAVs) are 

increasingly attracting body of research [1]. 

Due to its short endurance, an sUAV is designed for short 

mission profile surveillance. A promising solution for the 

acquisition of environmental information on large areas is an 

integrated multi-sUAV system, known as swarm in the 
literature. The shift from single to multiple sUAVs raises some 

fundamental issues: (i) the management of an array of onboard 

equipment distributed on several cooperating sUAVs; (ii) the 

adoption of swarm intelligence algorithms enabling a single 

operator to control several sUAVs; (iii) the development of a 

coping strategy for the loss of sUAVs, thus increasing the 

robustness of the swarm to harsh operating conditions [3]. In this 

work we have enhanced one of the cutting-edge algorithms for 

swarm intelligence thus addressing the above-mentioned issues 

in the context of environmental monitoring with swarms of 

sUAVs. 

An environmental monitoring mission can be organized in two 
phases: (i) environmental exploration, i.e., to search targets, and 

(ii) drones recruitment for targets resolution, i.e., to collect 

sufficient situational information. Examples of targets are 

marine micro-plastics [4], illegal dumps [5], wild-land fires, gas 

leaks, and land mines [6]. 

In [5], the authors proposed SFE (Stigmergy Flocking 
Evolution), an algorithm for sUAVs swarm coordination based 
on three bio-inspired computational strategies: (i) Stigmergy, 
i.e., the ability of drones to release and sense attractive or 
repulsive potentials, according to the presence or absence of 
detected targets, respectively; (ii) Flocking, i.e., modeling the 
swarm formation on the basis of rules of cohesion, separation 
and alignment; (iii) Evolution, i.e., the usage of an evolutionary 
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optimization algorithm for the calibration of both stigmergy and 
flocking parameters to the specific mission. In [5] the SFE 
algorithm was compared to the state-of-the-art of bio-inspired 
swarm algorithms for both exploration (ACO – Ant Colony 
Optimization) and recruitment (FTS – Firefly-based Team 
Strategy, PSO – Particle Swarm Optimization, ABC – Artificial 
Bee Colony). Experimental results on real-world scenarios 
shown that SFE significantly outperforms the state-of-the art. 

However, the most critical limitation of SFE is the static 
priority assigned by drones to attractive stigmergy (highest 
priority), flocking (intermediate priority) and repulsive 
stigmergy (lowest priority). To address this limitation, in this 
paper a novel variant called Prioritized SFE (P-SFE) is 
proposed, using the SFE algorithm as a reference. With P-SFE 
each drone can dynamically assign a different priority to the 
strategies according to the context. The local priority is assigned 
using the Artificial Immune System (AIS) algorithm: an 
adaptive method inspired by theoretical immunology [9].  

The immune system response is carried out by antibodies: 
highly specialized cells manufactured by B-lymphocytes, able to 
detect foreign material, or antigens, and signal them for 
elimination. Each type of antibody can detect both other 
antibodies of the same category and a specific type of antigen. 
Upon detection, the lymphocyte is stimulated to clone itself, that 
is, to produce more antibodies of that specific type, to cope with 
the potential threat. The process of stimulating a lymphocyte to 
produce a number of antibodies proportional to the degree of 
matching between their receptors and the antigens is called 
clonal selection [10]. For a deeper overview, the reader is 
referred to [9][10]. The concentration of a particular type of 
antibody therefore depends on the times in which they are 
recognized by other antibodies, leading to its reduction, and the 
times in which they recognize other cells, leading to a 
stimulation, hence an increase in the concentration. The 
mathematical model representing this phenomenon was first 
presented in [10] and then adapted by [9] to swarm applications. 
Using this model, the priorities of the strategies of each drone in 
the swarm are updated and the one with the highest value is 
selected and executed by the agent. More details are discussed 
in Section II. 

The coordination algorithms SFE and P-SFE have been 
experimented on two environmental monitoring scenarios: 
illegal dump search and early fire detection-tracking. For this 
purpose, a simulation testbed has been developed and publicly 
released [11], to foster its application on various environments. 
Experimental results show that the proposed P-SFE approach 
outperforms the SFE. 

The paper is structured as follows. Section II illustrates the 

design and the test cases, while the experimental results are 

explained in Section III. Finally, in Section IV conclusions are 

drawn. 

II. MATERIALS AND METHODS 

A. Pilot Scenarios and testbed 

This section illustrates two missions of environmental 
monitoring that are used as pilots in the determination of 

problem requirements, in the formulation of the method, as well 
as in its experimentation. 

 Fig. 1a shows the area of Illegal Dump [12], which is a real-
world abusive trash map of a 80,000 m2 area near the town of 
Paternò (Italy). The mission consists in detecting illegal dumps 
in the region of interest. An illegal dump is modelled as a cluster 
of static targets. Fig. 1b shows a digital representation of an 
ongoing mission in the testbed environment, with all the 
available elements. In the map, 19 buildings of different size, 
and 140 trees have been modelled as obstacles, represented in 
grey color. Drones are depicted as small green triangles. Overall, 
the scenario is made by 11 cluster of targets with an average of 
4 targets per group. In Fig. 1b, undetected/detected targets are 
represented as red/yellow points. Finally, attractive/repulsive 
stigmergy is represented as dynamic blue/pink continuous 
intensity, which disappears over time. The level of stigmergy is 
dynamic, and it is updated following the deposit and evaporation 
rules. A stigmergic mark is released by a drone when a target is 
found (release rule). A decisive aspect of the mission 
influencing the quality assessment of the solution is the mobility 
of targets. In the illegal dump scenario, targets are static; 
therefore, the quality measure employed is the time needed to 
find the 95% of targets. For a detailed formalization of all 
elements of the testbed, the reader is referred to [5][6].  

A different scenario, characterized by dynamic targets, is 
Wildfire [6]. In this case, the purpose of the mission is to detect 
and track wildfire fronts, i.e., the portion sustaining continuous 
flaming combustion, where unburned material meets active 
flames [8]. Fig. 1c and Fig. 1d show the wildfire front in an 
ongoing mission of this type in the testbed environment, taken 
at 1022 and 1229 seconds after the start of the mission. For the 
sake of simplicity, only the attractive stigmergy is represented 
in figure, as a black-gray level. Targets dynamics is supplied to 
the testbed as a sequence of frames whose transition is ruled by 
a preset time frequency. For missions with dynamic targets, the 
quality measure is the average percentage of targets discovered 
in each frame. 

B. Technical specifications 

Overall, the swarm is controlled by a cyber-physical system, 
in which physical and software components are intertwined: for 
example, stigmergy is entirely maintained in a digital map, and 
made available at the ground station for sUAVs as to enable 
remote computations, whereas obstacle detection is based on 
physical sensors controlled by on-board logic [7]. The testbed 
considers the features of commercially available sUAVs in 
terms of sensing, actuation, and collision avoidance, by 
modeling drone size, battery duration, sensing radius, sensing 
angle, collision angle, collision vision angular speed, 
acceleration and cruise speed [6]. Table I and Table II show the 
technical specifications for the considered scenarios [3][6].  

C. The SFE coordination algorithm 

This section briefly summarizes the SFE approach, for a 
more detailed explanation, the reader is referred to [5][6]. Each 
drone pose dynamics is governed by exploration and 
coordination rules. More formally, Fig. 2 shows an UML 
activity diagram with the workflow of an sUAV at each 
temporal step. The flow begins at  the  black  circle  on  the  left  
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Fig. 1.  (a) Illegal Dump Scenario (Google Maps ©); (b) testbed environment with drones, static targets, stigmergy and obstacles; (c) Wildfire scenario, with 

dynamic targets, after 1022s; (d) Wildfire scenario after 1229s. 

 

Fig. 2. UML activity diagram of the behavior of the drone in the SFE method.



   

 

   

 

(labelled as “next step to do”) and ends at the black circle with 
white border (“step done”). A rounded-corner box represents an 
activity (a procedure). Green activities relate to sensing/ 
detection, whereas azure activities relate to actuation. Finally, a 
yellow diamond or activity represents decision logic. 

TABLE I.  TECHNICAL SPECIFICATIONS OF THE COMMERCIAL DRONE 

“DJI MATRICE 200”  

Parameter Value 

Radius 0.3 m 

Max speed 17 m/s 

Max acceleration 4.4 m/s2 

Max angular speed 2.6 rad/s 

Max angular acceleration 6.9 rad/s2 

Battery duration 24-38 min 

Obstacle vision distance 3-30 m 

Obstacle vision angle 60° 

TABLE II.  TECHNICAL SPECIFICATIONS OF THE SENSING EQUIPMENT, 
FOR EACH SCENARIO 

 Illegal Dump Wildfire 

Cruise speed (m/s) 4 12 

Sensing technology Visual + Thermal Visual 

Sensor model Dji Zenmuse XT2 Dji Zenmuse XT2 

Sensing radius (m) 5 36 

 

More precisely, for each temporal step, first the sUAV senses 
for targets and, if detected/not detected, releases 
attractive/repulsive stigmergy. Second, it senses for attractive 
stigmergy and, if detected, points towards the direction of its 
maximum intensity. If no attractive stigmergy is recognized, it 
senses for flockmates (surrounding drones) and, if detected, 
points towards the flock. Otherwise, it senses for repulsive 
stigmergy and, if detected, points towards the direction of its 
minimum intensity and applies a stochastic wiggle to its 
orientation. This wiggle, a key feature of bio-inspired 
approaches, allows escaping the determinism inherent to P-SFE. 
By perturbing the computed orientation with a small random 
component, it is possible to let the agents following the selected 
behavior while preventing the saturation of the area and 
exploiting the potential of the swarm.  Finally, if it detects 
obstacles (or drones), it finds a free trajectory or slows down 
before moving.  

In addition, for a given type of mission, the parameters of the 
stigmergic and flocking behaviors are adapted offline by the 
Differential Evolution (DE): an evolutionary algorithm which 
improves the overall quality of the search process before the 
mission [5]. Table III summarizes the space of parameters taken 
into consideration. Distance measurements are expressed in 
patches, i.e., squares having side of 2m or 4m for the Illegal 
Dump and Wildfire scenarios, respectively. 

An example of improvement resulting from the parametric 
optimization is shown in Fig. 3, where the tracks left by the 
swarm before (a) and after (b) the application of DE are reported. 
For reducing the sources of non-determinism, the initial swarm 
position is fixed: they are located at the corners, facing the area 
center. In the figure, a higher green intensity corresponds to a 
more visited area. Clearly, the optimization leads to an effective 
exploration, focusing the mission on regions of interest rather 
than on the initial positions. It is worth to observe that the 
number of hyperparameters and the complexity of the 
parametric space makes manual tuning often infeasible. In most 
cases, human knowledge allows to determine only parametric 
intervals (Table III), because of the inherent complexity of the 
mission. Therefore, it is highly desirable to develop a method for 
semi-automatic hyperparameter tuning. Over the years, this 
problem has attracted a lot of research interests. It is known in 
the literature that interval data are suitable for managing 
situations characterized by excess or a lack of data. The 
proposed method, including what-if simulation analysis, 
supported by genetic optimization, and taking human qualitative 
assessments, is efficient for both workflows and systems 
parameterization [13][14]. Indeed, interval-valued data is easy 
to comprehend and express by a domain expert, and simple to 
process when there is a great variability depending on the 
available domain knowledge.  

D. The P-SFE coordination algorithm 

The most critical limitation of SFE is the static priority assigned 
by drones to the different strategies: the highest priority is given 
to attractive stigmergy, the intermediate priority to flocking, 
and, finally, repulsive stigmergy has the lowest priority. In this 
paper an enhancement of SFE, i.e., P-SFE, is proposed. P-SFE 
allows for dynamic assignment of strategies priority to better 
adapt the behavior of each drone to the current scenario. 

The priorities are dynamically computed using an artificial 
immune system. Inspired by the concepts of the AIS presented 
in Section I, in this work the following analogies hold: each 
strategy represents a specific kind of antibody, the concentration 
of an antibody type is the priority of the strategy, and the antigen 
is represented by a detected target. Each drone accounts for a 
selection of B-lymphocytes, in the number of strategies 
available. Given a swarm �, for each drone � with k = 1, … , |�| 
and for each strategy 	  with 	 =  1, … , � , the priority of the 

strategy 	  for the drone �  at time �, is denoted by 
�
�(�) and 

computed according to Eq. (1), taking into account the discrete 
nature of the simulation. 


�
�(�)  =  

�

�
∑ ∑ �����

�(� − 1)��
�(� − 1)  +�∈��(�)

�
�

 � ∑  �,�
� ��

�(� − 1)�∈�!(�) −  "��
�(� − 1) (1) 

Eq. (1) reports the adaptation of the model of the immune 
system proposed in [9], where ���  is the matrix of matching 

specificities, that is, a coefficient encoding the degree of 
matching between priorities of strategies 	 and # [10]. $, � and 
" are coefficients taking values in (0,1], where the first two are 
mass coefficients [9] and the last represents the natural decay 

rate.  �,�
�  are the coefficients of the interaction between strategy 

	 onboard agent � and target ', while ��
�(�) is a version of 
�

�(�) 
restricted to [0,1]. The deflection of the priority of a strategy 	  



   

 

   

 

onboard agent �  for the time �  is computed according to Eq. 
(2), where the parameter ) is the rate of compression. 

��
�(�) =

1

1 + *+,-.
/(0)

 (2) 

The parameters $, �, ", ), ���  and  �,�
�  are included in the 

parametric space optimized with the Differential Evolution 
algorithm. 12(�)  and 13(�) are the sets of drones within the 
range of communication and detection of drone �, respectively. 
More details on the additional parameters provided by P-SFE 
are collected in Table IV. 

The first term of Eq. (1) is the analogue of the variation in the 
concentration of an antibody type considering the stimulus that 
a B-lymphocyte would receive to produce that specific type 
upon detection of other matching antibodies and the suppression 
caused by the recognition of that type by other antibodies. This 
represents the impact of mutual interaction among agents [9]. 
The second term accounts for the variation induced by the 
presence of antigens (i.e., targets) while the third models the 
tendency of antibodies to die, reflected by the decrease of a 
strategy priority when it cannot undergo proper stimulation.  

After having computed the updated priorities for all the 
strategies using Eq. (1), the one with the highest priority is 

chosen as the preferred strategy 	�
⋆, i.e., 	�

⋆(�) = argmax
�:;,…,�

 
�
�(�). 

However, the selection of the same strategy by a group of 
neighboring drones could lead to conflictual situations. For this 
reason, the AIS additionally limits the number of agents 
performing the same strategy, preventing from crowding 
specific areas, and acting therefore as a “critic” [9]. Fig. 4 shows 
an UML activity diagram with the behavior of each drone in the 
P-SFE method. The initial and final part of the workflow, which 
are related to the stigmergic release and to the obstacle detection, 
respectively, do not change. In the middle, additional logic 
related to the AIS is represented in yellow, together with a more 
flexible sensing/actuation. In particular, the agent identifies 
drones within communication range and known targets within 
detection range to evaluate the strategies strengths. If the 
strongest strategy is crowded, it is weakened, to allow the 
selection of different strategies. Finally, as before, the strongest 
strategy is selected. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The testbed has been implemented on NetLogo 
(ccl.northwestern.edu/netlogo/) a leading platform for swarm 
intelligence, using NL4Py as a controller interface to NetLogo, 
and Scipy, a Python library providing the implementation of the 
DE algorithm. To guarantee the repeatability of experiments and 
to foster the scientific collaboration, the source code and the 
scenarios have been publicly released [11]. 

The Differential Evolution is a stochastic algorithm that does not 
use gradient methods to find the minimum. It can search large 
areas of candidate space, but often requires larger numbers of 
function evaluations than conventional gradient-based 
techniques. For this purpose, the implementation has been 
engineered for parallel computing.  This work has been carried 
out on a CPU Intel(R) Xeon(R) Gold 6140M working at 2.2-2.3 

GHz and using Linux as operating system.  In addition, Python 
has been used for optimization and Java/NetLogo for mission 
simulation purposes.  

The runtime of the DE depends linearly on the population 
size and on the number of generations, which has been fixed to 
20 for all algorithms. The most sensitive hyper-parameters of the 
DE are the differential weight, the crossover rate, the population 
size, and the mutation strategy [5][15]. The optimal values of 
hyperparameters have been determined through grid search. 

TABLE III.  PARAMETER SPACE OF THE SFE COORDINATION  

Parameter Range Description 

radius-top [0.1, 10] 
Upper base radius of the truncated cone 

modelling the attractive pheromone trial 

radius-down [0.1, 20] 
Lower base radius of the truncated cone 

modelling the attractive pheromone trial 

evaporation-

rate 
[0.01, 1] 

Evaporation rate of the trail of attractive 

pheromone 

olfactory-

habituation 
[1, 60] 

Time required to reach olfactory 

habituation 

repulsive-

radius 
[0.1, 10] 

Base radius of the cone modelling the 

repulsive pheromone trial 

repulsive-

evaporation-

rate 

[0.01, 1] 
Evaporation rate of the trail of repulsive  

pheromone 

wiggle-angle [0, 30]° 
Maximum angle of random perturbation 

(applied to repulsive stigmergy) 

flock-angle 
[90, 

360]° 

Field of view for detection of flock 

members 

separate-

radius 
[5, 10] Radius of separation area 

max-separate-

turn 
[0, 30] ° 

Maximum angle of rotation during 

separation 

align-radius [5, 15] Radius of alignment area 

max-align-

turn 
[0, 30]° 

Maximum angle of rotation during 

alignment 

cohere-radius [5, 20] Radius of cohesion area 

max-cohere-

turn 
[0, 30]° 

Maximum angle of rotation during 

cohesion 

TABLE IV.  MAIN ADDITIONAL PARAMETERS OF THE P-SFE 

COORDINATION  

Parameter Symbol Range Description 

Detection range <3  [0.1, 20] 
Sensing range for already 

detected targets 

Communication 

range 
<2  [5, 20] 

Communication range 

among flockmates 

Agent-to-agent 

coefficient 
α [0.01, 1] 

Ratio between the strength 

of the interaction among 

agents over the total 

strenght of the strategy�

Agent-to-target 

coefficient 
β [0.01, 1] 

Ratio between the effect of 

an already detected target 

over the total strenght of the 

strategy �

Decay rate µ [0.01, 1] Natural decay rate �

Strategy 

deflection rate 
)  [0.01, 1] 

Rate controlling the 

deflection of strategy 

concentration 

A comparative analysis of SFE and P-SFE for both Illegal Dump 
and Wildfire scenarios has been carried out. For each scenario 
and for each algorithm, the DE optimization has been performed  



   

 

   

 

 
(a) 

 
(b) 

Fig. 3.  Illegal Dump, trails of drones before (a) and after (b) the evolutionary optimization. 

 

Fig. 4. UML activity diagram of the behavior of the drone in the P-SFE method.  

 

TABLE V.  PERFORMANCE EVALUATION FOR SCENARIOS AND METHODS  

Scenario Method Performance 

Illegal Dump SFE 292.58 ± 11.94 s 

Illegal Dump P-SFE 235.27 ± 17.05 s 

Wildfire SFE 64.19 ± 3.34 % 

Wildfire P-SFE 73.91 ± 5.11 % 

for 10 times, determining via a graphical normality test that the 
resulting mission duration is well modelled by a normal 
distribution. Finally, the 95% confidence intervals have been 
calculated. Table V reports the performance evaluation, showing 
that the P-SFE sensibly outperforms plain SFE. 

To emphasize the effectiveness of the proposed approach, 
Fig. 5 and Fig. 6 show the trend of the fitness metric of the 
population, averaged over 10 trials, versus the number of 

generations of the DE. As it can be seen, the P-SFE achieves 
better performance over generations with respect to plain SFE. 

IV. CONCLUSIONS 

This paper introduces a novel approach to manage the 
priority of multiple strategies coordinating swarm of drones for 
environmental monitoring. For this purpose, the Stigmergy-
Flocking-Evolution (SFE) algorithm is considered as a 
reference, proposing a more adaptive strategy based on Artificial 
Immune System, called Prioritized SFE. The workflow design 
of the proposed approach is first discussed, and then 
experimented on a testbed. The comparative analysis shows that 
the proposed P-SFE achieves 19.5% of improvement in the 
mission time and 15.6% of improvement in the number of found 
targets for an Illegal Dump and a Wildfire missions, 
respectively. The improvements made by the adaptive evolution 
are also remarkable. Although a more in-depth exploration of 
the technique and an enrichment of the experiments are needed, 



   

 

   

 

the promising results achieved show the potential of the 
proposed method.  
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Fig. 5. Results of the DE optimization process on the Illegal Dump scenario 

[5]. Both algorithms improve their average fitness over the number of 

generations, but P-SFE strongly outperforms plain SFE. 

 

 

Fig. 6. Results of the DE optimization process on the Wildfire scenario [6] 

showing P-SFE achieving better performances with respect to SFE. 

REFERENCES 

[1] Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-
Dor, E., …, McCabe, M. F. (2020). Current practices in UAS-based 

environmental monitoring. Remote Sensing, 12(6), 1001. 

[2] Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A (2012). Unmanned Aircraft 
Systems in Remote Sensing and Scientific Research: Classification and 

Considerations of Use. Remote Sens. 2012, 4, 1671-1692. 

https://doi.org/10.3390/rs4061671. 

[3] Persechino, G., Schiano, P., Lega, M., Napoli, R. M. A., Ferrara, C.,  

Kosmatka, J. (2010). Aerospace-based support systems and 

interoperability: the solution to fight illegal dumping. WIT Transactions 

on Ecology and the Environment, 140, 203-214. 

https://doi.org/10.2495/WM100191. 

[4] Monaco M., Cimino M.G.C.A., Vaglini G., Fusai F., Nico G. (2021), 

Managing the oceans cleanup via sea current analysis and bio-inspired 
coordination of USV swarms, Proceedings of the International 

Geoscience and Remote Sensing Symposium (IGARSS 2021), 1-4. 

[5] Cimino M.G.C.A., Minici D., Monaco M., Petrocchi S., Vaglini G. 
(2021). A hyper-heuristic methodology for coordinating swarms of robots 

in target search", Computers & Electrical Engineering, 95:1-19 (2021), 

doi: 10.1016/j.compeleceng.2021.107420. 

[6] Cimino M.G.C.A., Lega M., Monaco M., Vaglini G. (2019). Adaptive 

exploration of a UAVs swarm for distributed targets detection and 
tracking. Proceedings of the 8th International Conference on Pattern 

Recognition Applications and Methods, 1:837-844 (2019), doi: 

10.5220/0007581708370844. 

[7] Cimino M.G.C.A., Lazzeri A., Vaglini G. (2015), Combining stigmergic 
and flocking behaviors to coordinate swarms of drones performing target 

search, Proceedings of The Sixth International Conference on 
Information, Intelligence, Systems and Applications (IISA 2015), 1-6 

(2015), doi: 10.1109/IISA.2015.7387990 

[8] Pham H. X., La H. M., Feil-Seifer D., Deans M. C. (2020). A Distributed 
Control Framework of Multiple Unmanned Aerial Vehicles for Dynamic 

Wildfire Tracking. in IEEE Transactions on Systems, Man, and 
Cybernetics: Systems, vol. 50, no. 4, pp. 1537-1548, April 2020, doi: 

10.1109/TSMC.2018.2815988. 

[9] Weng L.,Liu Q., Xia M., Song Y.D. (2014) Immune network-based 
swarm intelligence and its application to unmanned aerial vehicle (UAV) 

swarm coordination. Neurocomputing 125 (2014) 134-141. 

[10] Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune 
system, adaptation, and machine learning. Physica D: Nonlinear 

Phenomena, 22(1-3), 187-204. 

[11] Monaco, M. (2022). Github repository, https://github.com/mlpi-unipi/sfe 

[12] TrashOut, www.trashout.me, accessed on March 2022. 

[13] Cimino, M G C A, Vaglini G., "An Interval-Valued Approach to Business 

Process Simulation Based on Genetic Algorithms and the BPMN", 

Information, 5:319-356 (2014), doi: 10.3390/info5020319. 

[14] Cimino, M.G.C.A., Lazzerini B., Marcelloni F., Pedrycz W., "Genetic 

interval neural networks for granular data regression", Information 

Sciences, 257:313-330 (2014), doi: 10.1016/j.ins.2012.12.049 

[15] Cimino, M. G. C. A.; Lazzeri; A.; Vaglini, G. (2016), Using Differential 

Evolution to Improve Pheromone-based Coordination of Swarms of 
Drones for Collaborative Target Detection, Proceedings of The 5th 

International Conference on Pattern Recognition Applications and 
Methods (ICPRAM 2016), 605-610 (2016), doi: 

10.5220/0005732606050610. 


