
Model checking for malicious family detection and phylogenetic

analysis in mobile environment

Mario G.C.A. Cimino

a , Nicoletta De Francesco

a , Francesco Mercaldo

b , c , ∗,
Antonella Santone

c , Gigliola Vaglini a

a Department of Information Engineering, University of Pisa, Pisa, Italy
b Institute for Informatics and Telematics, National Research Council of Italy, Pisa, Italy
c Department of Biosciences and Territory, University of Molise, Pesche (IS), Italy

a r t i c l e i n f o

Keywords:

Malware evolution

Malware phylogeny

Formal methods

Model checking

Process mining

Security

Android

a b s t r a c t

Malware targeting mobile devices is widespread, in fact considering the great amount of sensitive and

private information stored in tablets and smartphones they represent an interesting surface attack for

malware developers. From the defensive side, the well-known weaknesses of the current anti-malware

technologies do not permit only the detection of new obfuscated malicious payloads, but also of obfus-

cated malware (even with trivial obfuscation techniques applied with automatic morphing engines). In

fact, a threat is recognized only if its signature is present in the anti-malware repository and typically

the signature extraction consists in a time consuming task performed by security analysts. In this paper

we propose a two-fold method aimed to (i) detect the belonging family of a mobile malicious application

and (ii) collocate the application in the right position in the phylogenetic tree. We represent application

system call traces in terms of automaton and, through the adoption of process mining, we extract tem-

poral logic property verified with the adoption of a formal verification environment. The evaluation on a

data-set composed by more than 12,0 0 0 Android applications (4552 malicious ranging from 2010 to 2018,

4552 obfuscated with three different obfuscation engines and 3500 legitimate) confirms the effectiveness

of the proposed formal methods-based approach, obtaining an accuracy ranging from 0.882 to 0.987 in

the analysis of 12 real-world widespread malicious families implementing different behaviours.

1

t

2

f

a

b

s

r

m

t

w

(

s

a

J

r

a

w

b

g

b

s

n

o

s

i

o

Paper draft - please export an up-to-date reference from
http://www.iet.unipi.it/m.cimino/pub
. Introduction

Mobile device use is on the rise: mobility firm Ericsson predicts

hat there will be over six billion smartphone users worldwide by

020, overtaking landlines (Kaspersky, 2019).

Over the last years, the growth in the number of applications

or mobile devices has radically changed the way to communicate

nd to access our information. In fact, given their increasing capa-

ilities, mobile devices are currently used to access sensitive data,

uch as personal information and email, and to perform a wide

ange of activities, like paying a bill and checking a bank account.

But along with increased use comes an explosion of mobile

alware i.e., malicious code developed to target smartphones and

ablets. Mobile malware, as its name suggests, is a malicious soft-

are that specifically targets mobile devices operating systems

 Arp et al., 2014). There are many types of mobile malware vari-
∗ Corresponding author at: Institute for Informatics and Telematics, National Re-

earch Council of Italy, Pisa, Italy.

E-mail address: francesco.mercaldo@iit.cnr.it (F. Mercaldo).

b

t

d

b

nts and several methods of distribution and infection (Zhou and

iang, 2012).

The risk to be infected from mobile malware is more than real:

esearchers from the University of Cambridge found that 87% of

ll smartphones are exposed to at least one critical vulnerability,

hile Zimperium Labs discovered that 95% of mobile devices could

e hacked with a simple text message (Kaspersky, 2019).

In fact, in the last years mobile devices have become tar-

et of continuous attacks obtained through an increasing num-

er of malicious software that becomes everyday more aggres-

ive and sophisticated (Li et al., 2017). In response to this phe-

omenon, a wide range of anti-malware software have been devel-

ped, mostly signature-based. This approach is accomplished es-

entially through manual processes: malicious signatures are typ-

cally generated through expert knowledge by manual inspection

f code and comparison to known signatures. This approach can

e trivially evaded by malware codes (the application of obfusca-

ion techniques is enough to alter the signature and, to evade the

etection), and it can be also prone to false classification and attri-

ution, depending on the quality of the signatures.

https://doi.org/10.1016/j.cose.2019.101691
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2019.101691&domain=pdf
mailto:francesco.mercaldo@iit.cnr.it
https://doi.org/10.1016/j.cose.2019.101691

2 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security ()

T

i

a

h

v

a

(

u

t

s

s

t

a

t

t

o

a

r

l

d

p

i

u

w

t

r

l

t

i

c

o

c

a

n

y

q

f

i

n

p

i

f

t

c

p

5

E

p

The malicious code is usually generated from existing code (Li

et al., 2019; Zhang et al., 2019) with freely available software to

generate new malware using, for instance, code permutations from

the original code. This phenomenon is boosting a proliferation of

variants of the same malware sample, that are logically grouped in

“malware families”.

Malware writers modify existing code in ways that are typical

in software industry and open source landscape (Walenstein and

Lakhotia, 2012a): they add features to an existing malware,

they can generate multiple configurations of the same malware

to allow the execution on several platforms, they combine to-

gether components of different malicious software. Other tech-

niques for malicious code automatic generation include: recompil-

ing (Rosenblum et al., 2011), packing (Chen et al., 2008) and ob-

fuscating (Nagra and Collberg, 2009). For these reasons, even when

the signature for a malicious payload is generated, it is really trivial

for malware writers to generate an obfuscated variant of the ma-

licious behaviour with the aim to elude the current anti-malware

mechanism.

In this scenario, it emerges the need of methodologies for mal-

ware family detection and for malware phylogeny analysis. Mal-

ware family detection is meant to identify whether a sample ex-

hibits a malicious behaviour (Canfora et al., 2018), while malware

phylogeny analysis is the study of similarities and differences in

program structure with the aim to find relationships within groups

of applications (Cimitile et al., 2017), providing insights about new

malware variants not available within the databases of malware

signatures (Jilcott, 2015). Phylogeny analysis is usually considered

as a support for lineage reconstruction (Haq et al., 2018) i.e., the

identification of the ancestor-descendant relationships among mal-

ware samples, identifying, whether possible, the direct samples

from which a specific piece of malware may have been derived

(Dumitras and Neamtiu, 2011).

Recognizing the relationships among malware programs is at

the basis of a variety of security tasks, from malware character-

ization to threat detection and cyber-attack prevention (Suarez-

angil et al., 2014).

Moreover, in malware triage (i.e., the assessment of a security

event to determine if there is a security incident and its priority)

(Bayer et al., 2009; Hu et al., 2009; Jang et al., 2011), malware phy-

logenesis can be used by malware analysts to understand trends

over time and make informed decisions about the best strategies

to dissect the malware samples. Moreover, identifying malware lin-

eage through phylogenetic can help to face more promptly zero

day malware programs, when they are or contain evolved versions

of known malware.

Starting from the assumption that malicious behaviors are

elicited by specific sequences of system calls (Canfora et al., 2015b;

Xiao et al., 2019), we propose an approach for malware detection

and malware phylogeny based on the generation of a formal model

for each application starting from system call traces. Furthermore,

from a set of traces belonging to the same malicious family, we

adopt process mining to automatically infer the properties related

to the family under analysis, assuming that similarities and deriva-

tions between system calls can be discovered and modeled in sys-

tem call traces, similarly to what applies for business process activ-

ities in business process logs. According to this, we consider pro-

cess mining to infer a characterization of the behavior of malicious

mobile applications from a set of system call traces gathered from

it in response to a set of operating system events. From the process

gathered by the process mining, we automatically generate a tem-

poral logic property and thus we exploit a model checker as for-

mal verification environment. With the verification environment,

we are able to establish (i) to which family an app belongs and (ii)

its antecedent-descendant relationship by placing the samples in

the phylogenetic tree.
Even if the proposed approach can be applied to all the exist-

ng platforms, in this work the focus is on the Android platform

s, according to recent survey (Tecktalk, 2019), Android malware

as increased approximately 40% in 2018 with respect to the pre-

ious year. Security analysts showed over 3 million malware vari-

nts had been identified by the end of the third quarter of 2018

 Tecktalk, 2019). Moreover, current solutions to protect Android

sers are still inadequate. In fact, in addition to the weaknesses of

he signature-based approach, there are new techniques that evade

ignature-based detection approaches by including various types of

ource code transformation and simple forms of polymorphic at-

acks (Rastogi et al., 2014). The Android security is also affected by

nother problem: differently from anti-malware software on desk-

op operating systems, Android does not permit to monitor file sys-

em operations. An Android application, indeed, can only access its

wn disk space; as such, an Android anti-malware cannot access

nd verify the malicious code eventually downloaded and run at

un-time by another application installed in the device. This prob-

em has been mitigated, but not solved, by Google with the intro-

uction of Bouncer (Oberheide and Mille, 2012). When a new ap-

lication is submitted to the Google Play Store, Bouncer executes it

n a sandbox for a fixed-time window before making it available to

sers on the official store. Consequently, Bouncer can detect mal-

are actions that happen in this time interval but cannot detect

he other malware actions that happen after this observation pe-

iod. For this reason, new techniques that go beyond to detect ma-

icious software targeting Android devices are required.

With respect to existing approaches to malware family detec-

ion and phylogeny model extraction, the adoption of process min-

ng to automatically infer the temporal logic properties is the main

ontribution of the paper. The contributions in the current state-

f-the-art in this context are mainly related to the adoption of ma-

hine learning technique for detecting Android families, while the

pproaches to build the phylogenetic tree basically consider a sig-

ature composed of several instruction of the samples under anal-

sis. From the other side the works exploiting formal methods re-

uire the manual generation of the property, for both the malware

amily detection task and the phylogenetic tree building. Consider-

ng that formal methods exhibited robustness to obfuscation tech-

iques, the rationale behind this paper is to propose a method ex-

loiting formal methods with the automatic property generation,

n this way the adoption of formal method in this context can be

ully automatised. The proposed approach is particularly suitable

o be used as an automatic verification step in the approval pro-

ess performed by application stores to ensure the security of the

ublished applications.

This paper is an extension of our earlier work presented in the

th International FME Workshop on Formal Methods in Software

ngineering (Cimitile et al., 2017). With respect to this work, this

aper presents following novelties:

• an integrated approach for both family identification and phy-

logeny analysis (the work Cimitile et al., 2017 presents a pre-

liminary analysis focused on malware phylogeny);

• the automatic rule inferring through process mining (the prop-

erties in the work in (Cimitile et al., 2017) are manually gath-

ered by looking at technical reports);

• an extended set of operating systems events to trigger the

malicious payload are considered (in the work Cimitile et al.,

2017 only the BOOT_COMPLETED event is considered);

• a wider experiment involving a larger set of applications be-

longing to twelve widespread real-world Android malware fam-

ilies (the work Cimitile et al., 2017 explores evolution relation-

ships of only five Android families, while in this one we exper-

iment twelve families) ranging from 2010 to 2018;

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 3

s

S

t

o

(

a

S

2

o

2

o

C

i

t

l

c

b

t

o

t

s

e

b

s

2

a

t

s

e

c

r

I

u

t

c

f

a

φ

A

b

Table 1

Satisfaction of a closed formula by a state.

p
|� ff
p |� tt
p �ϕ∧ ψ iff p �ϕ and p �ψ

p �ϕ∨ ψ iff p �ϕ or p �ψ

p |� [K] R ϕ iff ∀ p ′ . ∀ α ∈
K.p

α−→ K∪ R p ′ implies p ′ |�
ϕ

p |� 〈 K〉 R ϕ iff ∃ p ′ . ∃ α ∈
K.p

α−→ K∪ R p ′ and p ′ |� ϕ

p �νZ . ϕ iff p �νZ n . ϕ for all n

p �μZ . ϕ iff p �μZ n . ϕ for some n

where:

• for each n, νZ n . ϕ and μZ n . ϕ are defined as:

νZ 0 .ϕ = tt μZ 0 .ϕ = ff

νZ n +1 .ϕ = ϕ[νZ n .ϕ/Z] μZ n +1 .ϕ = ϕ [μZ n .ϕ /Z]

where the notation ϕ[ψ / Z] indicates the substitution of ψ for every free

occurrence of the variable Z in ϕ.

n

i

r

o

d

l

t

i

φ

a

a

a

w

h

b

b

i

i

r

a

〈

C

t

l

t

2

m

(

2

i
• we generated a morphed version of the malicious samples to

demonstrate the resilience of the proposed method against a

set of common obfuscation techniques (provided by three dif-

ferent morphing engines, two freely available and the third one

developed by the authors) currently widespread by malware

writers to evade signature-based detection.

The rest of the paper is organized as follows. Section 2 de-

cribes background notions related to formal methods.

ection 3 presents the proposed method for malware detec-

ion and phylogeny analysis. Section 4 evaluates the effectiveness

f the approach by testing it on a data-set 12,604 Android samples

ranging from 2010 to 2018) between legitimate and malware

pplications. Related work are discussed in Section 5 , finally

ection 6 provides conclusive remarks.

. Formal methods preliminaries

In this section we recall preliminary notions on formal meth-

ds.

.1. Calculus of communicating systems

The Calculus of Communicating Systems of Milner (CCS) is one

f the most well known process algebras. Readers unfamiliar with

CS are referred to Milner (1989) for further details. The basic idea

n the definition of process algebras is the algebraic structure of

he concurrent processes. This uses a state-based approach with

abeled transitions, where states and transitions correspond to pro-

esses and actions, respectively. Briefly, we assume that the system

ehaviour is represented as a labeled transition system, i.e, an au-

omaton. It basically consists of a set of nodes together with a set

f labelled edges between these nodes. A node represents a sys-

em state, while a labelled edge represents a transition from one

ystem state to the next. That is, if a the automaton contains an

dge s
α−→ s ′ , then the system can evolve from state s into state s ′

y the execution of action α. One state is selected to be the root

tate, i.e., the initial state of the automaton.

.2. Model checking and mu-Calculus logic

Considering a transition system T , we can ask questions such

s the following:

• Are any “undesired” states reachable in T , such as states that

represent a deadlock?

• Are there runs of T such that, from some point on-wards, some

“desired” state is never reached or some actions never exe-

cuted?

• Is some system state of T reachable from every state?

Temporal logics are logical formalisms designed for expressing

he above properties. In detail, in the model checking framework,

ystems are modeled as transition systems and requirements are

xpressed as formulae in temporal logic. A model checker then ac-

epts two inputs, a transition system and a temporal formula, and

eturns true if the system satisfies the formula and false otherwise.

n this paper, we use the modal mu-calculus (Kozen, 1983) in the

sual extended form Stirling (1989) as a branching temporal logic

o express behavioural properties. The syntax of the extended mu-

alculus (from now on, mu-calculus for short) is described in the

ollowing equation, where K ranges over sets of actions (i.e., K ⊆ A)

nd Z ranges over variables:

::= tt | ff | Z | φ ∧ φ | φ ∨ φ | [K] φ | 〈 K〉 φ | νZ.φ | μZ.φ (1)

 fixpoint formula may be either μZ. φ or νZ. φ where μZ and νZ

inds free occurrences of Z in φ. An occurrence of Z is free if it is
ot within the scope of a binder μZ (resp. νZ). A formula is closed

f it contains no free variables. μZ. φ is the least fixpoint of the

ecursive equation Z = φ, while νZ. φ is the greatest one. From now

n we consider only closed formulae.

Scopes of fixpoint variables, free and bound variables, can be

efined in the mu-calculus in analogy with variables of first order

ogic.

The satisfaction of a formula φ by a state s of a transition sys-

em is defined as follows: each state satisfies tt and no state sat-

sfies ff ; a state satisfies φ1 ∨ φ2 (φ1 ∧ φ2) if it satisfies φ1 or (and)

2 . [K] φ is satisfied by a state which, for every performance of

n action in K , evolves to a state obeying φ. 〈 K〉 φ is satisfied by

 state which can evolve to a state obeying φ by performing an

ction in K .

For example, 〈 a 〉 φ denotes that there is an a -successor in

hich φ holds, while [a] φ denotes that for all a -successors φ
olds.

The precise definition of the satisfaction of a closed formula ϕ
y a state s (written s �ϕ) is given in Table 1 .

A fixed point formula has the form μZ. φ (νZ. φ) where μZ (νZ)

inds free occurrences of Z in φ. An occurrence of Z is free if it

s not within the scope of a binder μZ (νZ). A formula is closed

f it contains no free variables. μZ. φ is the least fix-point of the

ecursive equation Z = φ, while νZ. φ is the greatest one.

A transition system T satisfies a formula φ, written T |� φ, if

nd only if q �φ, where q is the initial state of T .
In the sequel we will use the following abbreviations:

 α1 , . . . , αn 〉 φ = 〈{ α1 , . . . , αn }〉 φ
〈−〉 φ = 〈A〉 φ

〈−K〉 φ = 〈A − K〉 φ
[α1 , . . . , αn] φ = [{ α1 , . . . , αn }] φ

[−] φ = [A] φ
[−K] φ = [A − K] φ

In this work we resort to the Concurrency Workbench of New

entury (CWB-NC) (Cleaveland and Sims, 1996) formal verifica-

ion environment, which supports several different specification

anguages, among which CCS. In the CWB-NC the verification of

emporal logic formulae is based on model checking (Clarke et al.,

001). In this paper we use CWB-NC as formal verification environ-

ent. The CWB-NC is available by North Carolina State University

NCSU) under a site license.

.3. Motivation of the use of the CCS and of the mu-calculus logic

The adoption of CCS is a viable solution, due to the availabil-

ty of efficient formal verification methodologies. Moreover, being a

4 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Fig. 1. Formal model and temporal logic formulae generation.

3

f

T

s

d

J

e

e

p

p

b

g

t

i

A
t

w

c

i

p

process algebra language, it has been proven valuable in the spec-

ification and design of software systems, for formal reasoning and

for rapid prototyping. From the CCS textual specification it is pos-

sible to automatically generate the corresponding labelled transi-

tion system, which can be then used for model checking. We pre-

fer textual syntax since it is more adapted to proof-writing and

formal reasoning, as well as to the description of large-scale sys-

tems. Graphical notations are anyway complementary and can be

used by user-friendly front-ends. Moreover, process algebraic oper-

ators are desirable to easily expressed code. Our approach exploits

also the power of the mu-calculus logic which is able to recognize

not only the presence of a given sequence, like for example the

pattern-matching approach, but also checking a branching tempo-

ral logic formula, that permits to define a wide range of proper-

ties of program executions, security properties and more gener-

ally, invariant, liveness or safety properties. Thus, by using the mu-

calculus logic it is also possible to detect not trivial sequences. For

example, we are able to recognize two actions that are not syntac-

tically consecutive, while this falls under pure pattern matching.

Finally, our choices have been also dictated by the usage of the

CWB-NC tool that supports mu-calculus as temporal logic and CCS

as specification language.

3. The method

In this section the proposed approach is described.

As mentioned in Section 1 , the proposed method is aimed to (i)

detect malicious samples belonging to the same malicious family

by automatically generating a formula and (ii) track the philoge-

netic tree.

The main contribution of the proposed work is the automatic

generation of the formula characterizing a family malicious be-

haviour. To do this formal methods and process mining are used.

However, we have to analyze applications that we know to be cer-

tainly belonging to specific malware families. As stated in the ex-

perimental evaluation section, this is possible since the research

community has released in last years several collections of ma-

licious samples with the label related to the belonging family.

Thankful to this effort, in the experimental evaluation, a real-world

malicious data-set of Android applications is considered.

The overall approach is shown in Figs. 1 and 3 . In detail, in

Fig. 1 the formal model and temporal logic formulae generation

step is shown.

The formal model and temporal logic formula generation is

composed by following steps:

• Generation and Capturing system call execution traces;
• XES conversion;

• Superlog generation;

• Process Mining;

• Process Discovery;

• Formulae generation;

• CCS model.

.1. Generation and capturing system call execution traces

The aim of this process is to capture and store, in a textual

ormat, the system call traces generated by Android applications.

o this aim, the application archive (i.e., the APK) is installed and

tarted on an Android device emulator. Successively, a set of 25

ifferent operating system events (Jiang and Zhou, 2013; Zhou and

iang, 2012) is generated (at regular time intervals) and sent to the

mulator and the correspondent sequence of system calls is gath-

red. Table 2 shows the considered events.

Looking at the table, the first row represents the BOOT event,

the most used within existing Android malware. This is not sur-

rising since this event will be triggered and sent to all the ap-

lications installed in an Android device as the system finishes its

ooting process, a perfect time for a malware to kick off its back-

round malicious services (Mercaldo et al., 2016a). By listening to

his event, a malware can start itself without any intervention or

nteraction of the user with the system.

Other events frequently used by malware writers are the

CTION_ANSWER and NEW_OUTGOING_CALL events (second and

hird row in Table 2): these events will be sent in broadcast to the

hole system (and all the running applications) when a call is re-

eived or started.

The system call collection from the application under analysis

s handled by a set of shell scripts developed by authors able to

erform the following actions:

• start the target Android device emulator;

• install the APK of the application on the device emulator;

• wait until a stable state of the device is reached (i.e., when

epoll_wait is executed and the application waits for user input

or a system event to occur);

• start the capture of syscall traces;

• send one event from the activation system events in Table 2 ;

• send the selected event to the application;

• capture syscalls made by the application until a stable state is

reached;

• select a new system event and repeat the steps above to cap-

ture syscall traces for this event;

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 5

Table 2

System events considered for the malicious payload activation.

System Event Description

1 BOOT_COMPLETED Able to catch the boot completed

2 ACTION_ANSWER Incoming call

3 NEW_OUTGOING_CALL Outgoing call

4 ACTION_POWER_CONNECTED Battery status in charging

5 ACTION_POWER_DISCONNECTED Battery status discharging

6 BATTERY_OKAY Battery full charged

7 BATTERY_LOW Battery status at 50%

8 BATTERY_EMPTY Battery status at 0%

9 SMS_RECEIVED Reception of SMS

10 AIRPLANE_MODE The user has switched the phone into or out of Airplane Mode

11 BATTERY_CHANGED Battery status changed

12 CONFIGURATION_CHANGED The current device Configuration (orientation, locale, etc) has changed

13 DATA_SMS_RECEIVED A new data based SMS message has been received by the device

14 DATE_CHANGED Receives data changed events

15 DEVICE_STORAGE_LOW Free storage on device is less than 10% of total space

16 DEVICE_STORAGE_OK Free storage on device is adequate

17 INPUT_METHOD_CHANGED An input method has been changed

18 PROVIDER_CHANGED Providers publish new events or items that the user may be especially interested in

19 PROXY_CHANGE Variation of proxy configuration

20 SCAN_RESULTS An access point scan has completed, and results are available from the supplicant

21 SENDTO Send a message to someone specified by the data

22 SIM_FULL The SIM storage for SMS messages is full

23 SMS_SERVICE CDMA SMS has been received containing Service Category Program Data

24 STATE_CHANGED The state of Bluetooth adapter has been changed.

25 WAP_PUSH_RECEIVED A new WAP PUSH message has been received by the device

1

c

i

t

t

3

t

t

s

m

e

t

3

e

e

s

o

p

h

t

b

l

M

t

b

i

3

m

b

a

t

P

i

i

d

(

b

m

c

a

3

f

c

F

t

M

p

i

f

c

t
• repeat the step above until all 25 system events in Table 2 have

been considered (i.e., the application under analysis was stimu-

lated with all the system events shown in Table 2);

• stop the syscall capture and save the captured syscall trace;

• stop the Android device and revert its disk to a clean baseline

snapshot.

For each application we collect 10 execution traces by executing

0 times each mobile application with the developed scripts. We

ollected 10 execution traces for each application, in order to mit-

gate the occurrence of rare conditions and to have more chances

o extract the malicious payload and discern the system call related

o a legitimate code.

.2. XES Conversion

The process aims to clean, filter and convert the system call

races collected in textual format in the previous process into eX-

ensible Event Stream (XES)-compliant log format (IEEE XML-based

tandard for event logs 1). The extracted traces are in a textual for-

at that needs to be cleaned, filtered and converted to an XES

vent stream. During this conversion, all the unnecessary informa-

ion, as the system call arguments, are filtered out.

.3. Superlog generation

The Superlog is obtained by combining in a single log file sev-

ral execution traces belonging to the same malware family: for

ach family a Superlog is obtained. This is possible since we con-

ider a data-set of malicious apps, each one labelled with the name

f its family. The underlying idea is that different malicious sam-

les belonging to the same family exhibit the same malicious be-

aviour: in this context the process mining can be useful to extract

he common malicious behaviour exhibited by different samples

elonging to the same family. For this reason, we create one Super-

og for family. The Superlog represents the basis for using Process

ining to perform process discovery. Through the Superlog from

he process discovery it is expected to obtain a dependency graph
1 http://www.xes-standard.org/ .

p

t

b

etween system calls representative of the several traces included

n the Superlog.

.4. Process mining

Process mining represents a series of techniques in the process

anagement field supporting the analysis of business processes

ased on event logs. During process mining data mining algorithms

re applied to event log data to identify trends, patterns and de-

ails contained in event logs recorded by an information system.

rocess mining aims to improve process efficiency and understand-

ng of processes. In detail we consider process mining for automat-

cally extract a common behavior (represents in terms of depen-

ency graph) between several traces belonging to the same family

i.e., the Superlog). The rationale behind this idea is that samples

elonging to the same family exhibits the (or a variant of) same

alicious behaviour that, regardless to the obfuscation techniques

onsidered by malware writers and the code-level implementation,

t system call level must be exhibited by the malware samples.

.5. Process discovery

The output of the Process Mining step is a process extracted

rom the Superlog . There are different algorithms for process dis-

overy, in this work we use a heuristic algorithm based on the

uzzy Miner (Günther and Van Der Aalst, 2007) designed by Gun-

her and Van der Aalst in 2007. The Fuzzy Miner is the first Process

ining algorithm introducing the concept of map to show the de-

endencies between several activities using two parameters: activ-

ties and paths . The activities parameter is used to select the most

requent percentage of the activities (i.e., the system calls in the

onsidered context) belonging to the Superlog. The other parame-

er concerns the percentage of connections (and therefore of de-

endencies) between the activities themselves. It is important to

une these two parameter to obtain processes easy to understand

ut also representative of the malware family.

http://www.xes-standard.org/

6 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Fig. 2. An example of automaton modeling of the three example traces.

W

w

i

c

p

f

l

f

c

t

t

1

i

r

w

e

S

t

m
3.6. Formulae generation

Once obtained the process representing the malicious behaviour

(we recall that the process is extracted from the Superlog i.e., a log

containing several traces belonging to the same malware family),

the temporal logic formula characterizing the family behaviour is

automatically inferred.

3.7. CCS Model

From the XES traces we generate a formal model, i.e., a CCS

process, that can be used to analyze and infer the evolution of

mobile malware. We use a general syntactic transformation func-

tion T which transforms system call execution traces into a CCS

model. The reader can refer to Santone and Vaglini (2016) for

more details about the function T . Roughly speaking, the func-

tion T consists of an iterative procedure that starts from an initial

raw main process, which includes all the system traces as alterna-

tive branches. At each step, a more compact process is obtained,

through (sub)processes merge and reduction. The model described

by the CCS processes is simpler and more compact than one di-

rectly given as a transition system; moreover, all model checking

environment can easily obtain the corresponding transition system.

Below we show an example of model obtained from the follow-

ing traces:

• Execution trace #1: read, ioctl, getpid, write ;

• Execution trace #2: read, ioctl, getpid, close ;

• Execution trace #3: epoll_wait, rcvfrom .

The obtained automaton is shown in Fig. 2 .

Considering that the #1 and #2 traces share the read, ioctl and

getpid path, this path is represented one time in the Fig. 2 automa-

ton.

3.8. Formal model verification

Once generated the formal models and the temporal logic for-

mulae, the formal model verification is shown in Fig. 3 .

The formal model verification is composed by following steps:

• Model Checker;

• Analysis.

Model Checker. Using as input the Formulae and the Models

we invoke the Concurrency Workbench of New Century (CWB-NC)

(Cleaveland and Sims, 1996) as formal verification environment.
Fig. 3. Formal mode
hether the formula it verified on the model, the model checker

ill output true , otherwise false.

Analysis The aim of this step is (i) to identify the belonging fam-

ly and (ii) to place the sample in the right antecedent descending

ollocation in the phylogenetic tree. We recall that from each Su-

erlog a process is gathered and from this process a temporal logic

ormula is generated: each formula is able to catch a different ma-

icious behaviour.

With regard to the Family Identification task, we verify the ϕ
ormula characterizing the specific family F individually: the mali-

ious behavior shown by the sample will be the one described by

he formula that will be verified on the model.

As shown in the next section, each ϕF formula characterizing

he specific family F is composed by several subformulae ϕi with

 ≤ i ≤ n where n is the number of the paths related to the spec-

fied malicious behaviour. More precisely, ϕ F = ϕ 1 ∧ . . . ∧ ϕ n . With

egard to the Philogeny tracking , we consider one subformula ϕi ,

ith 1 ≤ i ≤ n , that mostly characterize the specific family F on

ach app of all the families of a fixed data-set. In the following,

el (ϕF) denotes the set containing the above subformula. In details,

o the Sel (ϕF) set belong the most representative formula of the

alicious behaviour of the family, i.e., those codifying the greater
l verification.

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 7

s

g

c

t

c

a

t

5

b

4

i

m

w

a

p

l

l

b

b

m

a

n

C

4

s

t

S

w

m

i

a

t

k

t

a

d

d

w

e

t

m

t

n

s

c

a

b

r

(

a

d

a

m

f

Z

a

t

2

p

w

t

c

ystem calls number (in fact, a temporal logic property including a

reater number of system calls is more characterizing of the mali-

ious behaviour than the temporal logic property with a less sys-

em call number). Given a malware family F , we report the per-

entage of the apps that satisfy the formulae in Sel (ϕF). From this

nalysis we consider the family X as “related” with the family Y if

he in Sel (ϕX), characterizing the family X , is true on more than the

0% of the apps belonging to Y . This threshold is computed on the

asis of experimental results.

. The experimental analysis

In this section we respectively describe the data-set involved

n the experiment, we provide an example of temporal logic for-

ula generated from the related discovered process and, finally,

e present the obtained results for the malware family detection

nd the philogeny tracking task.

The aim of the experimental analysis is to demonstrate that

rocess mining technique can be adopted to extract significant re-

ationships between Android samples belonging to the same ma-

icious family. In this way, a set of logical temporal properties

uilt from the gathered process can be considered to detect the

elonging family of unseen samples. Moreover we consider the

ost characterizing temporal property gathered to establish the

ntecedent-descendant relationship of the family in the phyloge-

etic tree. The machine used to run the experiments was an Intel

ore i7 8th gen, equipped with 2GPU and 16Gb of RAM.

.1. Data-set

The data-set examined in the experiment was gathered from

everal repositories: with regard to the malicious samples we ob-

ained mobile malware from the Drebin data-set (Arp et al., 2014;

preitzenbarth et al., 2013), a very well known collection of mal-

are widely used by the scientific community, which includes the

ost widespread Android families, Contagio Mobile 2 and by crawl-

ng the VirusTotal 3 API.

The considered malware data-set consists of families char-

cterized by several installation methods: (i) standalone , apps

hat intentionally include malicious functionalities; (ii) repackaging ,

nown and common (legitimate) apps that are first disassembled,

hen the malicious payload is added, and finally are re-assembled

nd distributed as a new version (of the original app); and (iii) up-

ate attack , apps that initially do not show harmful behaviors and

ownload an update containing the malicious payload, at runtime.

The malware data-set is also partitioned according to the mal-

are family ; each family contains malicious samples sharing sev-

ral characteristics: the payload installation, the kind of attack and

he events triggering the malicious payload (Zhou and Jiang, 2012).

Table 3 shows the 12 malware families involved in the experi-

ent with the details of the installation types, the kinds of attack,

he events which activate the payload, the discovery date and the

umber of malicious samples belonging to each family.

To obtain legitimate applications, we crawled the official app

tore of Google 4 , by using an open-source crawler 5 . The obtained

ollection includes samples belonging to all the different categories

vailable on the market. The legitimate applications were collected

etween January 2016 and April 2016.

We analyzed the data-set with the VirusTotal service 6 , a service

unning 61 different free and commercial anti-malware software
2 http://contagiominidump.blogspot.com/ .
3 https://www.virustotal.com .
4 https://play.google.com/store .
5 https://github.com/liato/android- market- api- py .
6 https://www.virustotal.com/ .

1

i.e., ESET NOD32, Kaspersky Lab, Norton Antivirus, F-Prot, Avast!,

nd others): the analysis confirmed that the legitimate applications

id not contain malicious payload while the malware ones were

ctually recognized as malicious.

Moreover, to demonstrate the effectiveness of our method in

alware detection, we applied a set of well-known code trans-

ormations techniques (Canfora et al., 2015a; Rastogi et al., 2013;

heng et al., 2012) to the malicious applications. These techniques

re used by malware writers to evade the signature-based detec-

ion approaches adopted by current anti-malware (Rastogi et al.,

014; You and Yim, 2010).

Clearly, the process mining task is performed on original sam-

les. Subsequently, through the formal verification environment,

e evaluate whether the properties (automatically obtained from

he Superlog related to the families) is able to detect also obfus-

ated variant.

In particular, we applied following transformation techniques:

1. Disassembling & Reassembling. The compiled Dalvik Bytecode

in classes.dex of the application package may be disassembled

and reassembled through apktool . This allows various items in

a .dex file to be represented in another manner. In this way,

signatures relying on the order of different items in the .dex

file are likely to be ineffective with this transformation.

2. Repacking. Every Android application has a developer signa-

ture key that will be lost after disassembling and reassembling

the application. Using the signapk 7 tool, it is possible to em-

bed a new default signature key in the reassembled application

in order to avoid detection signatures that match the developer

keys.

3. Changing package name. Each application is identified by a

unique package name. This transformation renames the appli-

cation package name in both the Android Manifest file and all

the application classes.

4. Identifier renaming. This transformation renames each pack-

age name and class name by using a random string generator,

in both the Android Manifest file and smali classes, handling re-

named classes invocations.

5. Data Encoding. Strings could be used to create detection signa-

tures to identify malware. To elude such signatures, this trans-

formation encodes strings with a Caesar cipher . The original

string is restored during application execution with a call to a

smali method that knows the Caesar key .

6. Call indirections. This transformation mutates the original call

graph of the application by modifying every method invocation

in the code with a call to a new method which simply invokes

the original method.

7. Code Reordering. This transformation is aimed at modifying

the instructions order in the application methods. A random

reordering of instructions has been accomplished by inserting

goto instructions with the aim of preserving the original run-

time execution trace.

8. Defunct Methods. This transformation adds new methods that

perform defunct functions, clearly the logic of the original

source code remains unchanged.

9. Junk Code Insertion. These transformations introduce code se-

quences that have no effect on the function of the code. De-

tection algorithms relying on instructions sequences may be

defeated by this transformation. This transformations provides

insertion of nop instructions into each method, unconditional

jumps into each method, and allocation of three additional reg-

isters performing garbage operations.

0. Encrypting Payloads and Native Exploits. In Android, native

code is usually made available as libraries accessed via Java
7 https://code.google.com/p/signapk/ .

http://contagiominidump.blogspot.com/
https://www.virustotal.com
https://play.google.com/store
https://github.com/liato/android-market-api-py
https://www.virustotal.com/
https://code.google.com/p/signapk/

8 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Table 3

The malware families.

Family Description Inst. Events Date #

Geinimi it has the potential to receive commands from a remote server that

allows the owner of that server to control the phone

r MAIN 12–2010 77

Plankton advance the update attack by stealthily upgrading certain

components in the host apps, it does not require user approval.

u MAIN 06–2011 479

BaseBridge it sends information to a remote server running one or more

malicious services in background

r,u BOOT, SMS, NET, BATT 09–2011 314

Kmin it is similar to BaseBridge, but does not kill anti-malware processes s BOOT 10–2011 87

GinMaster it contains a malicious service with the ability to root devices to

escalate privileges, steal confidential information and install

applications

r BOOT 06–2012 328

Opfake it demands payment for the application content through premium

text messages

r MAIN 2013 597

FakeInstaller SMS trojan adding server-side polymorphism, obfuscation,

antireversing techniques and frequent recompilation

r BOOT, SMS 2014 831

HummingBad it shows ads and installs other apps, for the monetary gain of their

creators

s MAIN 2016 590

RedDrop malware with the ability to record audio files from the infected

devices and sends them to attackers

s MAIN 2018 266

Overlay it overlays the targeted application with a phishing screen to steal

bank credentials

s MAIN 2017 75

Judy auto-clicking adware, generating large amounts of fraudulent clicks

on advertisements, generating revenues for the perpetrators

behind it

s MAIN 2017 85

Xbot it intercepts and parse SMS messages from banks. Moreover it is able

to perform an “activity hijacking”

s MAIN 2016 36

1

1

Table 4

The transformation techniques provided by considered obfuscators.

Transformation Carinival DroidChamelon ADAM

Dissassembling X X X

Repacking X X X

Changing package name X X

Identifier renaming X X

Data Encoding X X

Call indirections X X

Code Reordering X X

Defunct Methods X

Junk Code Insertion X X

Encrypting Payloads X

Function Outlining X

Reflection X

o

b

w

p

s

s

p

o

l

n

l

4

m

s

c

c

a
Native Interface (JNI). However, some malware, such as Droid-

Dream, also pack native code exploits meant to run from a

command line in non-standard locations in the application

package. All such files may be stored encrypted in the appli-

cation package and be decrypted at run-time. Certain malware

such as DroidDream also carry payload applications that are in-

stalled once the system has been compromised. These payloads

may also be stored encrypted. These are easily implemented

and have been observed in the wild (e.g., DroidKungFu malware

uses encrypted exploit Zhou and Jiang, 2012).

1. Function Outlining and Inlining. In function outlining, a func-

tion is broken down into several smaller functions. Function in-

lining involves replacing a function call with the entire func-

tion body. These are typical compiler optimization techniques.

However, outlining and inlining can also be used for call graph

obfuscation.

2. Reflection. This transformation converts any method call into

a call to that method via reflection. This makes it difficult to

statically analyze which method is being called. A subsequent

encryption of the method name can make it impossible for any

static analysis to recover the call.

We apply the full transformation set to the malicious sam-

ples with the Droidchameleon (Rastogi et al., 2013), the ADAM

(Zheng et al., 2012) and the Carnival 8 tools. Table 4 shows the ob-

fuscation techniques implemented by the three tools.

We combined together all the transformations provided by the

three morphing engines: the transformations are applied in se-

quence to generate from a malicious sample its obfuscated version.

Moreover, the transformations are applied to each class of the ap-

plication, in this way all the classes of the application (including

the ones implementing the malicious payload) are afflicted by the

morphing techniques.

With the evaluation of obfuscated malicious samples, we

demonstrate that the properties automatically generated from each

families, differently from the signature provided by current anti-

malware, are able also to detect the obfuscated versions of the

sample of analysed families. In fact, new (or obfuscated) versions
8 https://github.com/faber03/AndroidMalwareEvaluatingTools .

t

c

f malicious code appear that are not recognized by signature-

ased anti-malware (Rastogi et al., 2013). This is the reason why

e consider also obfuscated malware, to demonstrate that the pro-

osed method is able to detect morphed samples.

To summarize, the analysed data-set is composed by 12,604

amples: 3765 malicious samples belonging to the 12 families

hown in Table 3 , 3500 crawled by the Google Play and 3765 mor-

hed samples generated by applying the three obfuscation engines

n the malicious data-set. Moreover, we considered other 787 ma-

icious samples (and their related obfuscated version) to verify that

o errors of misclassification occur, in fact these samples are be-

onging to other families (i.e., Adrd, DroidDream and DroidKungFu).

.2. Temporal logic formulae discovering

Generally, to apply process mining the following three require-

ents are needed:

Case ID : a case identifier, also called process instance, is neces-

ary to distinguish different executions of the same process. In the

onsidered context, the process instance is represented by the exe-

ution trace, while the process is the application: clearly from one

pplication we can gather several system call execution traces: in

his work we obtain 10 different traces for each application.

Activity : in this context the activity is represented by the system

all name.

https://github.com/faber03/AndroidMalwareEvaluatingTools

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 9

Table 5

Maps readability with different activity and path settings with 20 execution traces/2 apps for family.

Activity (%) Path (%) Comment

1 30 0 The maps contain a very high number of activities, therefore it is not possible to distinguish the processes discovered and

the relative dependencies between system calls. Even if the paths parameter is changed, the map is illegible, for this

reason it is necessary to reduce the activity parameter

2 0 0 Some maps are reduced to few activities, while others maintain a higher number. In particular, for some families the map

does not change at all with respect to the configuration with 30 and 0. Very simple maps are generated, while others are

extremely complicated. For the simpler ones we note that there are some similar patterns between them, this could

certainly be a threat to distinguishing.

3 10 0 With this pair of parameters the maps generated are still very complex for different families, but they can be distinguished

one from another. Some maps remain identical to the 0 and 0 configuration, while others are unchanged compared to

the 30 and 0. Therefore, it is not possible to simplify all the maps sufficiently.

4 20 0 With this configuration, the families with a complex map maintain it unchanged with respect to the 10 and 0

configuration. The map of the others becomes more complex with respect to the previous configurations.

t

t

fi

(

c

g

t

t

t

m

t

i

a

a

d

T

c

t

t

c

m

a

i

c

p

a

t

c

b

m

i

c

a

q

t

w

i

h

t

c

f

r

e

t

fi

a

t

t

l

b

t

o

w

o

w

t

t

e

f

o

t

t

f

o

t

t

s

f

b

w

a

m

o

c

i

p

n

c

m

r

m

c

c

i

f

t

a

b
Timestamp : each system call is accompanied with the times-

amp related to its generation, this is important to extract useful

emporal information related to the system call sequences.

To discovery a process related to a single malware family we

rstly consider 20 execution traces belonging to the same family.

We consider for the process discovery the Disco software

 Günther and Rozinat, 2012), able to manage large event logs and

omplex models. This software implements the Fuzzy Miner al-

orithm (Günther and Van Der Aalst, 2007). Moreover it includes

hrough its graphical interface the highlighting of recurrent activi-

ies and paths.

The process discovery algorithm provided by Disco represents

he first Process Mining algorithm introducing the concept of “map

etaphor” to show the dependencies between the several activi-

ies. Moreover it allows to simplify the discovered process by us-

ng two parameters: activities and paths . The first parameter, the

ctivities one, serves to select the percentage of the most frequent

ctivities (in this case the system calls) within the log (to avoid to

isplay activities not really recurrent limiting the map readability).

he second parameter i.e., the paths, concerns the percentage of

onnections (and therefore of the dependencies) between the ac-

ivities themselves. This parameter changes the map depending on

he parameter of the activities, so as not to leave any activity dis-

onnected from the rest of the map.

The several Superlogs contain a few million events and the

aps for each family, without an adequate tuning of the activity

nd path parameters, resulted incomprehensible and unnecessar-

ly.

For this reason we are looking for a trade-off solution between

omprehensibility and distinctiveness of the generated maps. In

articular, we are looking, for a map that is as simple as possible

nd that in any case maintains the family distinctive characteris-

ics. To choose the best activity and path setting, we tried several

onfigurations. We report this analysis in Table 5 .

Considering that we are not able to obtain a compromise

etween comprehensibility and distinctiveness of the generated

aps, and considering that the Disco algorithm shows the activ-

ties basing to their frequency, we considered to add more system

alls traces in each Superlog. It can be possible that there is not

 preponderant difference between the activities in terms of fre-

uency, therefore the software is forced to show them almost in

heir entirety, not knowing how to perform the choice in another

ay. It would be necessary that this difference existed, because it

s expected that the system calls representing the malicious be-

aviour have been run several times, if compared with the sys-

em call invocations of the legitimate behaviour. For this reason we

onsidered a number of execution traces in each Superlog ranging

rom 70 to 100 (depending from the syscall trace length), Table 6

eports the obtained results with 70–100 traces (i.e., 7–10 app) for

ach family.
From this analysis, it appears that the optimal configuration is

he one with 20% of the activities and 0% of the paths: we con-

rm that the generated processes exhibit unique and distinguish-

ble behaviours.

Table 7 shows the extracted processes for each superlog with

he total number of flows extracted for family (% flows column),

he occurrence percentage in the traces considered in the super-

og (% family column) and the occurrence percentage in the traces

elonging to other family superlog (% other).

For instance, in the Plankton family, there is a particular flow:

he one connecting the epoll_wait system calls with the recvfrom

ne. The first system call, as previously mentioned, is the way in

hich the application succeeds in putting itself in the expectation

f an event. The second one is invoked when the application is

aiting to receive a message coming from a socket. According with

he behaviour described in Table 3 , it is possible that the malware,

riggered by one or more of the events that are launched from the

mulator, is waiting for a message containing a command coming

rom a socket connected to the attacker server. It is possible to

bserve that in no other family there are direct edges connecting

hese two system calls as in the case of the Plankton family. These

wo system calls are also parts of the discovered process of other

amilies, but there are always system calls placed in the middle

f the path from epoll_wait to recvfrom . For this reason we state

hat the Plankton family is distinguishable from the others. Also

he Geinimi family uses the recvfrom system call, probably for the

ame purpose of the Plankton family, but is considered into a dif-

erent sequence. The use of this syscall is justified also in this case

y the description in the Table 3 . In the BaseBridge family instead,

e note the uniqueness of the epoll_wait, read, sigprocmask, writev

nd ioctl sequence. The peculiarity lies in the use of the sigproc-

ask function: this function can be used to change the signal mask

f a process. The signal mask is the set of signals whose delivery is

urrently blocked for the caller. It could therefore be used to mod-

fy the signal mask of an anti-malware process (once obtained root

rivileges), to ensure that it responds to a certain signal and termi-

ate it (behaviour described in Table 3 , or to no longer respond to

ertain signals. In the FakeInstaller family we note the use of the

protect function (able to change the memory access protections),

arely used in other discovered processes. Being a family of poly-

orphic malware, it may be that it comes used this function to

hange the access rights in memory of a process, which then it

an modify his code for example by inserting useless operations,

n order to evade anti-malware.

To understand how the temporal logic formulae are generated

rom the discovered processes, in Fig. 4 the process discovered by

he Kmin family superlog is shown.

In Fig. 4 , the nodes are labelled with the system calls and the

verage times they are invoked, while the thickness and num-

er on the edges represent the average frequency in the specific

10 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Table 6

Maps readability with different activity and path setting with 70–100 (i.e., 7–10 app) execution traces for family.

Activity (%) Path (%) Comment

1 30 0 The complexity is reduced if compared to the same configuration with 20 traces in each superlog, moreover the maps are

very distinguishable.

2 0 0 Increasing the paths parameter makes the maps more complex, making them again unreadable. In any case, the maps,

although not legible, are not complex as in the previous configuration with 20 traces for each superlog.

3 10 0 With this configuration, 8 families out of 10 maintain the map with respect to the 0 and 0 configuration. The remaining

two families contain patterns that are not sufficiently distinguishable.

4 20 0 Most of the maps remain unchanged with respect to configuration 10 and 0. The two that turned out to be undetectable

instead show new patterns that make them distinguishable. This configuration is therefore the best compromise between

comprehensibility and distinctiveness.

Table 7

Examples of extracted system call sequences for each family.

Family System call process flows % family % other

Geinimi getuid32, epoll_wait, rcvfrom, mmap2, close, getpid + sigprocmask + cacheflush 9 0.990 0.059

Plankton mmap2, munmap + read, close, writev + getpid + sigprocmask 8 0.961 0.187

BaseBridge write, getpriority, getpid, getuid32, epoll_wait, read, sigprocmask, writev,

ioctl + write, getpriority, getpid, getuid32, epoll_wait, read, mprotect

4 0.752 0

Kmin sigprocmask, madvise, mprotect + ioctl, madvise, mprotect + writev + write,

getpriority + write, getpid, getuid32, epoll_wait

5 0.999 0.081

GinMaster munmap, madvisegetpriority 6 0.989 0.018

Opfake close, getpid, getuid32, epoll_wait, read, recvfrom, mmap2 + madvise + close,

clock_gettime + close, getpid, ioctl, dup

6 0.861 0.023

FakeInstaller clock_gettime, writev, ioctl, dup, mmap2, madvise + sigprocmask 7 0.984 0.164

HummingBad close, getpriority, mprotect, dup, write, cacheflush 6 0.952 0.193

RedDrop getuid32, write, mmap2, ioctl, read, epoll_wait 4 0.843 0.024

Overlay read, getpid, dup, sigprocmask 6 0.972 0.156

Judy getpriority, getuid32, epoll_wait, read, sigprocmask 4 0.863 0.035

Xbot write, clock_gettime, getpid, mprotect, dup, sigprocmask getuid32 5 0.872 0.039

Fig. 4. The process discovered from the analysis of the Kmin family superlog.

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 11

Table 8

Temporal logic property for the Kmin malicious behaviour detection.

ϕ1 = μX. 〈 clock _ get t ime 〉 tt 〈−clock _ get t ime 〉 X
ϕ2 = μX. 〈 f utex 〉 ϕ 21 ∨ 〈− f utex 〉 X
ϕ21 = μX. 〈 recv msg〉 ϕ 22 ∨ 〈−recv msg〉 X
ϕ22 = μX. 〈 rt _ sigt imedwait 〉 tt ∨ 〈−rt _ sigt imedwait 〉 X
ϕ3 = ϕ 3 a ∧ ϕ 3 b
ϕ3 a = μX. 〈 sigprocmask 〉 ϕ 32 ∨ 〈−sigprocmask 〉 X
ϕ3 b = μX. 〈 ioctl〉 ϕ 32 ∨ 〈−ioctl〉 X
ϕ32 = μX. 〈 madv ise 〉 ϕ 33 ∨ 〈−madv ise 〉 X
ϕ33 = μX. 〈 mprotect〉 tt ∨ 〈−mprotect〉 X
ϕ4 = μX. 〈 write 〉 ϕ 41 ∨ 〈−write 〉 X
ϕ41 = ϕ 4 a ∧ ϕ 4 b
ϕ4 a = μX. 〈 get pid〉 ϕ 4 a 1 ∨ 〈−get pid〉 X
ϕ4 a 1 = μX. 〈 getuid32 〉 ϕ 4a2 ∨ 〈−getuid32 〉 X
ϕ4 a 2 = μX. 〈 epol l _ wait〉 tt ∨ 〈−epol l _ wait〉 X
ϕ4 b = μX. 〈 get pr ior ity 〉 tt ∨ 〈−get pr ior ity 〉 X
ϕ5 = μX. 〈 write v 〉 tt ∨ 〈−write v 〉 X
ϕ = ϕ 1 ∧ ϕ 2 ∧ ϕ 3 b ∧ ϕ 4 ∧ ϕ 5

p

n

p

t

s

t

K

a

f

i

a

s

g

p

i

p

4

w

e

t

g

l

b

w

q

c

a

t

p

p

p

t

b

w

s

l

a

∨

e

Table 9

Evaluation results for family identification task.

Family Precision Recall F-Measure Accuracy

Geinimi 0.994 0.941 0.966 0.987

Plankton 0.947 0.872 0.878 0.922

BaseBridge 0.865 0.846 0.853 0.882

Kmin 0.989 0.919 0.952 0.968

GinMaster 0.968 0.962 0.964 0.966

Opfake 0.921 0.977 0.948 0.941

FakeInstaller 0.969 0.963 0.965 0.968

HummingBad 0.967 0.923 0.934 0.978

RedDrop 0.916 0.917 0.919 0.924

Overlay 0.956 0.950 0.954 0.961

Judy 0.918 0.922 0.923 0.934

Xbot 0.925 0.927 0.928 0.933

l

r

2

f

D

t

s

c

f

t

f

d

4

p

m

P

F

w

t

c

F

f

n

t

o

f

ath. The larger this number, the more thick the edge that con-

ects them. The dotted paths are used only to connect the several

aths discovered from the superlog. The graph representation of

he discovered process is automatically generated from the Disco

oftware. As shown by Fig. 4 there are five different paths distinc-

ive of the family superlog.

Table 8 shows the temporal logic property aimed to identify the

min malicious payload generated from the process in Fig. 4 .

Each path of the discovered process in Fig. 4 is represented as

 single temporal logic formula (i.e., ϕ 1 , ϕ 2 , ϕ 3 , ϕ 4 and ϕ 5). The

ormula is verified whether all these paths are simultaneously ver-

fied on the model under analysis (i.e., ϕ).

We are aware that some constraints of the discovered process

re codified in simplified form using temporal logic formulae, con-

idering a relaxed version of the constraint. This is a design choice

uided for performance benefits and, as demonstrated by the ex-

erimental results, the temporal logic formulae even if represent-

ng relaxed constraints are able to discriminate between malicious

ayloads belonging to different families.

.3. Baseline

To provide a baseline, we evaluate two different Android mal-

are detection methods (Canfora et al., 2013; 2015c; Mercaldo

t al., 2016b), both of them relying on static analysis and related

o the malware detection task (i.e., the discrimination between le-

itimate and malicious application) exploiting supervised machine

earning techniques. We refer to the first method is permission

ased, while the second one is op-codes based.

The first method considers two features, the first one is a

eighted sum of a subset of permissions that the application re-

uired and a set of combinations of permissions. The first metric

omputes a weighted sum of all the permissions requested by the

pplication under analysis, where the weight is assigned according

o the potential threat that the permission could cause if the ap-

lication has evil goals. For instance, “RECEIVE_BOOT_COMPLETED”

ermission could be more dangerous than “ACCESS_WIFI_STATE”

ermission.

The second metric is a weighted sum of selected combina-

ions of permissions. The underlying idea is that specific com-

inations of permissions can be more effective to detect mal-

are applications rather than a weighted sum of all the permis-

ions. Relevant permission combinations were obtained from a

iterature analysis about smartphone malware. For instance, the

(RE CE IV E _ SMS ∧ SEND _ SMS) ∨ CALL _ P HONE combination obtains

 higher risk level if compared to the AC C ESS _ NET W ORK _ ST AT E

 AC C ESS _ W I F I _ ST AT E one. Once computed the metric values for

ach application involved in the experiment, we build a machine
earning model, exploiting the RandomForest classification algo-

ithm (the one reaching the best performances in (Canfora et al.,

013)).

In the second method, opcodes occurrence are considered as

eatures. In a nutshell, six features obtained by counting some

alvik op-codes of the instructions which form the smali code of

he application. The occurrences of the following opcodes are con-

idered as feature vector:

• Move: which moves the content of one register into another

one.

• Jump: which deviates the control flow to a new instruction

based on the value in a specific register.

• Packed-Switch: which represents a switch statement. The in-

struction uses an index table.

• Sparse-Switch: which implements a switch statement with

sparse case table, the difference with the previous switch is

that it uses a lookup table.

• Invoke: which is used to invoke a method, it may accept one or

more parameters.

• If: which is a Jump conditioned by the verification of a truth

predicate.

From the experimental results in (Canfora et al., 2015c; Mer-

aldo et al., 2016b) emerges that the model obtaining the best per-

ormances is the one built with the J48 classification algorithm, for

his reason the same algorithm is considered to evaluate the per-

ormance on the second method on the considered experimental

ataset.

.4. Experimental evaluation

To estimate the effectiveness of the proposed method, we com-

ute the precision and recall, F-measure (Fm) and Accuracy (Acc)

etrics, defined as follows:

 R =

T P

T P + F P
; RC =

T P

T P + F N

;

 m =

2 P R RC

P R + RC
; Acc =

T P + T N

T P + F N + F P + T N

here TP is the number of malware that are correctly associated

o the right family (True Positives), TN is the number of malware

orrectly identified as not belonging to the family (True Negatives),

P is the number of malware that are incorrectly associated to a

amily (False Positives), and FN is the number of malware that are

ot recognized as belonging to their family (False Negatives).

Table 9 presents the results obtained for the family identifica-

ion task.

As shown in Table 9 , with regard to the family detection, we

btain an accuracy ranging from 0.882 (obtained with BaseBridge

amily) to 0.987 (reached with the Geinimi one).

12 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Table 10

Baseline performances in terms of Accuracy. The Permissions column is related to

the accuracy obtained with the permission based method, while the Op-codes col-

umn is referring to the accuracy reached with the op-code based method.

Family Permissions Op-codes

Geinimi 0.768 0.838

Plankton 0.722 0.814

BaseBridge 0.701 0.788

Kmin 0.759 0.817

GinMaster 0.748 0.811

Opfake 0.721 0.809

FakeInstaller 0.777 0.831

HummingBad 0.785 0.842

RedDrop 0.726 0.814

Overlay 0.761 0.823

Judy 0.758 0.821

Xbot 0.761 0.832

t

T

r

i

b

a

p

d

f

t

7

t

i

b

m

I

B

p

5

h

p

l

e

l

s

t

X

a

f

p

i

f

i

w

e

f

n

s

g

t

a

f

fi

i

p

h

s

t

4

p

In Table 10 we present the baseline accuracy: we highlight that

the methods used as baseline (Canfora et al., 2013; 2015c; Mer-

caldo et al., 2016b) are referred to the discrimination between le-

gitimate and malicious samples and, for this reason, they consider

a binary classification problem. To consider these methods as base-

line, we considered a multi-class classification, where each class is

represented by a malware family.

From the baseline results in Table 10 emerges that the op-codes

methods obtain better accuracy if compared to the permissions one.

In particular, the accuracy for the permissions is ranging between

0.838 (Geinimi family) and 0.788 (BaseBridge family), while the ac-

curacy for the permissions method is ranging between 0.701 and

0.768 for the same families. From these results, we can state that

the proposed method outperforms the baseline in terms of accu-

racy.

Below we discuss in details the results we obtained in terms

of FP. In the FP falls the samples incorrectly associated to a family

under analysis (both legitimate samples than malware belonging

to other families). From the experimental analysis it emerges that

FP value contribution in terms of legitimate applications wrongly

detected as belonging to a malicious family is really minimal, in

fact only 8 legitimate applications (on the total of 3500 legitimate

application) are labelled as belonging to a malicious family. The re-

maining FP are related to malicious samples which belonging fam-

ily is wrongly identified.

The time to check t total whether an application is belonging to

a certain family is computed by adding following contributions:

• t syscall : this value represents the time required to extract and

store the system calls when the 25 events are sent. In average

this value is equal to 15 min (i.e., 1.5 min to obtain each trace);

• t model : this value represents the time required to build the

model from the 10 syscall traces. In average this value is equal

to 40 s;

• t verification : this value represents the time required by the formal

verification environment to verify the properties on the model.

This value in average is equal to 2 min.

Considering the following contributions, the average t total com-

puted on all the evaluated applications is equal to 15 + 0.40 + 2

= 17.4 min.

With regard to the phylogeny tracking, Table 11 shows the per-

centages at which the various samples are verified for the sub-

formula related to each family.

As shown in Table 11 , the formal verification environment ver-

ifies the longest path of the ϕGeinimi formula on the 68% of the

Plankton and on the 51% of the GinMaster samples: this is symp-

tomatic that both the families embed a part of the malicious pay-

load of the Geinimi family, for this reason there is a descent rela-
ionship between the Geinimi family and Plankton and GinMaster.

he relationship can be justified from the extensive use of network

esources to steal sensitive information using a botnet without us-

ng SMSs to fraud credit to victims (Xiao et al., 2019), a common

ehaviour of the malicious payload belonging to Geinimi, Plankton

nd GinMaster. We highlight that for the family detection task the

roperty generated from the superlog is considered (where each

ifferent system call path is verified with the ∧ operator), while

or the philogeny tracking task we consider a property related to

he longest path.

The ϕPlankton formula (second row in Table 11) is verified on the

2% of the samples belonging to the BaseBridge family: we recall

hat both the malicious payloads of these families are delivered us-

ng the update attack technique i.e., the package with the malicious

ehaviour is downloaded at runtime.

With the 74% of the Kmin samples verified, the proposed

ethod labels the BaseBridge family as related to the Kmin one.

n fact, the Kmin family exhibit a payload closed to the one of the

aseBridge family: the only difference is that the Kmin malicious

ayload is not able to kill the anti-malware processes.

The Kmin property is not verified in a percentage higher than

0%, for this reason there is no relation for this family.

The Ginmaster, as shown from the sixth row of Table 11 ex-

ibits a relation with the Opfake family. In fact, both the malicious

ayloads are able to install external applications.

The Opfake property is verified on the 59% of the samples be-

onging to the FakeInstaller family and on the 59% of the samples

xhibiting the HummingBad payload: this is symptomatic of a re-

ationship, due to the fact that these malicious payload are able to

end SMS to premium rate numbers (Sahay and Sharma, 2019).

The FakeInstaller property is verified in a percentage higher

han 50% on the samples belonging to the Overlay (i.e., 54%) and

bot (i.e., 62%) families, for this reason these two families exhibit

 relation with the samples of the FakeInstaller family.

The HummingBad family has a relation with the Judy family, in

act the HummingBad property is verified on the 67% of the sam-

les belonging to the Judy family.

The RedDrop, Judy, Xbox and Overlay formulae are not verified

n a percentage higher than 50%, for this reason there is no relation

or these families.

Fig. 5 shows the obtained phylogenetic tree.

The resultant phylogenetic tree is shown in Fig. 5 .

As shown by the phylogenetic tree in Fig. 5 , for all the families

nvolved in the experiment, the draw the relationship coherently

ith the time of discovery of the malicious family, confirming the

ffectiveness of the proposed approach to correctly place malware

amilies in the right position within the phylogenetic tree.

As shows by the experimental results, the process mining tech-

ique can be successfully adopted to extract significant relation-

hip in terms of system call. In detail we demonstrated that the

athered processes are representative of malicious families: in fact

he temporal logic properties built starting from the process are

ble to discriminate between malicious samples belonging to dif-

erent families. With regard to the phylogenetic tree task, we con-

rmed the correct antecedent-descendant positioning of the fam-

lies in the phylogenetic tree with the family discovery date. The

roposed method can be useful for the detection of malicious be-

aviours end user side but also to security analyst, in fact the po-

itioning in the phylogenetic tree can help analysts to understand

he Android malware evolution.

.5. Limitations

In the follow we describe the weaknesses related to the pro-

osed approach:

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 13

Table 11

Formal analysis of malware evolution (column G stands for Geinimi family, P for Plankton , BB for BaseBridge , K for

Kmin , GM for GinMaster , OF for OpFake , FI for FakeInstaller , HB for HummingBad , RD for RedDrop , OL for Overlay ,

J for Judy and X for Xbot).

Formulae Family

G P BB K GM OF FI HB RD OL J X

ϕGeinimi - 68% 38% 34% 51% 14% 28% 21% 31% 19% 38% 23%

ϕPlankton 37% - 72% 33% 18% 42% 39% 9% 26% 17% 28% 22%

ϕBaseBridge 27% 42% - 74% 36% 26% 15% 8% 55% 11% 14% 37%

ϕKmin 12% 16% 33% - 27% 29% 9% 7% 45 6% 22% 14%

ϕGinMaster 16% 24% 13% 15% - 73% 48% 35% 31% 11% 28% 32%

ϕOpFake 8% 44% 38% 19% 48% - 59% 76% 42% 4% 37% 21%

ϕFakeInstaller 13% 39% 25% 33% 23% 27% - 26% 38% 54% 5% 62%

ϕHummingBad 41% 27% 11% 29% 34% 31% 42% - 37% 12% 67% 13%

ϕRedDrop 21% 14% 46% 43% 22% 26% 32% 18% - 7% 23% 36%

ϕOverlay 27% 38% 25% 45% 34% 45% 28% 33% 14% - 28% 12%

ϕ Judy 23% 26% 47% 36% 23% 16% 39% 29% 11% 15% - 46%

ϕXbot 9% 29% 24% 41% 32% 46% 49% 19% 34% 44% 37% -

Fig. 5. The phylogenetic tree.

5

c

d

a

p

5

c

2
• to have more chances to trigger the malicious payload we sent

to the application under analysis a set of 25 events: we are

aware that the malicious payload can be triggered at specific

time or when a complex combination of conditions is verified,

for instance if the user is present. With the aim to make the

proposed detection method fully automatised we do not con-

sidered user interactions;

• a malicious payload may not necessarily be implemented in

the single piece of code that will be activated by some sys-

tem events and only a part of the payload may be reflected

in the traces. For instance, in the case of malware belonging

to the “update attack” category, the malicious payload is de-

livered at run-time. We configure the emulator with the pos-

sibility to connect to the network, with the external storage,

the geolocalization and the camera with the aim to offer to

malware the best environment for carrying out their malicious

behavior;

• the system call traces are generated from the Android emula-

tor: an Android is able to know if is running on a real device

or on an emulated one for instance, by simply checking if the
Build.MODEL 9 variable contains the “Emulator” value. We any-

way considered the adoption of the Android emulator to per-

form a wide experiment on several families to confirm the ef-

fectiveness of the proposed method.

. Related work

In this section the current state of the art literature is discussed,

onsidering that we propose a method for mobile malware family

etection and philogeny tracking we firstly discuss the state in the

rt in the malware family detection and secondly in the malware

hilogeny analysis.

.1. Malware family identification

Several works in literature explore the effectiveness system

alls (Canfora et al., 2014; 2013; Jeong et al., 2014; Reina et al.,

013) for the detection of malicious Android families. For instance
9 https://developer.android.com/reference/android/os/Build .

https://developer.android.com/reference/android/os/Build

14 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

t

3

a

a

r

v

d

e

o

t

t

e

t

m

u

t

v

7

a

a

t

T

p

g

t

c

c

w

g

b

5

p

b

t

t

p

m

p

n

w

t

n

v

m

f

g

6

n

m

a
in (Canfora et al., 2013), a method for detecting mobile malware is

proposed. This method considers three metrics respectively mea-

suring the occurrences of a reduced subset of system calls, the

weighted sum of a subset of permissions which the application

requires and a set of combinations of permissions. Their experi-

ment considers a sample of 400 real world legitimate and mali-

cious applications, obtaining a precision of 74%. Another approach

to the malware detection and malicious behaviour identification

based on system calls analysis is implemented in the CopperDroid

(Reina et al., 2013) tool. This tool requires the customization of the

Android emulator to track syscalls. The usage of the emulator to

gather system call is proposed in (Wang et al., 2009). This method

is validated on a data-set of 1600 malicious apps, and was able to

find the 60% of the malicious apps belonging to one data-set (the

Genoma Project) and the 73% of the malicious apps included in the

second data-set (the Contagio data-set). Also in (Jeong et al., 2014)

system calls used to read/write operations on files are checked in

order to detect malicious behavior. The authors used a customized

kernel on a real device, and the sample included 2 malicious ap-

plications developed by the authors.

Suarez-Tangil and Stringhini (2018) focus their efforts to discern

malicious component from the legitimate one in repackaged An-

droid malware. Basically they consider control flow graphs gener-

ated from code fragments of the application under analysis. They

highlight that most research papers on Android malware detection

are focused on outdated repositories, as the MalGenome project

(Zhou and Jiang, 2012) and the Drebin (Arp et al., 2014) data-sets.

The output of this work is a malware fingerprint basically com-

posed by the list of methods characterizing the malicious family.

Basically authors mine methods that are common to Android ap-

plications belonging to the same family, assuming that samples be-

longing to the same family exhibit the same purpose and are de-

veloped by the same authors, and therefore there will be code in

common with all the malware samples in the family. For instance,

with regard to the KMin family, Suarez-Tangil and Stringhini ex-

tract a fingerprint composed by 49 different methods 10 : in the fol-

low we discuss how the fingerprint gathered from the Kmin fam-

ily by Suarez-Tangil and Stringhini can be compared to our Kmin

family temporal logic formula shown in Table 8 . Clearly it is not

possible to perform a direct comparison because Suarez-Tangi and

Stringhini consider a static analysis where a list of method is gath-

ered, while our analysis is related to system call paths. For in-

stance, the ioctl in the logic formula shown in Table 8 , related for

device-specific input/output operations, can be considered for the

invocation of following methods aimed to gather information from

the device: getActiveNetworkInfo, getApplicationInfo, getRunningSer-

vices . The writev system call writes data from a buffer declared

by the user to a given device: can be related to the invocation

of the sendTextMessage method of the SmsManager class. More-

over Suarez-Tangi and Stringhini highlight that the connect method

of the HttpURLConnection is distinctive of the Kmin family, this

method can request the functionalities of the rcvmsg syscall, aimed

to receive a message from a socket.

DroidScope (Yan and Yin, 2012) uses a customized Android ker-

nel to reconstruct semantic views with the aim to collect detailed

applications execution traces. The obtained detection rate is of

100%, but it is evaluated only on two Android malicious applica-

tions.

Researchers in (Canfora et al., 2015b) present an approach

aimed for detecting Android malware families. The method is

based on the analysis of system calls sequences and is tested ob-
10 https://github.com/gsuareztangil/adrmw-measurement/blob/master/results/

explanatory _ Malgenome.txt .

t

t

m

t

r
aining an accuracy of 97% in mobile malware identification using

-gram syscall as feature.

There are several limitation to the adoption of the dynamic

nalysis: the first one is that dynamic analysis is time intensive

nd resource consuming, thus elevating the scalability issues. The

eason why we resort to dynamic analysis is its ability to acti-

ate the malicious behaviour, triggered only whether certain con-

itions happen (Zhou and Jiang, 2012) (for instance, by system

vents with regard to the Android environment). Furthermore, an-

ther weakness of the current state of the art approaches for de-

ecting malware by dynamic analysis is that they require to build

he kernel (with the exception of the method proposed in refer-

nce (Canfora et al., 2015b)), making the adoption of the proposed

echniques difficult in the real-world.

Researchers in (Su et al., 2018) discuss a method for Android

alware detection exploiting a set of static features. They consider

nsupervised machine learning techniques to build models with

he considered feature set, statically obtained from permission in-

ocations, strings and code patterns. They obtain an accuracy of

9.53%.

The Alde (Liu et al., 2019) framework employs static analysis

nd dynamic analysis to detect the actions of users collected by

nalytics libraries. Moreover, Alde analyses what private informa-

ion can be leaked by the apps that use the same analytics library.

he main outcome of the study is some apps indeed leak users’

ersonal information through analytics libraries even though their

enuine purposes of using analytics services are legal.

Supservised machine learning techniques are considered by au-

hors in (Wang et al., 2018), where they design an ensemble model,

omposed by several classifier, to detect whether an Android appli-

ation is malicious or not. An accuracy equal to 96.91% is obtained

ith an ensemble model built with four different classification al-

orithms: Support Vector Machine, RanfomForest, k-nearest neigh-

ors and Classification And Regression Trees.

.2. Malware phylogeny

Below we discuss the current literature focused on malware

hylogeny. Authors in (Karim et al., 2005) discuss a method to

uild phylogeny models. They consider code permutation to obtain

he malware tree. Authors state that the proposed models support

he detection of new malware variants. Compared with the pro-

osed approach, this method is static and hence does not require

alware execution. Moreover, with respect to the proposed ap-

roach, this method is less robust to code modifications that can-

ot be represented as permutations.

Researchers in (Walenstein and Lakhotia, 2012b) define a frame-

ork to gather malware evolution relations in terms of path pat-

erns. The limitation of this approach is that the model’s defi-

ition of source code excludes machine generated code. This is

ery restrictive considering that usually malicious code is auto-

atically generated from the existing malicious applications. Dif-

erently, the proposed method considers the system calls directly

enerated from the running machine code.

. Conclusion and future work

Considering the current weaknesses of free and commercial sig-

ature based mobile anti-malware, in this paper we propose a

ethod aimed to detect the belonging family of a mobile malicious

pplication. Moreover, the proposed method is also able to track

he antecedent-descendant relationship, with the aim to support

he malware analyst in new malicious behaviour recognition. The

ain novelty of the proposed work is represented by the adop-

ion of the process mining technique to automatically infer tempo-

al logic properties aimed to detect Android malware families and

https://github.com/gsuareztangil/adrmw-measurement/blob/master/results/explanatory_Malgenome.txt

M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security 15

f

s

o

fi

m

a

c

h

h

s

p

c

w

l

s

D

t

t

t

p

a

fi

fi

d

R

A

B

C

C

C

C

C

C

C

C

C
C

D

G

G

H

H

J

J

J

J

K

K

K

L

L

L

M

M

M
N

O

R

R

R

R

S

S

S

S

S

S

S

T
W

W

W

or phylogenetic tree tracking. The proposed method models the

ystem call sequences generated by mobile applications in terms

f automaton, thus applying the model checking technique it veri-

es a set of property automatically inferred exploiting the process

ining technique. We obtain for the family identification task an

ccuracy ranging between 0.882 and 0.987, by analyzing a data-set

omposed of 12,604 Android samples. Moreover, we demonstrate

ow the proposed method is able to reconstruct the malicious be-

aviour phylogenetic tree.

As future work we plan to extend the proposed method con-

idering the data dependency graph, with the aim to grasp the

assage of variables between different methods (to detect the ex-

hange of sensitive information). Moreover, we are investigating

hether the proposed method is able to detect the so-called col-

uding applications, i.e., groups of apps that collaborate to run a

mall and undetectable role in a larger malicious operation.

eclaration of Competing Interest

The authors whose names are listed immediately below certify

hat they have NO affiliations with or involvement in any organiza-

ion or entity with any financial interest (such as honoraria; educa-

ional grants; participation in speakers bureaus; membership, em-

loyment, consultancies, stock ownership, or other equity interest;

nd expert testimony or patent-licensing arrangements), or non-

nancial interest (such as personal or professional relationships, af-

liations, knowledge or beliefs) in the subject matter or materials

iscussed in this manuscript.

eferences

rp, D. , Spreitzenbarth, M. , Huebner, M. , Gascon, H. , Rieck, K. , 2014. Drebin: efficient
and explainable detection of android malware in your pocket. In: Proceedings of

21th Annual Network and Distributed System Security Symposium (NDSS) .

ayer, U. , Comparetti, P.M. , Hlauschek, C. , Kruegel, C. , Kirda, E. , 2009. Scalable, be-
havior-based malware clustering. In: NDSS, vol. 9. Citeseer, pp. 8–11 .

anfora, G. , Di Sorbo, A. , Mercaldo, F. , Visaggio, C.A. , 2015. Obfuscation techniques
against signature-based detection: a case study. In: 2015 Mobile Systems Tech-

nologies Workshop (MST). IEEE, pp. 21–26 .
anfora, G. , Martinelli, F. , Mercaldo, F. , Nardone, V. , Santone, A. , Visaggio, C.A. , 2018.

LEILA: formal tool for identifying mobile malicious behaviour. IEEE Trans. Softw.

Eng .
anfora, G. , Medvet, E. , Mercaldo, F. , Visaggio, C.A. , 2014. Availability, Reliability, and

Security in Information Systems: IFIP WG 8.4, 8.9, TC 5 International Cross–
Domain Conference, CD-ARES 2014 and 4th International Workshop on Secu-

rity and Cognitive Informatics for Homeland Defense, SeCIHD 2014, Fribourg,
Switzerland, September 8–12, 2014. Proceedings. Springer International Publish-

ing, Cham, pp. 226–238 .

anfora, G. , Medvet, E. , Mercaldo, F. , Visaggio, C.A. , 2015. Detecting android mal-
ware using sequences of system calls. In: Proceedings of the 3rd International

Workshop on Software Development Lifecycle for Mobile. ACM, pp. 13–20 .
anfora, G. , Mercaldo, F. , Visaggio, C.A. , 2013. A classifier of malicious android ap-

plications. In: Proceedings of the 2nd International Workshop on Security of
Mobile Applications, in conjunction with the International Conference on Avail-

ability, Reliability and Security .

anfora, G. , Mercaldo, F. , Visaggio, C.A. , 2015. Mobile malware detection using op–
code frequency histograms. In: Proceedings of International Conference on Se-

curity and Cryptography (SECRYPT) .
hen, X. , Andersen, J. , Mao, Z.M. , Bailey, M. , Nazario, J. , 2008. Towards an under-

standing of anti-virtualization and anti-debugging behavior in modern malware.
In: Dependable Systems and Networks With FTCS and DCC, 2008. DSN 2008.

IEEE International Conference on. IEEE, pp. 177–186 .

imitile, A., Mercaldo, F., Martinelli, F., Nardone, V., Santone, A., Vaglini, G., 2017.
Model checking for mobile android malware evolution. In: Proceedings of the

5th International FME Workshop on Formal Methods in Software Engineering.
IEEE Press, Piscataway, NJ, USA, pp. 24–30. doi: 10.1109/FormaliSE.2017.4 .

larke, E.M. , Grumberg, O. , Peled, D. , 2001. Model Checking. MIT Press .
leaveland, R. , Sims, S. , 1996. The NCSU concurrency workbench. In: Alur, R., Hen-

zinger, T.A. (Eds.), CAV. Springer, pp. 394–397 .
umitras, T. , Neamtiu, I. , 2011. Experimental challenges in cyber security: a story of

provenance and lineage for malware. CSET 11, 2011–2019 .

ünther, C.W. , Rozinat, A. , 2012. Disco: discover your processes. BPM (Demos) 940,
40–44 .

ünther, C.W. , Van Der Aalst, W.M. , 2007. Fuzzy mining–adaptive process simplifi-
cation based on multi-perspective metrics. In: International Conference on Busi-

ness Process Management. Springer, pp. 328–343 .
aq, I. , Chica, S. , Caballero, J. , Jha, S. , 2018. Malware lineage in the wild. Comput.
Secur. 78, 347–363 .

u, X. , Chiueh, T.-c. , Shin, K.G. , 2009. Large-scale malware indexing using function–
call graphs. In: Proceedings of the 16th ACM Conference on Computer and Com-

munications Security. ACM, pp. 611–620 .
ang, J. , Brumley, D. , Venkataraman, S. , 2011. BitShred: feature hashing malware for

scalable triage and semantic analysis. In: Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security. ACM, pp. 309–320 .

eong, Y.-s. , Lee, H.-t. , Cho, S.-j. , Han, S. , Park, M. , 2014. A kernel-based monitoring

approach for analyzing malicious behavior on android. In: Proceedings of the
29th Annual ACM Symposium on Applied Computing. ACM, New York, NY, USA,

pp. 1737–1738 .
iang, X. , Zhou, Y. , 2013. Android Malware. Springer Publishing Company, Incorpo-

rated .
ilcott, S. , 2015. Scalable malware forensics using phylogenetic analysis. In: Tech-

nologies for Homeland Security (HST), 2015 IEEE International Symposium on.

IEEE, pp. 1–6 .
aspersky. last visit 8 June, 2019. https://www.kaspersky.com/resource-center/

threats/mobile .
arim, M.E. , Walenstein, A. , Lakhotia, A. , Parida, L. , 2005. Malware phylogeny gener-

ation using permutations of code. J. Comput. Virol. 1 (1–2), 13–23 .
ozen, D., 1983. Results on the propositional mu-calculus. Theor. Comput. Sci. 27,

333–354. doi: 10.1016/0304-3975(82)90125-6 .

i, H. , Zhou, S. , Yuan, W. , Li, J. , Leung, H. , 2019. Adversarial-example attacks toward
android malware detection system. IEEE Syst. J .

i, L. , Li, D. , Bissyandé, T.F. , Klein, J. , Cai, H. , Lo, D. , Le Traon, Y. , 2017. On locating
malicious code in piggybacked android apps. J. Comput. Sci. Technol. 32 (6),

1108–1124 .
iu, X. , Liu, J. , Zhu, S. , Wang, W. , Zhang, X. , 2019. Privacy risk analysis and mitigation

of analytics libraries in the android ecosystem. IEEE Trans. Mob. Comput .

ercaldo, F. , Nardone, V. , Santone, A. , Visaggio, C.A. , 2016. Download malware?
No, thanks: how formal methods can block update attacks. In: Proceedings

of the 4th FME Workshop on Formal Methods in Software Engineering, For-
maliSE@ICSE 2016, Austin, Texas, USA, May 15, 2016. ACM, pp. 22–28 .

ercaldo, F. , Visaggio, C.A. , Canfora, G. , Cimitile, A. , 2016. Mobile malware detec-
tion in the real world. In: Proceedings of the 38th International Conference on

Software Engineering Companion. ACM, pp. 744–746 .

ilner, R. , 1989. Communication and Concurrency. Prentice Hall .
agra, J. , Collberg, C. , 2009. Surreptitious Software: Obfuscation, Watermarking, and

Tamperproofing for Software Protection. Pearson Education .
berheide, J. , Mille, C. , 2012. Dissecting the android bouncer. SummerCon .

astogi, V. , Chen, Y. , Jiang, X. , 2013. DroidChameleon: evaluating android anti-mal-
ware against transformation attacks. In: Proceedings of the 8th ACM SIGSAC

Symposium on Information, Computer and Communications Security. ACM,

pp. 329–334 .
astogi, V. , Chen, Y. , Jiang, X. , 2014. Catch me if you can: evaluating android an-

ti-malware against transformation attacks. IEEE Trans. Inf. ForensicsSecur. 9 (1),
99–108 .

eina, A. , Fattori, A. , Cavallaro, L. , 2013. A system call-centric analysis and stimula-
tion technique to automatically reconstruct android malware behaviors. In: Pro-

ceedings of EuroSec .
osenblum, N. , Miller, B.P. , Zhu, X. , 2011. Recovering the toolchain provenance of

binary code. In: Proceedings of the 2011 International Symposium on Software

Testing and Analysis. ACM, pp. 100–110 .
ahay, S.K. , Sharma, A. , 2019. A survey on the detection of android malicious

apps. In: Advances in Computer Communication and Computational Sciences.
Springer, pp. 437–446 .

antone, A. , Vaglini, G. , 2016. Conformance checking using formal methods. In: Pro-
ceedings of the 11th International Joint Conference on Software Technologies

(ICSOFT 2016) - Volume 1: ICSOFT-EA, Lisbon, Portugal, July 24, - 26, 2016..

SciTePress, pp. 258–263 .
preitzenbarth, M. , Echtler, F. , Schreck, T. , Freling, F.C. , Hoffmann, J. , 2013. Mo-

bilesandbox: looking deeper into android applications. 28th International ACM
Symposium on Applied Computing (SAC) .

tirling, C. , 1989. An introduction to modal and temporal logics for CCS. In:
Yonezawa, A., Ito, T. (Eds.), Concurrency: Theory, Language, And Architecture.

Springer, pp. 2–20 .

u, D. , Liu, J. , Wang, W. , Wang, X. , Du, X. , Guizani, M. , 2018. Discovering communi-
ties of malapps on android-based mobile cyber-physical systems. Ad Hoc Netw.

80, 104–115 .
uarez-Tangil, G., Stringhini, G., 2018. Eight years of rider measurement in the

android malware ecosystem: evolution and lessons learned. arXiv: 1801.08115 ,
Technical Report, 2018.

uarez-Tangil, G. , Tapiador, J. , Peris-Lopez, P. , Ribagorda, A. , 2014. Evolution, de-

tection and analysis of malware for smart devices. Commun. Surv. Tutorials
961–987 .

ecktalk, 2019. https://techtalk.pcpitstop.com/2018/11/08/android-malware/ .
alenstein, A . , Lakhotia, A . , 2012. A transformation-based model of malware deriva-

tion. In: Malicious and Unwanted Software (MALWARE), 2012 7th International
Conference on. IEEE, pp. 17–25 .

alenstein, A . , Lakhotia, A . , 2012. A transformation-based model of malware deriva-

tion. In: Malicious and Unwanted Software (MALWARE), 2012 7th International
Conference on, pp. 17–25 .

ang, W. , Li, Y. , Wang, X. , Liu, J. , Zhang, X. , 2018. Detecting android malicious apps
and categorizing benign apps with ensemble of classifiers. Future Gener. Com-

put. Syst. 78, 987–994 .

http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0002
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0009
https://doi.org/10.1109/FormaliSE.2017.4
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0021
https://www.kaspersky.com/resource-center/threats/mobile
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0022
https://doi.org/10.1016/0304-3975(82)90125-6
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0024
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0025
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0026
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0027
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0028
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0029
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0030
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0031
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0032
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0033
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0034
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0035
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0036
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0037
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0038
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0039
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0040
http://arxiv.org/abs/1801.08115
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0041
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0041
https://techtalk.pcpitstop.com/2018/11/08/android-malware/
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0042
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0043
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0044

16 M.G.C.A. Cimino, N. De Francesco and F. Mercaldo et al. / Computers & Security

Y

Z

Z

m

A
E

s

u

N

d

U

t

l

t

C
T

v
H

A

A
r

a

o

G

n

Wang, X. , Jhi, Y.-C. , Zhu, S. , Liu, P. , 2009. Detecting software theft via system call
based birthmarks. In: Proceedings of the 2009 Annual Computer Security Appli-

cations Conference. IEEE Computer Society, Washington, DC, USA, pp. 149–158 .
Xiao, X. , Zhang, S. , Mercaldo, F. , Hu, G. , Sangaiah, A.K. , 2019. Android malware de-

tection based on system call sequences and LSTM. Multimed. Tools Appl. 78 (4),
3979–3999 .

Yan, L.K. , Yin, H. , 2012. DroidScope: Seamlessly reconstructing the os and Dalvik
semantic views for dynamic android malware analysis. In: Proceedings of the

21st USENIX Conference on Security Symposium. USENIX Association, Berkeley,

CA, USA . 29–29.
ou, I. , Yim, K. , 2010. Malware obfuscation techniques: a brief survey. In: Broadband,

Wireless Computing, Communication and Applications (BWCCA), 2010 Interna-
tional Conference on. IEEE, pp. 297–300 .

hang, Y. , Ren, W. , Zhu, T. , Ren, Y. , 2019. SaaS: a situational awareness and analysis
system for massive android malware detection. Future Gener. Comput. Syst. 95,

548–559 .

heng, M. , Lee, P.P. , Lui, J.C. , 2012. ADAM: an automatic and extensible platform to
stress test android anti-virus systems. In: International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment. Springer, pp. 82–101 .
Zhou, Y. , Jiang, X. , 2012. Dissecting android malware: characterization and evolu-

tion. In: Proceedings of 33rd IEEE Symposium on Security and Privacy (Oakland
2012) .

Mario G.C.A. Cimino is an Associate Professor at the Department of Information

Engineering of the University of Pisa (Italy). He received the Ph.D. degree in Infor-
ation Engineering from the University of Pisa in 2007. From 2003 to 2006, as a

Ph.D. student he joined the Department of Information Engineering of the Univer-
sity of Pisa, working on computational intelligence and information systems. Since

pril 2006, he spent six months as a visiting scholar at the Electrical & Computer
ngineering Department of the University of Alberta, Edmonton (Canada), under the

upervision of Prof. W. Pedrycz, for a research activity on neurocomputing and gran-

lar computing.

icoletta De Francesco graduated with honors in Information Science from the Fac-

ulty of Mathematical, Physical and Natural Sciences of the University of Pisa in 1974.
From 1981 to 1988 she was a researcher at the Computer Science Department of the

University of Pisa. From 1989 she was an associate professor, for a year in Salerno

and then at the Faculty of Engineering of the University of Pisa. Since October 20 0 0
she is full professor of Information Processing Systems. He carried out a wide and
iversified didactic activity, first in the degree course in Computer Science and then

in that of Computer Engineering. She is a member of the PhD course in Information
Engineering.

Francesco Mercaldo received his master degree in computer engineering from the
niversity of Sannio (Benevento, Italy), with a thesis in software testing. He ob-

ained his Ph.D. in 2015 with a dissertation on malware analysis using machine

earning techniques. The research areas of Francesco are software testing, verifica-
ion, and validation, with the emphasis on the application of empirical methods.

urrently, he is working as post-doctoral researcher at the Istituto di Informatica e
elematica, Consiglio Nazionale delle Ricerche (CNR) in Pisa (Italy). He is also in-

olved as lecturer in Database, Mobile Programming, (Bachelor Degree) and Ethical
acking (Master Degree) courses at the University of Molise (Italy).

ntonella Santone received the Laurea degree in Computer Science at the Uni-

versity of Pisa, Italy, in April 1993. In September 1997 she received the Ph.D. de-
gree in Computer Systems Engineering at the Dipartimento di Ingegneria della In-

formazione, University of Pisa. She is an Associate Professor at the University of
Molise since September 2017. She has been Assistant Professor at the University

of Pisa from November 1998 to October 2001. She has been an Associate Profes-
sor at the Department of Engineering of the University of Sannio from November

2001 to August 2017. She was involved in several research activities and projects.

ntonella Santone’s current research is focused on formal verification methods. Her
esearch interests include formal description techniques, temporal logic, concurrent

nd distributed systems modelling, heuristic search, formal methods in systems bi-
logy and in software security.

igliola Vaglini is full professor of Computer Science at the Department of Engi-

eering of the University of Pisa and is a member of Department of Information
Engineering of the University of Pisa. Born in Pisa in 1952, she graduated in In-

formation Science at the University of Pisa in 1974. She was a two-year research
fellow at the Computer Science Department of the University of Pisa and then an

associate professor from 1989 to September 2002, first at the Faculty of SMFN of
the Federico II University of Naples and then to the Faculty of Engineering of the

University of Pisa. Since October 2002 she is full professor at the Department of
Information Engineering of the University of Pisa.

http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0045
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0046
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0047
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0048
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0049
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0050
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0051
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0051
http://refhub.elsevier.com/S0167-4048(19)30228-7/sbref0051

	Model checking for malicious family detection and phylogenetic analysis in mobile environment
	1 Introduction
	2 Formal methods preliminaries
	2.1 Calculus of communicating systems
	2.2 Model checking and mu-Calculus logic
	2.3 Motivation of the use of the CCS and of the mu-calculus logic

	3 The method
	3.1 Generation and capturing system call execution traces
	3.2 XES Conversion
	3.3 Superlog generation
	3.4 Process mining
	3.5 Process discovery
	3.6 Formulae generation
	3.7 CCS Model
	3.8 Formal model verification

	4 The experimental analysis
	4.1 Data-set
	4.2 Temporal logic formulae discovering
	4.3 Baseline
	4.4 Experimental evaluation
	4.5 Limitations

	5 Related work
	5.1 Malware family identification
	5.2 Malware phylogeny

	6 Conclusion and future work
	Declaration of Competing Interest
	References

