Introduzione a BPMN

versione 9 ottobre 2011
© Adriano Comai
http://www.analisi-disegno.com

Vantaggi di BPMN

- Permette alle organizzazioni di rappresentare i propri processi con una notazione intuitiva (flow chart)
- La standardizzazione agevola la comunicazione (anche nei confronti di organizzazioni esterne)
- Permette di rappresentare in modo comprensibile anche costrutti definiti nel linguaggio di esecuzione software

Diagrammi BPMN

- Possono rappresentare diversi tipi di modelli di processo:
- privato
- pubblico
- collaborazione
- coreografia
- conversazione

Private (Internal) Process

- Attività interne ad una singola organizzazione

Public Process

- Vengono evidenziate solo le attività necessarie a comunicare verso entità esterne, ed i relativi messaggi

Studio del dottore

Collaboration Process

- Rappresenta le interazioni tra due o più processi pubblici

- Flow Objects (oggetti del flusso)
- Events
- Activities
- Gateways
- Data Objects

Elementi base (core set)

- Connecting Objects (connettori)
- Sequence Flow
- Message Flow
- Association
- Swimlanes (partizioni)
- Pool
- Lane
- Artifacts
- Group
- Annotation

Eventi

- Gli eventi "accadono" nell'ambito di un processo (e hanno una rilevanza per la sua esecuzione). 3 tipologie:
- Start event (inizio) - indica il punto di partenza di un processo
- Intermediate event (intermedio) - può avvenire tra l'evento iniziale e quello finale
- End event - indica la conclusione di un processo

Attività

- Può essere atomica o composta:
- Task - un'attività atomica, non scomposta

- Sub-Process - un'attività composta. Può venirne evidenziato il contenuto, oppure essere rappresentata in modo sintetico (+)

Connettori

- flusso di sequenza - indica l'ordine di svolgimento delle attività

- flusso di messaggio - comunicazione tra due partecipanti (pools)

- associazione - utilizzata per tutti gli altri legami tra gli oggetti del diagramma

Start event

Evento di inizio

- Opzionale
- Se non c'è, tutte le attività che non hanno un sequence flow in ingresso partono insieme
- Necessario se c'è un End event
- Può essercene più di uno (ma il modello si complica)

End event

Evento finale

- Opzionale

- Se non c'è, tutte le attività che non hanno un sequence flow in uscita devono terminare per concludere il processo
- Necessario se c'è uno Start event
- Può essercene più di uno (corrispondono a esiti diversi del processo)
- Può essere la destinazione di più sequence flow
- Non può essere destinazione di un message flow

Intermediate event

Evento intermedio

- messaggi
- interruzioni e ritardi
- gestione eccezioni
- gestione compensazioni

Eventi e attività

Evento intermedio - pausa

- Quando due attività sono collegate direttamente, la seconda può iniziare dopo la conclusione della prima

- Si può separarle con un evento intermedio: il processo viene sospeso e riprenderà in seguito al manifestarsi dell'evento

Gateway

- esprimono la convergenza e la divergenza dei flussi di sequenza

Esclusivo
(XOR)
basato sui dati
basato su
eventi

basato sui
dati
basato su
eventi

Gateway

Swimlane (partizioni)

- Pool - rappresenta un partecipante al processo, e può contenere un insieme di attività

- Lanes - partizioni all'interno di un pool per attribuirne le attività con maggiore precisione

Artifacts

- Group -raggruppamento utilizzabile per evidenziare un

- Annotazione

Data objects

- Data Object - un input o un output per una attività
- Data Store - un deposito di dati (o un sistema) che persiste oltre la conclusione del processo

Dati e attività

Dati e attività

Costrutti ulteriori - extended set

- La notazione basata sugli elementi base di BPMN ("core set") è semplice e intuitiva
- Permette di modellare adeguatamente la maggioranza dei processi
- Per esigenze di modellazione più precise, è disponibile una serie di costrutti avanzati ("extended set"), che specializzano quelli base

Tipi di attività

Sequenza e multiistanza

Pool multiistanza

Processo ad hoc

- È formato da attività prive di una sequenza predefinita

Message

Eventi - tipologie
 Timer

- Gli eventi di inizio e intermedi hanno un "trigger", che ne definisce la causa
- Gli eventi di fine possono avere un "risultato", cioè una conseguenza

Start event: tipologie

	Icona	Significato
None	\bigcirc	Non specificato. Il diagramma di un sottoprocesso può avere solo questo tipo di start event.
Message	(V)	L'inizio è conseguenza dell'arrivo di un messaggio.
Timer	(4)	L'inizio avviene con periodicità predefinita.
Conditional	(1)	L'inizio avviene a fronte di una condizione (es. "temperatura $>300^{\circ}$ ").
Signal	Δ	L'inizio awriene a fronte della ricezione di un segnale (che a differenza di un messaggio, è pubblico).
Multiple	(1)	L'inizio può avvenire a fronte di eventi diversi.

End event: tipologie (risultato)

	Icona	Significato
None	\bigcirc	Non specificato.
Message	(-)	A conclusione del processo viene inviato un messaggio.
Error	N	A conclusione del processo viene generato un errore.
Escalation	(1)	A conelusione del proeesso viene generat una esealation.
Cancel	x	Sole nell'ambito di una transazione, eaneella le variazioni.
Compensation	(1)	Indica la necessità di una compensazione.
Signal	(1)	A conctusione del processo viene inviato un segnate.
Terminate	-	Termina ogni attività, anche parallele o multiistanza.
Multiple	(1)	A conelusione del processo vi sono più eonseguenze.

Intermediate event: tipologie (1)

	Icona	Significato	N.I.
None	O	Non specificato.	
Message		Riceve (vuoto) o manda (pieno) un messaggio.	
Timer	(15)	Evento a periodicità predefinita.	
Error	(1)	Attaccato ad un'attività che deve gestire un errore	
Escalation	(A) (1)	Rieeve (vueto) 0 manda (pieno) una richiesta di escalation	负:
Cancel	(3)	Solo nell'ambito di una transazione, eaneella le variazioni.	
Compensation		Effettua (vuoto) o attiva (pieno) unta compensazione.	

Intermediate event: tipologie (2)

	Icona	Significato	N.I.
Conditional	(1)	Evento legato al verificarsi di una condizione.	
Link	()	Invia (pieno) o riceve (vuoto) un riferimento.	
Signal	(\otimes)	Invia (pieno) o rieeve (vuoto) un segnale.	
Multiple	$(\operatorname{ID}) \text { (II) }$	Invia (pieno) o rieeve (vuoto) più stimoli/ eventi.	

Evento intermedio "boundary"

- Un evento intermedio al bordo dell'attività la interrompe
- Oppure, se "non-interrupting", attiva un flusso di attività secondario

Fork (And-Split)

- Divisione di un cammino in due o più cammini paralleli
- Due opzioni di rappresentazione:

Join (And-Join)

- Congiunzione di due o più cammini paralleli in uno unico

Prepararsi per partire

Accendere motore

Allacciare cintura

XOR basato sui dati

- Attenzione: il gateway "non decide", ramifica solo, la decisione è conseguenza delle attività precedenti!
- Quando è possibile, etichettare il gateway con una domanda, e i flussi di sequenza in output con le risposte

XOR basato sui dati

- La condizione può essere basata sul risultato di un'attività precedente (espresso con eventi finali distinti)

XOR basato su eventi

- Esclusivo - basato su eventi (tipicamente, la ricezione di un messaggio)
- il controllo passa tramite un evento intermedio, per poi proseguire con le attività successive

Flussi sequenza - tipologie

- Uncontrolled - non passante per un gateway, né condizionale
- Condizionale - usato solo se la condizione a cui è legato risulta vera

- Default - usato se altri flussi condizionali non vengono attivati

Branching (Or-Split) - OR

- non esclusivo - possono essere percorsi più cammini
- può essere opportuno indicare uno dei possibili cammini come default
- due possibili rappresentazioni

Merging (Or-Join)

- congiunzione di due o più cammini in un cammino unico

Pool e processi

Se un processo coinvolge più partecipanti:

- Ognuno può essere rappresentato con un pool distinto
- I pool possono essere "black box" (senza attività) se non ci interessano i processi interni dei partecipanti

Pool strutturato in lanes

Flussi (sequenza, messaggio) e Pool

- Pool diversi possono essere connessi solo da messaggi, non da flussi di sequenza
- Non si possono inviare e ricevere messaggi tra attività ed eventi che appartengono al medesimo pool

Interazioni con un cliente

- Spesso un processo inizia con la ricezione di un messaggio da un cliente, e termina con uno o più messaggi di risposta

Fino a che livello di dettaglio?

Criteri possibili:

- Individuare attività o sottoattività automatizzabili e non
- Attribuire responsabilità univoche ad ogni attività

Tipi di task

- Service - servizio automatizzato (es. web service)
- User - attività umana svolta con uso di computer
- Manual - attività umana senza uso di computer
- Script - tipo di service task che corrisponde a codice eseguito dal motore di processi
- Business Rule - tipo di service task che valuta una regola di business e precede un gateway
- Send e Receive - invio e ricezione di messaggi

