Selecting the best configuration for a Hospital Emergency Center - Solution

a. The first step it to determine the number of tokens for each scenario. This can be done with simple arithmetic, as represented in next pages.

Scenarios 「 Highhight in diagram		
Name	Fercent	Cases
OWN S NORED \& REL	77%	77
OWN B RED S REL	8\%	8
OWN S NORED \& ADM	8\%	8
OWN S RED B ADM	1%	1
AME 8 RED 8 ADM	1%	1
AMB \& RED \& REL	5\%	5
Total: 100		

Available resources		
Name	Type	Amount
Nurse	Staff	7
Fhysician	Staff	3
Technician	Staff	4
Administrative Clerk	Staff	4
Vediaal Room	Room	7
Administrative Room	Room	13

b. The following resources have been assigned to the HEC:

N. of Lanes	Related Activities and required resources
1 Entrance	Acceptation, Arrangement: 1 Admin Clerk + 1 Admin Room
3 Administrative Service	Sign in, Registration, Admission, Release: 1 Adm Clerk + 1 Adm Room
1 Triage	Triage: 1 Nurse + 1 Physician + 1 Medical Room
2 Emergency	Treatment: 2 Nurses + 1 Physician + 1 Techn + 1 Med Room

- Total Duration and Total Variable Cost: 21h 40m 12s 10037\$
- Looking at the Completion chart, it can be assumed that the completion time for each scenario is linearly increasing. Thus, the following completion data can be derived:

Scenario	First Token exits at	Last Token exits at	N. of Tokens	Average Completion time
OWN \& NORED \& REL	2h 40m	21h 40m	77	12h 10m
OWN \& RED \& REL	3h 25m	5h 5m	8	4h 15m
OWN \& NORED \& ADM	3h 35m	7h 25m	8	5h 30m
OWN \& RED \& ADM	4h	4h	1	4h
AMB \& RED \& ADM	2h 35m	2h 35m	1	2h 35m
AMB \& RED \& REL	2h 20 m	3h 15m	5	2h 47m
AVERAGE TIME				

- Using Microsoft Excel, the total average time is $\mathbf{1 0 . 3 5}$ hours, very higher than 2.4!

A	B	C	D	E	F	G	
1	START	END	END-START	NUM	(START+END)/2	mm	NUM $^{*} m m$
2	$02: 40$	$21: 40$	$19: 00$	77	$12: 10$	730	56210
3	$03: 25$	$05: 05$	$01: 40$	8	$04: 15$	255	2040
4	$03: 35$	$07: 25$	$03: 50$	8	$05: 30$	330	2640
5	$04: 00$	$04: 00$	$00: 00$	1	$04: 00$	240	240
6	$02: 35$	$02: 35$	$00: 00$	1	$02: 35$	155	155
7	$02: 20$	$03: 15$	$00: 55$	5	$02: 47$	167	837
8					AVG (mm)	$\mathbf{6 2 1}$	
9					AVG (h)	$\mathbf{1 0 , 3 5}$	

Cimino - Modeling and Simulation of Business Processes using BPMN 2.0 - Tutorial 7 - 4 of 8

Completion

- The maximum resource usage can be also derived. Looking at the Resource Usage diagram (expressed in percentage w.r.t. the available ones) the maximum usage per resource can be easily calculated:
Nurses: 5/7; Phys: 3/3; Techn: 2/4; Adm: 4/4; Med Rooms: 3/7; Adm Rooms: 4/13;
- Total costs $=$ Fixed costs + Costs per Input $=55800 * 3+13200 * 4+10037=\mathbf{2 3 0 2 3 7} \$$

Cimino - Modeling and Simulation of Business Processes using BPMN 2.0 - Tutorial 7 - 6 of 8

c. Looking at the Queue Time, it can be seen that the bottleneck is at the Treatment activity. Let us increase the number of resource for treatment: 3 Emergency Room.

- Total Duration and Total Variable Cost: 17h 21m 12s 10037\$
- Total Average Time: 8.65h
- The new Queuing situation is more balanced.

Cimino - Modeling and Simulation of Business Processes using BPMN 2.0-Tutorial $7-8$ of 8

