The process of bag manufacturing

• The figure outlines the macro processes of bag manufacturing in a workshop. First, cutting and preparing components, where semi-finished products originate; then, assembling and checking against quality. If products are good, they are packed and shipped out. Otherwise corrective actions are triggered to handle error (not modeled).

• In the two exclusive gateways, the *make-or-buy* business decision is made, by comparing the costs and benefits of carrying out internal or external manufacturing of product components, via outsourcing to a third party specialist.

1. Select each task, and insert duration and cost per execution.

2. Data concerning all the activities of the model.

Activity	Average Duration	Average Cost (EUR)
Cutting	25	16
Preparing Components (internal)	28	31
Preparing Components (external)	24	48
Assembling (internal)	93	67
Assembling (external)	68	93
Quality check and packing	42	26
Outsourcing Management *	5	2

^{*} Interfacing with the third party

3. Define number of available instances (pools)¹, time scale ² and currency³.

Cimino – Modeling and Simulation of Business Processes using BPMN 2.0 – Tutorial 5 – 3 of 15

- 4. Create a scenario: left-click on the diagram background and press *add*;
- 5. Insert the name (Internal production) and the number of cases;
- 6. Create the path of the scenario.

Cimino – Modeling and Simulation of Business Processes using BPMN 2.0 – Tutorial 5 – 4 of 15

7. Two scenarios: internal production and (partially) external production.

Cimino – Modeling and Simulation of Business Processes using BPMN 2.0 – Tutorial 5 – 5 of 15

- 8. Click the *Play/Stop/Pause* buttons to simulate;
- 9. Look at the red inverted triangles (tokens queues) and at the the green gears (processing tokens);
- 10. Look at the final duration and cost;

Cimino – Modeling and Simulation of Business Processes using BPMN 2.0 – Tutorial 5 – 6 of 15

- 11. The two scenarios are executed considering the related number of tokens, e.g., 30% and 70%;
- 12. Click on the logo for plotting important duration and cost parameters;
- 13. Completion against time: to be processed, processing, and processed tokens:

14. **Resource usage** against time:

15. Queue time

Queue Time

16. Cost per flow object (cost per use)

Cost Per Flow Object

17. Other costs

Input Name	Number Of Instance	Cost Per Instance (EUR)	Total (EUR)
1 External Production	28	191	5,348
2 Internal Production	12	140	1,680

18. **Time Cost**

Cimino – Modeling and Simulation of Business Processes using BPMN 2.0 – Tutorial 5 – 11 of 15

19. Exercise

Suppose to aim at producing 40 bags, by combining internal and external production scenarios, with a single bag workshop and a single third party specialist.

Simulate:

- a) a scenario of totally internal production; analyze results/plots;
- b) a scenario of partially external production; analyze results/plots;
- c) find a combination of the two scenarios so as to carry out the process in both less time and cost, with respect to (a) and (b).

Solution

- Let x_1 be the percentage of bags that are produced internally, and y(x) the total duration of the production process of 40 bags.
- a) $x_1=100\% \rightarrow 5g$ 5h 20' 5600€, with maximum queues on the last phases, due to the sequential character of the workflow;
- b) $x_1=0\% \rightarrow 3g$ 6h 52' 7640€, with maximum queues on the assembling stage, which is a process with larger duration, with respect to the other processes;
- c) by carrying out internally some units, the assembling is parallelized, thus reducing queuing effects, and then saving total time and cost; e.g., $x_1=20\% \rightarrow 3g$ 2h 38' 7232 \in ;
- d) In the context of luxury handbags production, for a given quality level that is guaranteed by the control quality process, the **total duration** of the process is the main Key Performance Indicator (KPI), rather than the total production cost;
- e) Is 20% the best solution in terms of total duration? Assuming that there is a unique minimum, it can be efficiently found by using a **binary search**;
- f) Given x_1 and x_3 , calculate the total duration of the process for x_1 , x_3 , and for the center $x_2=(x_1+x_3)/2$, as well as for a value very close (dx) to each of these points. On the basis of the **descent direction** we can establish the position of the optimum with respect to the center.

- g) e.g. if the total duration goes down on the right side of x_1 , and on the left sides of x_2 and x_3 , then the minimum is between x_1 and x_2 .
- h) By carrying out 8 simulations, it can be determined that the optimum is located at x=12-13%, i.e., 5 bags produced internally and 35 externally, with a total duration of 3d 16m, and a total cost of 7385€.

