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a b s t r a c t 

A boundary element method (BEM) for the solution of lubrication problems on finite bearings is presented. The 

formulation requires the Reynolds equation to be transformed into a constant coefficient equation. Several film 

shapes that make the transformation possible are systematically obtained. Noticeably, they cover most practical 

cases. As an example of application, a numerical solution that only requires the discretization of the boundary is 

presented for a finite pad bearing. 
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. Introduction 

The solution of lubrication problems for finite bearings often rely on
umerical methods, as analytical or semianalytical methods are fairly
estrictive [1,2] . The most widely used numerical techniques for the
olution of the Reynolds equation in two dimensions are the finite dif-
erence method (FDM) and the finite element method (FEM) (e.g. [3,4] ).
owever, both methods require the discretization of the whole bearing
ad. 

The boundary element method (BEM), which is based on the for-
ulation of the original problem in terms of integral equations, is now

stablished as a powerful computational tool for many different fields of
pplied mechanics (e.g. [5,6] ). The most distinctive feature of the BEM
s that it only requires the discretization of the contour of the region
nder consideration, with obvious advantages over the FDM and FEM.
oreover, BEM solutions generally show very high accuracy, as they

xactly satisfy the governing differential equation at all interior points.
Unfortunately, the application range of the BEM is generally con-

ned to problems governed by partial differential equations with con-

tant coefficients, which, in general, is not the case of Reynolds equation
or self-acting films (e.g. hydrodynamic slider bearings). For linear el-
iptic equations with variable coefficients it is often possible to obtain
he relevant integral equation (the first step in any BEM analysis), but
n most cases the corresponding fundamental solution (the second key
ngredient) is not known [7] . 

This fact probably accounts for the very limited application of the
EM to the solution of lubrication problems. In [8,9] , two-dimensional
teady viscous flows leading to a biharmonic equation for the stream
unction are considered. In [10] externally pressurized films with con-
tant thickness, whose analysis requires the solution of the Laplace equa-
ion, are studied. Since the biharmonic and Laplace equations have con-
tant coefficients, BEM procedures are quite well established. Only in
11] a self-acting hydrodynamic slider bearing was analysed. However,
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he lack of a fundamental solution for the general Reynolds equation led
o a numerical method that required both boundary elements and inter-
al cells. Moreover, as the internal cells involved the unknown pressure,
n iterative solution procedure had to be used. Thus, most of the advan-
ages of BEM were lost. 

More recent contributions on the application of boundary element
echniques to lubrication problems can be found in [12–15] . However,
n [12–14] the BEM is only applied to solve the elasticity problem. In
15] it is acknowledged that the solution of the hydrodynamic model
xclusively by BEM is not chosen for convenience, thus avoiding the
athematical treatment of non self-adjoint terms. 

In the present paper it is shown, indeed, how the Reynolds equa-
ion for finite pad bearings can be manipulated to obtain a form more
menable for the application of a true BEM algorithm. Different bear-
ng geometries that allow the Reynolds equation to be transformed into
n equivalent differential equation, but with constant coefficients, are
ystematically obtained. 

Thus, advanced BEM implementations are now possible also for hy-
rodynamic lubrication problems. 

. Statement of the problem 

Let Ω be a finite region of the xy plane with boundary Γ as shown in
ig. 1 . The steady state incompressible lubrication problem for sliding
earings in two dimensions is governed by the following form of the
eynolds equation, for ( x , y ) ∈Ω (e.g. [2, p. 56] or [4, p. 80] ) 

𝜕 

𝜕𝑥 

( 

ℎ 3 
𝜕𝑝 

𝜕𝑥 

) 

+ 

𝜕 

𝜕𝑦 

( 

ℎ 3 
𝜕𝑝 

𝜕𝑦 

) 

= 6 𝜇𝑈 

𝜕ℎ 

𝜕𝑥 
(1)

here the lubricant viscosity 𝜇 has been considered constant throughout
he bearing. In (1) , all symbols have their usual meaning, that is 𝑝 =
 ( 𝑥, 𝑦 ) is the lubricant pressure, ℎ = ℎ ( 𝑥, 𝑦 ) > 0 is the film thickness, and
20 
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Fig. 1. Pad bearing configuration. 
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 is the velocity (assumed parallel to the x axis) of the driving surface
 Fig. 1 ). For simplicity, no squeeze film terms have been considered. 

The boundary conditions associated with (1) , in general, are of the
ollowing types 

 = �̄� , on Γ1 (2)

 𝑝 ∕ 𝜕 𝑛 = 𝑞 , on Γ2 (3)

here n denotes the outward normal to Γ = Γ1 ∪ Γ2 ( Fig. 1 ). 
For a BEM treatment to be possible, it is convenient to introduce a

ew unknown function ( 𝑥, 𝑦 ) 

 = 𝑝ℎ 3∕2 (4)

hus obtaining the following alternative form of the Reynolds equation

 

2  − 

∇ 

2 ( ℎ 3∕2 ) 
ℎ 3∕2 

 = 

6 𝜇𝑈 

ℎ 3∕2 
𝜕ℎ 

𝜕𝑥 
(5)

r, more concisely 

 

2  + 𝑓 ( 𝑥, 𝑦 )  = 𝑔( 𝑥, 𝑦 ) (6)

here ∇ 

2 = ( 𝜕 2 ∕ 𝜕 𝑥 2 + 𝜕 2 ∕ 𝜕 𝑦 2 ) is the Laplacian operator, and f ( x , y ) and
 ( x , y ) are known functions. 

Note that the transformation (4) also affects the boundary conditions
2) and (3) which become, respectively 

 = �̄� ℎ 3∕2 , on Γ1 (7)

𝜕 

𝜕𝑛 
− 

3  

2 ℎ 
𝜕ℎ 

𝜕𝑛 
= 𝑞 ℎ 3∕2 , on Γ2 (8)

owever, the transformed boundary conditions are still linear, and in
he very common case 𝑞 = 0 and 𝜕 ℎ ∕ 𝜕 𝑛 = 0 on Γ2 , condition (8) simply
urns out to be 𝜕 ∕ 𝜕 𝑛 = 0 . 

Although Eq. (6) (or (5) ) is fully equivalent to the original Eq. (1) ,
t is more suitable for a BEM analysis, as it does not contain first partial
erivatives of the unknown function ( 𝑥, 𝑦 ) . 

The use of transformation (4) in the context of lubrication apparently
ates back to 1937, as reported in [ 2 , pp. 74–75], though for completely
ifferent purposes. In the BEM literature, it is considered in [16] for
arcy’s flow with variable permeability and in [17] in the context of
eneralized Laplace equations. 

For a full BEM treatment to be possible it remains to determine
he conditions for which (6) has constant coefficients , that is for which
( 𝑥, 𝑦 ) = constant. 
184 
. Special film shapes 

It is well known in hydrodynamic lubrication theory that, once the
nlet and outlet film thicknesses are specified ( Fig. 1 ), the exact shape of
he oil film is not of great significance, as it does not markedly influence
he performance of pad bearings [1, pp. 122–124] , [18, pp. 60–62] ,
19] . Thus, the film shape can be chosen for mathematical convenience.

This conclusion holds for two-dimensional problems as well (e.g. [1,
. 59] ). Therefore, the film shape h ( x , y ) can be chosen in (5) and (6) in
uch a way to satisfy 𝑓 ( 𝑥, 𝑦 ) = 𝑘, that is 

 

2 ( ℎ 3∕2 ) + 𝑘ℎ 3∕2 = 0 (9)

here k is a (real) constant to be fixed. 
The homogeneous partial differential Eq. (9) in the unknown func-

ion 𝑤 = ℎ 3∕2 is of fundamental importance as it defines all film shapes
hat transform (6) (or (5) ) into the constant coefficient equation 

 

2  + 𝑘  = 𝑔( 𝑥, 𝑦 ) (10)

Eq. (10) is, indeed, three different equations, depending on whether
 is greater than, less than, or equal to zero. For all cases the correspond-
ng fundamental solutions are known (e.g. [ 17 , Eqs. (11)–(13)]), and the
EM is easily applicable. 

The problem is now reduced to the search of solutions for the homo-
eneous partial differential Eq. (9) in 𝑤 = ℎ 3∕2 . As already mentioned,
he cases 𝑘 = 𝜆2 , 𝑘 = 0 , and 𝑘 = − 𝜆2 (with 𝜆≠0) have to be considered
eparately, as they give rise to different types of differential equations. 

The particular case ℎ = ℎ ( 𝑥 ) will also be considered in detail, as it has
ractical relevance and ransforms (9) into a simple ordinary differential
quation 𝑤 

′′ + 𝑘𝑤 = 0 . 

ase 1: 𝑘 = 𝜆2 > 0 

In this case, function 𝑤 = ℎ 3∕2 must satisfy the Helmholtz equation
see (9) ) 

 

2 𝑤 + 𝜆2 𝑤 = 0 (11)

or (10) to be a (nonhomogeneous) Helmholtz equation in  . 
A family of closed-form solutions to (11) is 

 ( 𝑥, 𝑦 ) = 𝐴 1 𝑒 
𝑖𝜆( 𝛼𝑥 + 

√
1− 𝛼2 𝑦 ) + 𝐴 2 𝑒 

− 𝑖𝜆( 𝛼𝑥 + 
√
1− 𝛼2 𝑦 ) (12)

ith 0 ≤ 𝛼 ≤ 1. By taking the real part, we obtain a first family of possible
lm shapes 

 1 ( 𝑥, 𝑦 ) = { 𝐴 sin [ 𝜆 ( 𝛼𝑥 + 

√
1 − 𝛼2 𝑦 ) + 𝜑 ]} 2∕3 (13)

here A , 𝜑 and 𝜆≠0 are constants to be chosen arbitrarily, provided
 1 > 0 within the pad. Notice that 𝛼 = cos 𝜗 defines the direction 𝜃 in the
y -plane along which the sine function “develops ”. 

The important case ℎ = ℎ ( 𝑥 ) is promptly obtained from (13) by set-
ing 𝛼 = 1 , that is 𝜃 = 0 

 1 ( 𝑥 ) = [ 𝐴 sin ( 𝜆𝑥 + 𝜑 )] 2∕3 (14)

t is worth noting that (14) can also be obtained as the general inte-
ral of the ordinary differential equation 𝑤 

′′ + 𝜆2 𝑤 = 0 (cfr. (11) ), and,
herefore, represents all possible solutions to this case. 

ase 2: 𝑘 = 0 

In this case, function 𝑤 = ℎ 3∕2 must satisfy a Laplace equation (see
9) ) 

 

2 𝑤 = 0 (15)

Possible closed-form solutions to (15) are given by the harmonic poly-

omials 𝑤 ( 𝑥, 𝑦 ) = 𝑃 𝑛 ( 𝑥, 𝑦 ) 

 0 = 𝐶 0 

 = 𝐶 𝑥 + 𝐶 𝑦 + 𝑃 
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 2 = 𝐶 3 ( 𝑥 2 − 𝑦 2 ) + 𝐶 4 𝑥𝑦 + 𝑃 1 

 3 = 𝐶 5 ( 𝑥 3 − 3 𝑥𝑦 2 ) + 𝐶 6 ( 𝑦 3 − 3 𝑦𝑥 2 ) + 𝑃 2 

⋯ (16) 

In each P n , n > 0, the two independent terms of degree n can be for-
ally obtained as the real and imaginary parts of ( 𝑥 + 𝑖𝑦 ) 𝑛 . For example,

f 𝑛 = 2 , ℜ [( 𝑥 + 𝑖𝑦 ) 2 ] = 𝑥 2 − 𝑦 2 , and ℑ [( 𝑥 + 𝑖𝑦 ) 2 ] = 𝑥𝑦 . 
Notice that any selection of constants C i is possible. For instance, set-

ing all coefficients with even index equal to zero results in a function
ymmetric with respect to the x axis (as often encountered in applica-
ions). 

In general, possible film shapes are given by 

 2 ( 𝑥, 𝑦 ) = [ 𝑃 𝑛 ( 𝑥, 𝑦 )] 2∕3 (17)

rovided P n > 0 within the pad bearing Ω. 
With h ( x , y ) as in (17) , the Reynolds equation becomes a nonhomo-

eneous Laplace equation in  (often called Poisson equation). 
For 𝑛 = 0 , expression (17) gives simply ℎ = 𝐶 0 = const , so that the

.h.s. in Eqs. (1) and (5) is zero, and both equations simply become a
omogeneous Laplace equation. Therefore, this well known case, typi-
al of externally pressurized bearings (hydrostatic lubrication [20] ), is
btained as just a particular case. 

A film profile that varies only in the x -direction is obtained from
16) and (17) by selecting only C 0 and C 1 not equal to zero 

 2 ( 𝑥 ) = [ 𝐴 ( 𝛽𝑥 + 1)] 2∕3 (18)

t is worth noting that (18) represents all solutions of the one-
imensional counterpart of (15) , that is of the ordinary differential equa-
ion 𝑤 

′′ = 0 . 

ase 3: 𝑘 = − 𝜆2 < 0 

In this case, function 𝑤 = ℎ 3∕2 has to satisfy the equation (see (9) ) 

 

2 𝑤 − 𝜆2 𝑤 = 0 (19)

his is sometimes referred to as the Klein-Gordon equation (or modified
elmholtz equation). 

A family of closed-form solutions is given by 

 ( 𝑥, 𝑦 ) = 𝐴 1 𝑒 
𝜆( 𝛼𝑥 + 

√
1− 𝛼2 𝑦 ) + 𝐴 2 𝑒 

− 𝜆( 𝛼𝑥 + 
√
1− 𝛼2 𝑦 ) (20)

ith 0 ≤ 𝛼 ≤ 1. Expression (20) can also be written in a different (though
quivalent) form 

 ( 𝑥, 𝑦 ) = 𝐵 1 sinh [ 𝜆 ( 𝛼𝑥 + 

√
1 − 𝛼2 𝑦 )] + 𝐵 2 cosh [ 𝜆 ( 𝛼𝑥 + 

√
1 − 𝛼2 𝑦 )] (21)

here B 1 , B 2 and 𝜆 are arbitrary constants. 
From (21) , the following possible film shapes are obtained 

 3 ( 𝑥, 𝑦 ) = { 𝐴 sinh [ 𝜆( 𝛼𝑥 + 

√
1 − 𝛼2 𝑦 ) + 𝜑 ]} 2∕3 (22)

 4 ( 𝑥, 𝑦 ) = { 𝐴𝑒 ± 𝜆 ( 𝛼𝑥 + 
√
1− 𝛼2 𝑦 ) } 2∕3 (23)

 5 ( 𝑥, 𝑦 ) = { 𝐴 cosh [ 𝜆( 𝛼𝑥 + 

√
1 − 𝛼2 𝑦 ) + 𝜑 ]} 2∕3 (24)

epending on whether | B 1 | > | B 2 |, 𝐵 1 = ± 𝐵 2 , or | B 1 | < | B 2 |, respectively.
f course, the functions within braces have to be > 0 within the pad Ω.

By setting 𝛼 = 1 in expressions (22) –(24) , the following film profiles
re obtained, which vary only in the x direction 

 3 ( 𝑥 ) = [ 𝐴 sinh ( 𝜆𝑥 + 𝜑 )] 2∕3 (25)

 4 ( 𝑥 ) = [ 𝐴 𝑒 ± 𝜆𝑥 ] 2∕3 (26)

 ( 𝑥 ) = [ 𝐴 cosh ( 𝜆𝑥 + 𝜑 )] 2∕3 (27)
5 

185 
here the constants A , 𝜑 and 𝜆≠0 can be used to fit the required
rofile (see next Section). Expressions (25) –(27) represent all solutions
f the ordinary differential equation 𝑤 

′′ − 𝜆2 𝑤 = 0 , that is of the one-
imensional counterpart of (19) . 

For h as in expressions (22) to (27) , the Reynolds Eq. (6) becomes a
onhomogeneous Klein-Gordon equation in  . 

To the best of the author’s knowledge, film shapes like in (13) –(14),
17) –(18) , and (22) –(27) (with the exception of the exponential profile),
ave never been considered in lubrication analysis so far. They appear
o form the basis for an effective application of the BEM to self-acting
ydrodynamic slider bearings. 

. Analysis of special film profiles 

The following analysis is restricted to film profiles depending only
n x . 

For generality, the bearing length L in the direction of motion has
een assumed equal to 1. Therefore, all lengths have to be considered
s scaled with respect to the actual bearing length. 

Notice, however, that the lubrication problem is still two-
imensional (finite bearing) and the contour Γ may have any shape
 Fig. 1 , and also Fig. 4 ). 

Since what is relevant is the ratio h i / h o > 1 between the inlet and
utlet film thickness, it is important to specialize expressions (14), (18) ,
nd (25) –(27) to satisfy the conditions ( Fig. 1 ) 
 

ℎ (0) = ℎ 𝑖 
ℎ (1) = ℎ 𝑜 

(28) 

oreover, we will require all wedges to be convergent , that is to have
h / dx ≤ 0, for 0 ≤ x ≤ 1. A typical value of the slope in industrial bearings
s 0.001 rad, that is 0.06 deg [4, p. 35] . 

Since expressions (14), (25) , and (27) contain three constants and
here are only two conditions to be satisfied, 𝜆 was used as a parameter.
herefore, 𝜆 controls the film shape but does not affect h i and h o . With-
ut loss of generality, it is assumed 𝜆 > 0. For brevity, it is convenient to
ntroduce the constants ℎ 𝑖 ∕ ℎ 𝑜 = 𝑎 and ( ℎ 𝑜 ∕ ℎ 𝑖 ) 3∕2 = 𝑏 . Normal values for
 are in the range 2 to 3 [1,2] . 

To fulfil requirements (28) , profile h 1 ( x ) in (14) becomes 

 1 ( 𝑥 ) = ℎ 𝑖 

[ 
sin ( 𝜆𝑥 + 𝜑 ) 

sin 𝜑 

] 2∕3 
(29)

here 

 = arctan 
[ sin 𝜆
𝑏 − cos 𝜆

]
(30) 

or profile h 1 to be also monotone in x ∈ [0, 1], it has to be 0 < 𝜆 ≤ �̄�,

ith �̄� = arccos ( 𝑏 ) . 
Profile h 2 in (18) is always convergent. To have the required inlet

nd outlet thickness it is necessary that 

 2 ( 𝑥 ) = ℎ 𝑖 [( 𝑏 − 1) 𝑥 + 1] 2∕3 (31)

Profile h 3 in (22) is always convergent as well, and it becomes 

 3 ( 𝑥 ) = ℎ 𝑖 

[ 
sinh ( 𝜆𝑥 + 𝜑 ) 

sinh 𝜑 

] 2∕3 
(32)

here 

 = arctanh 
[ sinh 𝜆
𝑏 − cosh 𝜆

]
(33) 

or function h 3 to exist, it is required that 0 < 𝜆 < 𝜆∗ , with 𝜆∗ = ln (1∕ 𝑏 ) .
or this profile we may also require, for instance, ℎ 3 (0 . 5) = ( ℎ 𝑖 + ℎ 𝑜 )∕2 ,
o that the profile matches the linear wedge also at the midpoint. The
orresponding value of 𝜆 is given by 

̃ = 2 arccosh 

⎡ ⎢ ⎢ ⎢ ⎣ 
√
2 

(
1 
𝑎 

)3∕2 
+ 1 (

1 
𝑎 
+ 1 

)3∕2 

⎤ ⎥ ⎥ ⎥ ⎦ 
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Fig. 2. Special film profiles. 
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Profile h 4 is always convergent. Its expression is 

 4 ( 𝑥 ) = ℎ 𝑖 [ 𝑒 𝜆
∗ 𝑥 ] 2∕3 = ℎ 𝑖 

( 1 
𝑎 

)𝑥 

(34)

otice that 𝜆 has to be equal to 𝜆∗ . 
Finally, profile h 5 becomes 

 5 ( 𝑥 ) = ℎ 𝑖 

[ 
cosh ( 𝜆𝑥 + 𝜑 ) 

cosh 𝜑 

] 2∕3 
(35)

here 

 = arctanh 
[
𝑏 − cosh 𝜆
sinh 𝜆

]
(36)

or function h 5 to exist and also to be monotone in the interval [0,1], 𝜆
ust be such that 𝜆∗ < 𝜆 ≤ �̂�, where �̂� = arccosh (1∕ 𝑏 ) . 
Fig. 3. Pressure curves for infi

186 
It is worth noting that, in all cases, 𝜑 is a function of the ratio
 𝑖 ∕ ℎ 𝑜 = 𝑎 and of 𝜆, but not of the actual height of the film, which is
nly controlled by h i . Therefore, once the ratio h i / h o is fixed, the shape

f the film (for each type) is controlled only by the value of 𝜆. 
Another important feature of the above series of profiles is that, for

ny x ∈ [0, 1] 

 1 ( 𝑥 ) > ℎ 2 ( 𝑥 ) > ℎ 3 ( 𝑥 ) > ℎ 4 ( 𝑥 ) > ℎ 5 ( 𝑥 ) 

o that profiles never intersect. Fig. 2 shows all these special profiles,
or the case ℎ 𝑖 ∕ ℎ 𝑜 = 2 . The plotted profiles h 1 and h 5 are those corre-
ponding to �̄� and �̂�, respectively, so that they bound the field spanned
y all (convergent) profiles. 

If compared with the linear wedge, film shapes h 1 and h 2 are always
oncave , while h 4 and h 5 are always convex . Profile h 3 can be either
onvex, concave, or have an inflection point (at �̄� = [ arctanh (1∕ 

√
3) −

 ]∕ 𝜆 ) as in Fig. 2 , where 𝜆 = �̃� was used. Notice how closely, in this
ase, it approximates the linear wedge (also displayed). 

Fig. 3 shows the pressure curves associated to the film profiles
f Fig. 2 for the case of infinite bearing. Non-dimensional pressure
ℎ 2 

𝑜 
∕( 𝜇𝑈𝐿 ) is actually used. 
From the above observations, and from Figs. 2 and 3 , it appears that

he proposed series of film profiles covers most of the possible practical
ases. 

. Boundary element method for lubrication problems 

As already mentioned in Section 3 , any of the above profiles enables
he boundary element method (BEM) to be effectively applied to the
olution of lubrication problems. 

Details on the actual implementation of the BEM for linear partial
ifferential equations with constant coefficients like Eq. (10) are now
idely available (e.g., [5,6,17] ) and are not repeated here for the sake
f brevity. 
nite bearing ( ℎ 𝑖 ∕ ℎ 𝑜 = 2 ). 
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Fig. 4. Finite pad bearing geometry, BEM discretization (| —• —|), and optional 

internal points ( ∘). 
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The BEM is at its best when dealing with problems governed by ho-
ogeneous differential equations, while Eq. (10) normally has a non-
omogeneous term g ( x , y ). Actually, this is not a major drawback, as
nknown nodal values are still only on the boundary Γ. However, inter-
al cells may be necessary to integrate some known functions on Ω. 

In the case of film profiles depending only on x , however, a true
oundary only approach is possible, as we may write a solution to
q. (10) in the form 

( 𝑥, 𝑦 ) =  𝑜 ( 𝑥, 𝑦 ) +  𝑝 ( 𝑥 ) (37)

here the particular integral  𝑝 ( 𝑥 ) is just a solution of the ordinary dif-
erential equation  

′′
𝑝 
+ 𝑘  𝑝 = 𝑔( 𝑥 ) . 
Fig. 5. Finite pad bearing: pressure profiles as obtained 

187 
If film profiles h 2 ( x ) ( Eq. (18) ) or h 4 ( x ) ( Eq. (26) ) are used ( Fig. 2 ),
articular integrals are given, respectively, by 

 𝑝 ( 𝑥 ) = −(18 𝜇𝑈∕ 𝐴𝛽) ℎ 2 ( 𝑥 ) (38)

 𝑝 ( 𝑥 ) = ∓(18 𝜇𝑈∕4 𝜆) ℎ −1∕2 4 ( 𝑥 ) (39)

n the other cases, they may be obtained by any of the one-dimensional
ethods discussed, e.g., in [3] . 

The unknown function  𝑜 ( 𝑥, 𝑦 ) has only to satisfy the homogeneous

artial differential equation 

 

2  𝑜 + 𝑘  𝑜 = 0 (40)

he associated boundary conditions are immediately obtained from (7) –
8) by replacing  with  𝑜 +  𝑝 . For this type of problems, BEM features
re fully exploited as only the contour Γ of the bearing pad has to be
iscretized. 

. Numerical example - finite thrust bearing 

In order to test the validity of the proposed approach, a numerical
xample is reported. The finite bearing pad has a rectangular shape with
ounded corners, as shown in Fig. 4 . L is the length in the direction of
otion, and 𝐵 = 0 . 75 𝐿 is the length normal to the direction of motion.
ounded corners have radius equal to 0.1 L . The pressure p was assumed

o vanish on the whole boundary Γ of the pad. 
The film thickness was assumed to depend only on x and to be of

ype h 2 ( x ) (see Eqs. (18) or (31) ). The thickness h i at the leading edge
 𝑥 = 0 ) and the thickness h o at the trailing edge ( 𝑥 = 1 ) were in the ratio
 𝑖 ∕ ℎ 𝑜 = 2 . 

According to the proposed method, the original Reynolds equation
n p ( x , y ) was first transformed into a constant coefficient equation in
( 𝑥, 𝑦 ) , that for the selected film shape turned out to be a nonhomoge-
eous Laplace equation, with boundary conditions  = 0 on all Γ. 
by the BEM at selected internal points (see Fig. 4 ). 
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Since (38) provided a particular integral  𝑝 ( 𝑥 ) for the transformed
quation, the problem was further reduced to a homogeneous Laplace
quation ∇ 

2  𝑜 = 0 (see (37) ), with boundary conditions  𝑜 ( 𝑥, 𝑦 ) =
  𝑝 ( 𝑥 ) , ( x , y ) ∈Γ. The latter was the problem actually solved by the
EM. 

Fig. 4 shows the BEM mesh (16 quadratic elements) employed in the
alculation. Undoubtedly, it is much simpler than a corresponding FEM
esh. 

The BEM solution provides  𝑜 and 𝜕  𝑜 ∕ 𝜕 𝑛 all around the boundary
. 

By using a BEM option,  𝑜 can also be evaluated at any internal point.
alues of the lubricant pressure p are then obtained from the relation
 = (  𝑜 +  𝑝 )∕ ℎ 

3∕2 
2 . 

Fig. 5 shows the non-dimensional pressure curves obtained along the
ines at 𝑦 = 0 . 1875 and 𝑦 = 0 ( Fig. 4 ). 

. Conclusions 

The solution of lubrication problems by the BEM has been discussed
n detail. Due to the fact that the Reynolds equation has, in general, vari-
ble coefficients, its solution by a true BEM algorithm appeared hardly
ossible. In fact, it has been shown that there exist several film shapes
hat allow the Reynolds equation to be easily transformed into a con-
tant coefficient equation, making the BEM application a straightfor-
ard task. Most of the proposed profiles closely resemble those actually
sed in applications. Numerical results for finite bearings confirm the
ffectiveness of the approach. 
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