
Full Exploitation of the Deficit Round Robin Capabilities
by Efficient Implementation and Parameter Tuning

Technical Report, October 2003

L. Lenzini, E. Mingozzi, G. Stea
Dipartimento di Ingegneria della Informazione, University of Pisa

Via Diotisalvi 2, 56126 Pisa – Italy
{l.lenzini, e.mingozzi, g.stea}@iet.unipi.it

Abstract—Deficit Round Robin (DRR) is a scheduling algo-

rithm devised for providing fair queueing in the presence of vari-
able length packets. The main attractive feature of DRR is its
simplicity of implementation: in fact, it can exhibit (1)O com-
plexity, provided that specific allocation constraints are met.
However, according to the DRR implementation proposed in [7],
meeting such constraints often implies tolerating high latency
and poor fairness. In this paper, we first derive new and exact
bounds for DRR latency and fairness. On the basis of these re-
sults, we then propose a novel implementation technique, called
Active List Queue Method (Aliquem), which allows a remarkable
gain in latency and fairness to be achieved, while still preserving

(1)O complexity. We show that DRR achieves better perform-
ance metrics than those of other round robin algorithms such as
Pre-Order Deficit Round Robin and Smoothed Round Robin. We
also show by simulation that the proposed implementation allows
the average delay and the jitter to be reduced.

Keywords—DRR; scheduling algorithms; Quality of Service

I. INTRODUCTION
Multi-service packet networks are required to carry traffic

pertaining to different applications, such as e-mail or file
transfer, which do not require pre-specified service guaran-
tees, and real-time video or telephony, which require perform-
ance guarantees. The best-effort service model, though suit-
able for the first type of applications, is not so for applications
of the other type. Therefore, multi-service packet networks
need to enable Quality of Service (QoS) provisioning. A key
component for QoS enabling networks is the scheduling algo-
rithm, which selects the next packet to transmit, and when it
should be transmitted, on the basis of some expected perform-
ance metrics. During the last decade, this research area has
been widely investigated, as proved by the abundance of lit-
erature on the subject (see [2-18]). Various scheduling algo-
rithms have been devised, which exhibit different fairness and
latency properties at different worst-case per-packet complexi-
ties. An algorithm is said to have (1)O worst-case per packet
complexity (hereafter complexity) if the number of operations
needed to select the next packet to be transmitted is constant
with respect to the number of active flows.

The existing work-conserving scheduling algorithms are
commonly classified as sorted-priority or frame-based.
Sorted-priority algorithms associate a timestamp with each
queued packet and transmit packets by increasing timestamp
order. On the other hand, frame-based algorithms divide time

into frames, and select which packet to transmit on a per-
frame basis. Within the frame-based class, round-robin algo-
rithms service the various flows cyclically, and within a round
each flow is serviced for up to a given quantum, so that the
frame length can vary up to a given maximum. Sorted-priority
algorithms generally exhibit better latency and fairness prop-
erties compared to round-robin ones, but have a higher com-
plexity, due to the calculation of the timestamp and to the sort-
ing process [3]. Specifically, the task of sorting packets from
N different flows has an intrinsic complexity of (log)O N 1.
At high link speeds, such a complexity may limit the scalabil-
ity. Simpler algorithms requiring a constant number of opera-
tions per packet transmission would then be desirable. Round-
robin scheduling algorithms, instead, can exhibit ()1O com-
plexity.

Deficit Round Robin (DRR) [7] is a scheduling algorithm
devised for providing fair queueing in the presence of variable
length packets. Recent research in the DiffServ area [19] pro-
poses it as a feasible solution for implementing the Expedited
Forwarding Per-hop Behavior [20,21]. According to the im-
plementation proposed in [7], DRR exhibits ()1O complexity
provided that each flow is allocated a quantum no smaller than
its maximum packet size. As observed in [16], removing this
hypothesis would entail operating at a complexity which can
be as large as ()O N . On the other hand, in this paper we
show that meeting such a constraint may lead to poor per-
formances if flows with very different rate requirements are
scheduled. This is because a frame can be very large under the
above constraint, and this in turn implies poor fairness and
longer delays.

The purpose of this paper is twofold. Firstly, we propose a
novel implementation technique, called Active List Queue
Method (Aliquem), which allows DRR to operate at ()1O
complexity even if quanta are smaller than the maximum
packet size. More specifically, the Aliquem implementation
allows DRR to operate at ()1O complexity, provided that
each flow is allocated a quantum no smaller than its maximum
packet size scaled by a tunable parameter q . By appropri-
ately selecting the q value, it is then possible to make a trade-
off between operational overhead and performance. We pro-
pose different solutions for implementing Aliquem, employing

1 It has been shown that this task can be performed at ()log logO n

complexity if coarsened timestamps are used [8].

different data structures and requiring different space occu-
pancy and operational overhead. In addition, we present a
variant of the Aliquem technique, called Smooth Aliquem,
which further reduces the output burstiness at the same com-
plexity.

However, in order to fully understand the performance
gains which are achieved by means of the Aliquem implemen-
tation, a careful analysis of the DRR performance – specifi-
cally of its latency and fairness – is required. In fact, the re-
sults related to DRR reported in the literature only apply to the
case in which each flow is allocated a quantum no smaller
than its maximum packet size [3-4], [7]. Therefore, as a sec-
ond issue, we also provide a comprehensive analysis of the
latency and fairness bounds of DRR, presenting new and exact
results. We show that DRR achieves better performance met-
rics than those of other round robin algorithms such as Pre-
Order Deficit Round Robin (PDRR) [13] and Smoothed
Round Robin (SRR) [14]; we also compare our implementa-
tion with Self-Clocked Fair Queuing (SCFQ) [6], which is a
sorted-priority algorithm. Finally, we report simulation results
showing that the Aliquem and Smooth Aliquem techniques
allow the average delay and the jitter to be reduced.

The rest of the paper is organized as follows. Section II
gives the results related to the DRR latency and fairness. The
Aliquem implementation is described in Section III and ana-
lyzed in Section IV, whilst in Section V we describe the
Smooth Aliquem DRR. We compare Aliquem DRR with pre-
vious work in Section VI. We show simulation results in Sec-
tion VII, and draw conclusions in Section VIII.

II. DRR LATENCY AND FAIRNESS ANALYSIS
In this section we briefly recall the DRR scheduling algo-

rithm and the proposed implementation. We then give general-
ized results related to the latency and fairness properties of
DRR, and propose guidelines for selecting parameters.

A. DRR operation and implementation complexity
Deficit Round Robin is a variation of Weighted Round-

Robin (WRR) that allows flows with variable packet lengths
to share the link bandwidth fairly. Each flow i is character-
ized by a quantum of iφ bits, which measures the quantity of
packets that flow i should ideally transmit during a round,
and by a deficit variable i∆ . When a backlogged flow is ser-
viced, a burst of packets is allowed to be transmitted of an
overall length not exceeding iφ + i∆ . When a flow is not able
to send a packet in a round because the packet is too large, the
number of bits which could not be used for transmission in the
current round is saved into the flow’s deficit variable, and are
therefore made available to the same flow in the next round.

More specifically, the deficit variable is managed as fol-
lows:

• reset to zero when the flow is not backlogged;
• increased by iφ when the flow is selected for service

during a round;
• decreased by the packet length when a packet is

transmitted.

Let iL be the maximum length of a packet for flow i
(measured in bits). In [7] the following inequality has been
proved to hold right after a flow has been serviced during a
round:

 0 i iL≤ ∆ < (1)

which means that a flow’s deficit never reaches the maximum
packet length for that flow.

DRR has ()1O complexity under certain specific condi-
tions. Let us briefly recall the DRR implementation proposed
in [7] and discuss those conditions. A FIFO list, called the
active list, stores the references to the backlogged flows.
When an idle flow becomes backlogged, its reference is added
to the tail of the list. Cyclically, if the list is not empty, the
flow which is at the head of the list is dequeued and serviced.
After it has been serviced, if still backlogged, the flow is
added to the tail of the list. It is worth noting that:

• dequeueing and enqueueing flows in a FIFO list are
()1O operations;

• since backlogged flows are demoted to the tail of the
list after reaching the head of the list and receiving
service, the relative service order of any two back-
logged flows is preserved through the various rounds.

It has been proved in [7] that the following inequality must
hold for DRR to exhibit ()1O complexity:

, i ii Lφ∀ ≥ . (2)

Inequality (2) states that each flow’s quantum must be
large enough to contain the maximum length packet for that
flow. If some flows violate (2), a flow which is selected for
transmission (i.e. dequeued from the head of the list), though
backlogged, may not be able to transmit a packet during the
current round. Nevertheless, its deficit variable must be up-
dated and the flow must be queued back at the tail of the list.
In a worst case, this can happen as many consecutive times as
the number of flows violating (2). Therefore, if (2) does not
hold, the number of operations needed to transmit a packet in
the worst case can be as large as ()O N [16].

B. Latency Analysis
Let us assume that DRR is used to schedule packets from

N flows on a link whose capacity is C . Let

1

N
ii

F φ
=

=∑ (3)

denote the frame length, i.e. the number of bits that should
ideally be transmitted during a round if all flows were back-
logged.

DRR has been proved to be a latency-rate server (LR
server) [3]. An LR server is characterized by its latency, which
may be regarded as the worst-case delay experienced by the
first packet of a flow busy period, and by its rate, i.e. the
guaranteed service rate of a flow.

The following expression has been derived as the DRR la-
tency in [4]:

* 3 2 i
i

F
C
φ−

Θ = . (4)

However, (4) was obtained under the assumption that
quanta are selected equal to the maximum packet length, i.e.

j jL jφ = ∀ . As a consequence, it does not apply to cases in
which the above hypothesis does not hold, as in the following
example:

Example – Suppose that N flows with maximum packet
lengths 1 2 ... NL L L L= = = = are scheduled, and that

100, 1...j L j Nφ = = . According to (4) the latency should be:

()* 3 2 1003 2 i
i

N LF
C C
φ −−

Θ = = .

However, a packet can actually arrive at a (previously idle)
flow i when every other flow in the active list has a maxi-
mum length packet ready for transmission and a deficit value
large enough to transmit it. Therefore the delay bound for a
packet that starts a busy period for flow i , is no less than
()1N L C− ⋅ , i.e., much higher than (4).

To the best of our knowledge, no general latency expres-
sion for DRR has yet been derived. The following result is
proved in the Appendix.
Theorem 1

“The latency of DRR is

 () ()
1

1 1
N

i i i i j
j

F L L
C

φ φ
=

Θ = − + +

∑ .” (5)

Note that, when j jL jφ = ∀ , it is *
i iΘ = Θ .

Another common figure of merit for a scheduling algo-
rithm is the start-up latency, defined as the upper bound on the
time it takes for the last bit of a flow’s head-of-line packet to
leave the scheduler. Such a figure of merit is less meaningful
than latency, since it does not take into account the correlation
among the delays of a sequence of packets in a flow, but it is
generally easier to compute. Moreover, computing the start-up
latency allows DRR to be compared with scheduling algo-
rithms not included in the LR servers category, such as SRR.
We prove the following result:
Theorem 2

“The start-up latency of DRR is

 ()
1

1 N
i

i i j
ji

L
S F L

C
φ

φ =

= − ⋅ +

∑ .” (6)

Proof
A head-of-line packet of length iL will be serviced after

flow i receives exactly ()i iceiling L φ service opportunities.

Meanwhile, all other flows are serviced for ()i iceiling L φ
times as well. It has been proved in [7] that the following ine-
quality bounds the service received by a backlogged flow
which is serviced m times in (]1 2,t t :

 ()1 2,i i i i im L W t t m Lφ φ− < < + . (7)

Thus, the maximum service that each flow j i≠ can re-
ceive in ()i iceiling L φ visits is upper bounded by

()i i j jceiling L Lφ φ + . Therefore, a packet of length iL will
leave the scheduler after at most:

1.. , 1.. ,

1 i
j j i

j N j i j N j ii

L L L
C

φ
φ = ≠ = ≠

⋅ + +

∑ ∑ (8)

have elapsed since it became the head-of-line packet for flow
i . By considering that iL bounds the packet length for flow
i and substituting the definition of frame (3) into (8), we
straightforwardly obtain (6).

C. Fairness Analysis
DRR has been devised as a scheduling algorithm for pro-

viding fair queueing. A scheduling algorithm is fair if its fair-
ness measure is bounded. The fairness measure was intro-
duced by Golestani [6], and may be seen as the maximum
absolute difference between the normalized service received
by two flows over any time interval in which both are back-
logged.

Let us assume that DRR schedules N flows requiring
rates 1 2, ,..., Nρ ρ ρ on a link whose capacity is C , with

i i Cρ ≤∑ . Let us denote with ()1 2,iW t t the service received
by flow i during the time interval (]1 2,t t . The fairness meas-
ure is given by the following expression

() ()
2 1

1 21 2
,

,,1 max ji
i j t t

i h j hh h

W t tW t t
FM

C ρ ρ ρ ρ>
= −

∑ ∑
.

As a consequence of (7), if we want flows to share the link
bandwidth fairly, the ratio of any two flows’ quanta must then
match their required rate ratio. Therefore, the following set of
equalities constrains the choice of the quanta:

 , ,i j i j i j i jφ φ ρ ρ= ∀ ≠ . (9)

A fair system would thus be one for which the fraction of
the frame length for which a flow is serviced is equal to the
fraction of the link bandwidth the flow requires. Let us define

1..i i j ij N
f Fφ φ φ

=
=∑� . (10)

Therefore, the following equality follows from (9) and
(10):

1..i i jj N
f ρ ρ

=
= ∑ . (11)

It can be easily shown that the fairness measure for DRR is

 ,
1 ji

i j
i j

LL
FM F

C f f

 = + +

. (12)

The proof is obtained by considering the following worst-
case scenario (see Lemma 2 in [7]):

• in (]1 2,t t , flow i is serviced one more time than flow
j , say m times against 1m − ;

• ()1 2,i i iW t t m Lφ= + , i.e. flow i has the maximum
deficit at time 1t and no deficit at time 2t ;

• () ()1 2, 1j j jW t t m Lφ= − − , i.e. flow j has no deficit
at time 1t and the maximum deficit at time 2t .

By substituting the above expressions for ()1 2,iW t t and
()1 2,jW t t in the fairness measure, and keeping into account

(10) and (11), expression (12) follows straightforwardly.

D. Parameter Selection
A known DRR problem (which is also common to other

round-robin schedulers) is that the latency and fairness depend
on the frame length. The longer the frame is, the higher the
latency and fairness are. In order for DRR to exhibit lower
latency and better fairness, the frame length should therefore
be kept as small as possible. Unfortunately, given a set of
flows, it is not possible to select the frame length arbitrarily if
we want DRR to operate at ()1O complexity. In fact, inequal-
ity (2) establishes a lower bound for each quantum in order for
DRR to operate in the ()1O region. Assuming that fairness is
a key requirement, and therefore (11) holds, in order for (2) to
hold, a frame cannot be smaller than

 ()
1..

maxS
j jj N

F L f
=

= . (13)

It is straightforward to see that if the frame length is SF ,
there is at least one flow for which equality holds in (2).
Therefore, operating with a frame smaller than SF implies not
operating at ()1O complexity.

Even if the frame length is selected according to (13), it
can be very large in practical cases, as shown by the following
numerical example. Suppose that 20 data flows requiring 50
Kbps each share a 10 Mbps link with 9 video flows requiring
1 Mbps each. The maximum packet length is 1500L = bytes
for all flows. According to our scheme, we obtain SF = 300
Kbytes (240 ms at 10 Mbps), and each video flow has a quan-
tum of 30 Kbytes, i.e. is allowed to transmit a burst of 20
maximum length packets in a round. The latency for a video
flow is 262 ms, and the latency for a data flow is 512.4 ms.

As the above example shows, when DRR is used to sched-
ule flows with very different rate requirements, quanta and
frame length can be very large, thus leading to high latencies
for all flows and bursty transmissions for the flows with high
rates. In the next section, we present an implementation that

allows the frame length to be reduced without the drawback of
operating at ()O N complexity.

III. THE ALIQUEM IMPLEMENTATION
The Active List Queue Method (Aliquem) is an implemen-

tation technique that allows DRR to obtain better delay and
fairness properties preserving the ()1O complexity. In order
to distinguish between the Aliquem-based implementation of
DRR and the implementation proposed in [7] and described in
the previous section, we will call the former Aliquem DRR
and the latter Standard DRR. The rationale behind Aliquem
DRR is the following: suppose that the frame length is se-
lected as , 0 1SF Fα α= < < . This implies that there are
flows violating (2). Let flow i be one of those. As already
stated, if a single FIFO active list is used to store references to
the backlogged flows, it is possible that i is dequeued and
enqueued several times before its deficit variable becomes
greater than the head packet length. However, by only looking
at flow i ’s quantum, deficit and head-packet length, it is pos-
sible to state in advance how many rounds will elapse before
flow i actually transmits its head packet, and we can defer
updating flow i ’s deficit variable until that time. Specifically,
let iL be the length of the head packet which is at the head of
flow i ’s queue right after the flow has been serviced in a
round, and let i∆ be the deficit value at that time. We can
assert that the head packet will be transmitted in the R -th
subsequent round, where R is computed as follows

i i

i

LR
φ

 − ∆
=

 (14)

and the deficit right before the head packet transmission is
started will be

 i iR φ⋅ + ∆ . (15)

Note that (14) and (15) can also be applied when the
packet arrives at a previously idle flow; in this case the flow’s
deficit when the arriving packet reaches the head of the flow’s
queue is null.

Aliquem DRR avoids unnecessary enqueueing, dequeue-
ing and deficit updating by taking (14) and (15) into account.
Instead of considering a single FIFO active list, we consider
the data structure shown in Figure 1. A circular queue of

1q > elements contains the head and tail references to q dif-
ferent FIFO active lists. Each active list contains references to

list 0 list 1 list q-1

active lists

Figure 1. Active List Queue.

backlogged flows. During round k , only the flows whose
reference is stored in the ()modk q -th active list (the current
active list) are considered for transmission, and they transmit
their packets according to the DRR pseudo-code.

When a flow has completed service, if still backlogged, it
is queued back in another active list, specifically the one that
will become the current list in the round in which the flow can
actually transmit its head packet. The correct active list g
where flow i must be enqueued is located as follows:

 ()modg k R q= + . (16)

In order for this implementation to work, it is mandatory
that, for any possible values of iL , i∆ and iφ , R q< . By tak-
ing (1) into account, this requirement translates to the follow-
ing constraints on the quanta length:

 ,
1

i
i

L
i

q
φ∀ ≥

−
. (17)

The pseudo-code for Aliquem DRR is reported in Figure 2.
On a packet arrival to an empty flow, the flow – whose initial
deficit is null – must be inserted into the Aliquem data struc-

ture: this is done by applying (14) and (16). If the flow was
already backlogged, no action needs to be taken (apart from
enqueueing the incoming packet in the flow’s packet queue, of
course). While there are packets in the system, the following
steps are performed cyclically:

• as long as the current active list is not empty, the head
flow is dequeued: its deficit is updated according to
(15), and its packets are transmitted until either the
flow is empty or its deficit is not sufficient to transmit
the next packet;

• if the flow which has just been serviced is still back-
logged, it is inserted into another active list located by
applying (14) and (16); otherwise its reference is sim-
ply discarded;

• when the current list has been emptied (i.e. all packets
which were to leave during the current round have
been transmitted), the next non-empty active list from
which to dequeue flows, i.e. the active list to be se-
lected as the next current list, has to be located. The
function NextNonEmptyList() is intentionally left
unspecified for the moment. In the following section
we will propose two different implementations for it,
which yield different worst-case and average com-
plexity and require different space occupancy.

IV. ALIQUEM DRR ANALYSIS

A. Operational Overhead and Space Occupancy
The space occupancy introduced by Aliquem DRR is quite

modest. The active lists pool can contain at most N flow ref-
erences (the same as Standard DRR). The circular queue can
be implemented by a vector of 2 q⋅ flow references (head and
tail of an active list for each element). Thus, the only space
overhead introduced by Aliquem is
2 q⋅ ⋅sizeof(reference).

Suppose that Aliquem DRR is servicing flows from the
current active list k (0 k q≤ <). It is straightforward to see
that dequeueing a flow from the current list and updating its
deficit variable are ()1O operations. All flows referenced in
the current list are backlogged and, when dequeued, their defi-
cit is large enough to transmit (at least) the head packet. Lo-
cating the correct active list in which to enqueue a flow which
has just been serviced (or has just become backlogged) and
enqueueing it are ()1O operations as well.

When the flows in the current active list have all been ser-
viced, the next non-empty active list must be located, and this
task may require some overhead. However, it is easy to see
that the overhead involved in it only depends on the number of
elements in the circular queue q , and does not depend on the
number of flows N . Therefore, the complexity of Aliquem
DRR does not depend on the number of flows. If no specific
data structure for locating the next non-empty list is employed,
Aliquem DRR might have to perform 1q − (i.e., ()O q) opera-
tions per packet transmission in the worst case, since a for-
ward linear search of the circular queue until a non-null active
list head reference is found must be accomplished. However,
we observe that the average number of operations per packet
transmission is expected to be considerably lower, since

PacketArrival (packet p, flow I) {
if (NotBacklogged(I)) {

∆I= 0;
R=ceiling (Length(p)/φI);
g = (CurrentList+R) mod q;
EnqueueFlow(I, ActiveList(g));

}
EnqueuePacket(p, FlowQueue(I));

}
AliquemDRRScheduler () {

while (SystemBusy) {
while (NotEmpty(CurrentList)) {

I = DequeueFlow(CurrentList);
L = Length(HeadPacket(I));
∆I = ceiling((L-∆I)/φI)*φI + ∆I;
loop {

L=Length(HeadPacket(I));
if (L==0) {

Backlogged=false;
exit loop;

}
if (L>∆I) {

Backlogged=true;
exit loop;

}
p=DequeueHeadPacket(I);
TransmitPacket(p);
∆I = ∆I - L;

}
if (Backlogged) {

R = ceiling((L-∆I)/φI);
g = (CurrentList+R) mod q;
EnqueueFlow(I, ActiveList(g));

}
}
CurrentList=NextNonEmptyList();

}
}

Figure 2. Pseudo-code for Aliquem DRR.

...

0 1 Χ−2 Χ−1x

...

0 1 Χ−2 Χ−1

...

0 1 Χ−2Χ−1

...

0 1 Χ−2 Χ−1

.........

...

level 1

level 2

Aliquem

Figure 5 – Example of a 2-level Bit Vector Tree for accessing an Aliquem structure

NextNonEmptyList() is called once per round, and a round
may include several packet transmissions. The pseudo-code
for this implementation of the NextNonEmptyList() func-
tion is reported in Figure 3.

If q is large, ()O q operations in a packet transmission
time could represent a burden at high link speeds. Below, we
describe two different additional data structures which allow
us to reduce the complexity of locating the next non-empty list
in Aliquem DRR.

1) Van Emde Boas Priority Queue
The Van Emde Boas priority queue (VEB-PQ) [22] is used

to sort a finite set of integers U . Let y U∈ and let X U⊂
be the subset currently maintained by the priority queue. Three
operations are defined on the VEB-PQ:
• insert(y,X): inserts the element y into the VEB-PQ;
• delete(y,X): extracts the element y from the VEB-PQ;
• successor(y,X): returns the smallest element larger

than y in the VEB-PQ; if y is the largest element, re-

turns a special symbol ∞ .
The following Lemma holds [22]:

VEB-PQ Lemma
“Let { }0,1,2,...,U L= , let y U∈ and let X U⊂ be a

subset. The operations insert(y,X), delete(y,X) and
successor(y,X) can be implemented in time (log log)O L
each. The priority queue can be initialized in time

(log log)O L L using (log log)O L L space.”
More recent research on the VEB-PQ shows that:
• It is possible to reduce the space occupancy to ()O L

without increasing the operational overhead [23].
• By employing a non-standard (but practically imple-

mentable) memory model, the VEB-PQ operations
insert(y,X), delete(y,X) and succes-
sor(y,X) can be implemented in constant time [24].

In Aliquem DRR, a VEB-PQ can be used to store the in-
dexes { }0,1,2,..., 1q − of the non-empty active lists. Thus,
finding the next non-empty active list implies executing the
pseudo-code reported in Figure 4. The two calls to succes-
sor() in the above procedure are due to the use of modular
arithmetic in the active lists indexing. According to the VEB-
PQ Lemma, this implementation of NextNonEmptyList()
takes (log log)O q operations. However, if we use a VEB-PQ,
the EnqueueFlow() procedure may require (log log)O q
operations too (instead of ()1O), since it has to perform an
insert() if the active list that the flow is enqueued in was
empty. Moreover, a delete() operation must be performed
whenever the current list is emptied out, before invoking the
NextNonEmptyList() function.

2) Bit Vector Tree
Many off-the-shelf processors (including the Intel Pentium

family) have machine instructions which allows one to locate
the least (most) significant bit set to 1 in a word. This feature
can be exploited in order to achieve a fast and lightweight
implementation of the NextNonEmptyList() function.

Let Χ be the word dimension in bits, and let us assume
q ≥ Χ for ease of reading. We associate one bit in a set of
M q= Χ words with each list in the Aliquem structure,
and assume that the bit is set if the corresponding list is non-
empty. Thus, the M words can be regarded as a bit vector

int NextNonEmptyList() {
Scanned = 0;
loop {

CurrentList = (CurrentList+1) mod q;
if NotEmpty(CurrentList)

return CurrentList;
Scanned++;
if (Scanned==q) {

SystemBusy = false;
return 0;

}
}

}

Figure 3. Pseudo-code for the NextNonEmptyList() function,
implementation by linear searching.

int NextNonEmptyList() {
x = successor(CurrentList,VEBqueue);
if (x ==∞)

x = successor(-1,VEBqueue);
delete(x,VEBqueue);
return x;

}

Figure 4. Pseudo-code for the NextNonEmptyList() function,
implementation by a VEB-PQ.

(a) Packets queued at flows i and j
flow j

φj

pj,1pj,2pj,3

flow i

φi

pi,1pi,2pi,3

(b) Flow queueing in Aliquem DRR

list k

i
j

list k+1

j

list k+2

i

list k+3

j
i

(c) Packet transmission sequence

Standard DRR

Aliquem DRR

pi,1 pj,1

pi,1 pj,1

k+3

pj,2

pj,2

pi,2

pi,2

pi,3 pj,3

pi,3pj,3

k+2k+1k

Figure 6. Inversion in the service order.

containing information about the state of the q lists. Locating
the least significant bit set to 1 in a given word takes one ma-
chine instruction; on the other hand, locating the correct word
in a set of M can be efficiently accomplished by considering
them as leaf nodes of a Χ -ary tree structure (as shown in Fig-
ure 5). In the Χ -ary tree, each non-leaf node is itself a word,
whose x th bit, 0... 1x = Χ − , is set if there is at least one non-
empty list in the node’s x th sub-tree.

Given an Aliquem structure with q active list, the Χ -ary
tree structure has a log qΧ depth, and therefore it is possible
to locate the next non-empty list in log qΧ time. As Χ
ranges from 32 to 128 in today’s processors, the operational
overhead of such a data structure is negligible. The same can
be said about the space occupancy of a Χ -ary tree, in which
only a single bit is associated with each list at the leaf nodes.

As an example, consider a system with 32Χ = . It is pos-
sible to manage 1q K= active lists with a 2-level tree, or

32q K= active lists with a 3-level tree. The tree root can be
stored directly in a register and the overall tree occupancy
(128 bytes for a 2-level tree, ~4Kbytes for a 3-level tree) is
negligible.

B. Latency
A side result of the proof process of Theorem 1 is that the

latency of DRR does not change if it is implemented as
Aliquem DRR. This is because Aliquem DRR just avoids
polling flows that cannot transmit a packet during a round.
This means that packets that are supposed to leave during a
round in Standard DRR will leave during the same round in
Aliquem DRR (though not necessarily in the same order, as
we explain later on). Therefore, the scenario under which the
Standard DRR latency is computed is also feasible for
Aliquem DRR. Note that, in that particular scenario, packets
from the tagged flow are the last to leave on each round.
However, although the latency for Standard and Aliquem
DRR is the same, it is not obtained at the same complexity.
The lowest latency for Standard DRR operating at ()1O com-
plexity, achieved by selecting the frame length according to
(13), is

 ()()
1

1 1
N

S S
i i i i j

j
f F L f L

C =

Θ = − + +

∑ . (18)

Aliquem DRR allows the frame size to be reduced by a
factor of 1q − with respect to the minimum frame length al-
lowed by Standard DRR at ()1O complexity. In order for
Aliquem DRR to work, inequality (17) (rather than (2)) must
hold. Inequality (17) allows quanta (and therefore frames) to
be smaller by a factor of 1q − with respect to (2) The mini-
mum frame length for Aliquem DRR is thus the following

 ()
1..

1 max
1 1

S
A

j jj N

FF L f
q q =

= =
− −

. (19)

The lowest latency for Aliquem DRR with q active lists,
obtained when the frame length is selected according to (19),
is therefore:

 ()
1

1 1
1

S N
A
i i i i j

j

Ff L f L
C q =

Θ = − + + −

∑ .

Whereas in Standard DRR latency A
iΘ is only achievable

when operating at ()O N complexity, in Aliquem DRR latency
A
iΘ can be obtained at the cost of a much smaller complexity.

As far as the start-up latency is concerned, by manipulating
(6) we obtain the following lower bound for Standard DRR at
()1O complexity:

 ()
1

1 1
N

S Si
i i jS

ji

LS F f L
C f F =

= ⋅ ⋅ − + ⋅

∑ (20)

The lowest start-up latency for Aliquem DRR with q ac-
tive lists, obtained when the frame length is selected according
to (19), is thus:

 ()
1

(1)1 1
1

S N
A i

i i jS
ji

L q FS f L
C qf F =

 ⋅ −
= ⋅ ⋅ − + −⋅

∑ (21)

It can be easily shown that, when 2q ≥ , A S
i iS S≤ , and

that the reduction in the start-up latency is non-decreasing
with q . However, the amount of reduction in the start-up la-
tency also depends on the value of iL and if : specifically, the
smaller i iL f is with respect to SF , the higher the start-up
latency reduction is for flow i . In the case in which

S
i iL f F= , we have A S

i iS S= for any value of q .

C. Fairness
In Standard DRR, since flows are inserted in and extracted

from a unique FIFO active list, the service sequence of any

two backlogged flows is preserved during the rounds: if flow
i is serviced before flow j during round k and both flows
are still backlogged at round 1k + , flow i will be serviced
before flow j at round 1k + . Thus, if packets from both
flows are supposed to leave during a given round, flow i
packets will be transmitted before flow j ’s. In Aliquem DRR,
due to the presence of multiple FIFO active lists, it is possible
that the service sequence of two backlogged flows can be al-
tered from one round to another.

Let us show this with a simple example. Let us consider
flows i and j , which are backlogged at a given round k . Let
us assume that the sequence of packets queued at both flows is
the one reported in Figure 6(a). Both flows transmit a packet
during round k , and the order of transmission of the packets
is ,1ip , ,1jp . In Standard DRR, this implies that, as long as
both flows are backlogged, flow i is serviced before flow j ;
thus, the packet transmission sequence during round 3k +
(i.e. in a round when packets from both flows are transmitted)
is ,3ip , ,3jp (see Figure 6(c)). Consider the same scenario in
Aliquem DRR: both flows are initially queued in the k -th
active list (assume for simplicity that 3k q< −), and flow i is
queued before flow j (see Figure 6(b)). However, even
though both flows are constantly backlogged from round k to
round 3k + , the packet transmission sequence during round

3k + is the opposite, i.e., ,3jp , ,3ip .

Since in Aliquem DRR backlogged flows do not necessar-
ily share the same active list on every round, it is not possible
to preserve their service sequence by employing FIFO active
lists. Doing so would require using sorted lists, which have an
intrinsic complexity of ()logO N . This would lead to a higher
complexity.

Note that in Aliquem DRR the service sequence inversion
does not affect couples of flows whose quantum contains a
maximum length packet. In fact, if i iLφ ≥ and j jLφ ≥ , the
two flows are always dequeued from the head of the same list
(the current list) and enqueued at the tail of the same list (the
subsequent list); therefore, no service inversion can take place.

Let us refer to the worst-case scenario under which (12) was
derived. Due to the flow sequence inversion, during (]1 2,t t ,
flow i can receive service two more times than flow j ; in the
above example, this happens if 1t and 2t are selected as the
time instants in which packets ,1jp and ,3ip start being trans-

mitted. By following the same procedure used for computing
the standard DRR fairness measure, it is straightforward to
prove that the fairness measure of Aliquem DRR is:

 ,

1 if and

1 2 otherwise

ji
i i j j

i jA
i j

ji

i j

LL
F L L

C f f
FM

LLF
C f f

φ φ

 + + ≥ ≥

 =

 + +

.

Given a frame length F , Aliquem DRR can have a worse
fairness measure than Standard DRR. However, as already
stated in the previous subsection, Aliquem DRR allows a frame
length to be selected which is less than the minimum frame
length of Standard DRR operating at ()1O complexity by a
factor of 1q − . Therefore, by employing Aliquem DRR with

2q > , we obtain a better fairness measure than that of Standard
DRR operating at ()1O complexity. We also observe that, if

2q = , flow sequence inversion cannot take place, and therefore
the fairness measure of an Aliquem DRR with two active lists is
the same as that of Standard DRR operating at ()1O complex-
ity.

D. Trade-off between Performance and Overhead
As seen earlier, Aliquem DRR allows us to obtain much

better performance bounds (both for latency and for fairness)
by selecting smaller frames. Smaller frames are obtained by
employing a large number of active lists, i.e., a large q value,
and the q value affects the operational overhead. However,
with a modest increase in the operational overhead it is possi-
ble to achieve a significant improvement in both latency and
fairness. Let us recall the example of Section II.D: if Aliquem
DRR with 10q = is employed, the latency of a data flow is
reduced by 41% and the latency of a video flow is reduced by
73%, as shown in Figure 7 and 8. In addition, the fairness
measure between any two video flows is reduced by 80%.

V. SMOOTH ALIQUEM DRR
According to DRR, during a round a flow is serviced as

long as its deficit is larger than the head packet. Aliquem DRR
isolates the subset of flows that can actually transmit packets
during a round, but, according to the pseudo-code in Figure 2, it

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 12 16 20

data
video

q

la
te

nc
y

(s
)

Figure 7. Latency gain against q.

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 12 16 20
q

vi
de

o
fl

ow
s

fa
irn

es
s

(s
)

Figure 8. Fairness gain among video flows against q.

Aliquem DRR

pb,1 pb,2 pb,3pa,1 pa,2 pa,3 pc,1 pc,2 pc,3 pc,4

Smooth Aliquem DRR

pa,1 pb,1 pc,1 pa,2 pb,2 pc,2 pa,3 pb,3 pc,3 pc,4

Figure 9. Aliquem DRR and Smooth Aliquem DRR Output

PacketArrival (packet p, flow I) {
if (NotBacklogged(I)) {

∆I= 0;
YetServiced[I]=False;
R=ceiling (Length(p)/φI);
g = (CurrentList+R) mod q;
EnqueueFlow (I, ActiveList(g);
}

EnqueuePacket (p, FlowQueue(I));
}

SmoothAliquemDRRScheduler () {
while (SystemBusy) {

while (NotEmpty(CurrentList)) {
I = DequeueFlow(CurrentList);
L = Length(HeadPacket(I));
if(not(YetServiced[I]))

∆I = ceiling((L-∆I)/φI)*φI + ∆I;
p=DequeueHeadPacket(I);
TransmitPacket(p);
∆I-= L;
L = Length(HeadPacket(I));

if (L>∆I) {
R = ceiling((L-∆I)/φI);
g = (CurrentList+R) mod q;
YetServiced[I]=False;
EnqueueFlow(I, ActiveList(g));
}

else if (L>0) {
YetServiced[I]=True;
EnqueueFlow(I, CurrentList);
}

}
CurrentList=NextNonEmptyList();
}

}

Figure 10. Pseudo-code for Smooth Aliquem DRR

services each flow exhaustively before dequeuing the next one.
Therefore, a burst of packets of overall length at most equal to

i iL φ+ can leave the server when a flow is serviced. Clearly,
reducing the frame length also implies reducing the flow bursti-
ness as a side effect, since flows are polled more frequently and
for smaller quanta. However, we can further reduce it by forc-
ing each flow to transmit only one packet when selected for
transmission. The flow is then queued back (if still backlogged)
either in the current active list (if the deficit is still larger than
the new head packet) or in a new active list, located by applying
(16). Reducing the output burstiness has several well-known
advantages, such as reducing the buffer requirements on the
nodes of a multi-node path, and improving the average fairness
and average delay. We define a slightly modified version of
Aliquem DRR, called Smooth Aliquem DRR, in which flows
transmit one packet at a time. Figure 9 shows an example of the
difference in the output packet sequence between Aliquem
DRR and Smooth Aliquem DRR, assuming that three flows are

queued in the current list. The pseudo-code for Smooth
Aliquem DRR is reported in Figure 10.

Since a flow might receive service more than once per
round, a flag YetServiced[i] is needed in order to distin-
guish whether it is the first time that flow i is going to be
serviced during the round (and in that case its deficit must be
updated) or not. This flag is set to false for a newly back-
logged flow and for a flow which is enqueued in a different
active list after being serviced, and is set to true when the flow
is queued back in the same active list.

Smooth Aliquem DRR has a similar operational overhead as
Aliquem DRR, which only depends on the q value and on the
chosen implementation of the NextNonEmptyList() function.
The only space overhead added by Smooth Aliquem DRR is the
vector of N flags YetServiced[]. However, it is possible to
show that the latency, start-up latency and fairness measure of
Smooth Aliquem DRR are the same as Aliquem DRR’s.

VI. COMPARISON WITH PREVIOUS WORK

A. Comparison with Other Implementation Techniques
In this subsection we discuss the differences between our

proposal and the one described in [15] for reducing the output
burstiness of a DRR scheduler. In [15], it is observed that the
output burstiness of a DRR scheduler could be reduced by
allowing a flow to be serviced several times within a round,
one packet at a time. In order to do so, a DRR round is divided
into sub-frames; each sub-frame is associated with a FIFO
queue, in which references to backlogged flows are stored.
Sub-frame queues are visited orderly, and each time a flow is
dequeued it is only allowed to transmit one packet; after that,
it will be enqueued in another sub-frame queue if still back-
logged. The correct sub-frame queue a backlogged flow has to
be enqueued into is located by considering the finishing time-
stamp of the flow’s head-of-line packet. The data structure
proposed in [15] consists of two arrays of q sub-frames each,
associated with the current and subsequent rounds respec-
tively, which are cyclically swapped as rounds elapse. Obvi-
ously, the number of operations needed to select the next non-
empty sub-frame queue increases linearly with the array di-
mension. It can be observed that – though this aspect is not
dealt with in [15] – it could be possible to reduce the opera-
tional overhead of the sub-frames array by employing two
VEB-PQs or bit vector trees (one for the array related to the
current round and another for the array related to the subse-
quent round). Thus, assuming that the dimension of a sub-
frames array and the number of active lists in Aliquem are
comparable, both implementations have the same operational
overhead; however, the sub-frames array data structure takes
twice as much space as an active list queue of the same length
(either with or without employing additional data structures).
It is observed in [15] that, although the proposed implementa-
tion reduces the typical DRR burstiness, it does not reduce its
performance bounds such as the latency or fairness measure;
this is probably due to the fact that the proposed implementa-
tion cannot reduce the frame length, which is in fact bounded
by (2). On the other hand, the Aliquem implementation allows
the frame length to be reduced, which actually reduces latency
and fairness measure.

B. Comparison with Other Scheduling Algorithms
In this subsection we compare Aliquem DRR with some

existing scheduling algorithms for packet networks. Specifi-
cally, we compare Aliquem DRR with Self-Clocked Fair
Queueing (SCFQ) [6], Pre-Order DRR (PDRR) [13] and
Smoothed Round Robin (SRR) [14].

We have already observed that the DRR latency and fairness
measure are related to the frame length. If we let the frame
length go to zero, from (5) and (12) we obtain the following
DRR limit latency and limit fairness measure respectively:

0

1,

1 N

i i i j
j j i

L f L
C = ≠

Θ = +

∑ , (22)

0
,

1 ji
i j

i j

LL
FM

C f f

 = +

. (23)

The limit latency and fairness measure of DRR are equal to
the latency and fairness measure of SCFQ. The latter is a
sorted-priority scheduling algorithm that has (log)O N com-
plexity, and it has been analyzed as an LR server in [3], [4].
Thus, Aliquem DRR performance bounds are bounded from
below by those of SCFQ, to which they tend as q →∞ . Recall-
ing the example in Section IV.D, we obtain that, when 20q = ,
latency bounds are 4.1% above the limit latency for data flows
and 22% above the limit latency for the video flows.

PDRR is aimed at emulating the Packet Generalized Proces-
sor Sharing (PGPS) [5] by coupling a DRR module with a pri-
ority module that manages Z FIFO priority queues. Each
packet which should be transmitted in the current DRR round is
instead sent to one of such priority queues, selected according to
the expected packet leaving time under PGPS. Packets are de-
queued from the priority queues and transmitted. The higher the
number of priority queues Z is, the closer PGPS is emulated.
In order to locate the non empty priority queue with the highest
priority, a min heap structure is employed. It is said in [13] that
PDRR exhibits ()logO Z worst-case per packet complexity, the
latter being the cost of a single insertion in the min heap, pro-
vided that its DRR module operates at (1)O complexity. How-
ever, a careful analysis of the PDRR pseudo code shows that
this is not the case. In fact, at the beginning of a new round, the
min heap is empty, and it is filled up by dequeueing packets
from all backlogged flows and sending each of them to the
relevant priority queue. This process has to be completed before
packet transmission is started, otherwise the PDRR ordering
would be thwarted. Looping through all backlogged flows re-
quires ()O N iterations, Z of which might trigger a min heap
insertion. Thus, transmitting the first packet in a round requires
()logO N Z Z+ operations. Clearly, the complexity of

Aliquem DRR is instead much lower. As far as latency is con-
cerned, the expression computed in [13] applied to the example
of Section II.D yields a latency for a video flow which is 480ms
when 10Z = , i.e., higher than that of Standard DRR itself
computed by applying (5). This probably implies that PDRR
latency bound is not tight, which makes a well-based compari-
son impossible.

SRR smoothens the round-robin output burstiness by allow-
ing a flow to send one maximum length packet worth of bytes
every time it is serviced. The relative differentiation of the flows
is achieved by visiting them a different number of times during a
round, according to their rate requirements, and two visits to the
same flow are spread apart as far as possible. The space occu-
pancy required by SRR – which is mainly due to the data struc-
ture needed to store the sequence of visits – grows exponentially
with the number of bits k employed to memorize the flows rate
requirements. If k = 32, the space occupancy is about 200
Kbytes. Aliquem DRR does not require such space occupancy.
Although the complexity of SRR does not depend on the number
of active flows, ()O k operations must be performed whenever a
flow becomes idle or backlogged, and this may happen many
times in a round. It has been observed in [14] that such a burden
may be comparable to the (log)O N complexity of sorted-
priority algorithms. On the other hand, the operational overhead
arising from searching for the next non-empty list in Aliquem
DRR (which has to be done at most once per round) is expected
to be much lower, especially if either of the two additional data
structures proposed in Section IV.A is employed.

In [14], it is claimed that the start-up latency of SRR (re-
ferred to therein as the scheduling delay) is much lower that
that of DRR. We then compare the start-up latency of both al-
gorithms. Let us suppose that a set of N flows requiring rates

1 2, ,..., Nρ ρ ρ are scheduled on a link whose capacity is C ,
with i i Cρ =∑ . In that case, after some straightforward ma-
nipulation, we obtain the following result for SRR:

max2 1 1SRR SRR
i i

i

L
S N S

C f

< + − =

 (24)

where ()max 1..
max ii N

L L
=

=
For Aliquem DRR, assuming as a worst case that

maxiL L= and S
i iF L f= , we obtain from (21):

max

1 max

1 1
2

SRRN
jA i

i
ji

LL S
S

C f L=

= + − ≤

∑ (25)

This result, which counters the claim made in [14], can be
partially explained by considering that SRR performs a large
number of visits (up to 2 1k −) in a round, and on each visit a
flow’s deficit is increased by maxL , regardless of the flow’s
actual maximum packet size iL .

VII. SIMULATIONS
In this section we show some of the Aliquem DRR and

Smooth Aliquem DRR properties by simulation. We have im-
plemented both schedulers in the ns simulator [25].

A. Operational Overhead
We consider a scenario consisting of a single node with a 1

Mbps output link shared by 40 traffic sources. All sources
transmit UDP packets with lengths uniformly distributed be-
tween 500 and 1500 bytes and are kept constantly backlogged.

0

50

100

150

200

250

300

600 620 640 660 680 700

DRR
Aliquem

op
er

at
io

ns

packet no.
Figure 11. Per-packet operations comparison.

Twenty traffic sources require 10 Kbps, and the remaining
twenty require 40 Kbps. The scenario is simulated for 10 sec-
onds with both Standard DRR and Aliquem DRR, and the
number of operations that are required for each packet trans-
mission is traced.

By following the guidelines for DRR quanta allocation out-
lined in Section II.D, we would obtain 1500iφ = bytes for the
10 Kbps sources and 6000iφ = bytes for the 40 Kbps sources,
which yield a frame length 150SF = Kbytes. We want to com-
pare the number of operations per-packet transmission of Stan-
dard DRR and Aliquem DRR if the frame length is selected as

100SF , and quanta are allocated consequently, so as to obtain
a latency which is close to the limit latency. In Aliquem DRR,
this requires 101q = active lists. In this simulation, we use the
linear search NextNonEmptyList() implementation for
Aliquem DRR and we consider as an operation unit a flow en-
queueing/dequeueing or an iteration of the loop in NextNon-
EmptyList(). Clearly, this is the most unfavorable scenario
for assessing the Aliquem DRR operational overhead reduction,
since no additional data structure (as a VEB-PQ or a bit vector
tree) is employed. Nevertheless, as Figure 11 clearly shows, the
number of operations per packet transmission is much lower in
Aliquem DRR. Moreover, the average number of operations per

packet transmission in Aliquem DRR (which is 3.2) is very far
from the upper bound, which is 2 103q + = . A thorough
evaluation of the operational overhead would also entail taking
into account protocol-related and architectural issues (such as
header processing, memory transfers and so on), which cannot
be easily covered through ns simulation.

TABLE I. AVERAGE AND MAXIMUM DELAY COMPARISON.

Aliquem DRR Smooth Aliquem DRR
 q=2 q=5 q=11 q=101 q=2 q=5 q=11 q=101

avg delay (ms) 28.953 19.142 18.669 18.201 24.768 19.263 18.633 18.197

avg delay gain % - 33.9% 35.5% 37.1% 14.5% 33.5% 35.6% 37.2%
max delay (ms) 61.444 39.627 38.870 37.968 61.689 39.942 38.870 37.968

max delay gain % - 35.5% 36.7% 38.2% -0.4% 35.0% 36.7% 38.2%

0

0.01

0.02

0.03

0.04

0.05

0.06

70 72 74 76 78 80

q=2
smooth, q=2

de
la

y
(s

)

time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

70 72 74 76 78 80

q=2
q=5

de
la

y
(s

)

time (s)

Figure 12. Delay trace comparison.

B. Delay
We have shown in the previous sections how it is possible

to achieve lower latencies in Aliquem DRR. In this simulation
we show how it is possible to reduce a flow’s average delay
by increasing the number of active lists q and using the
Smooth Aliquem version. We consider a scenario consisting
of a single node with a 10 Mbps output link shared by 40 traf-
fic sources. The flow we monitor in the simulation sends 500
bytes long UDP packets at a constant rate of 100 Kbps. The
other 39 sources transmit UDP packets with lengths uniformly
distributed between 100 and 1500 bytes. Nineteen traffic
sources require 100 Kbps, and the remaining twenty require
400 Kbps. The scenario is simulated for 100 seconds with
various values of q with Aliquem DRR and Smooth Aliquem
DRR, and the sum of the queueing and transmission delay for
each packet of the tagged flow is traced.

We report the average and maximum delay experienced by
the tagged flow’s packets in the various experiments in Table
1. In order to show the delay gain, we take Aliquem DRR with

2q = (which exhibits the same behavior as Standard DRR
operating at ()1O complexity) as a reference. The table shows
that an average and maximum delay reduction of about 33%
can be achieved even with q as small as 5; furthermore, em-
ploying Smooth Aliquem reduces the average delay by about
15% even when 2q = . We observe that, as q gets higher, the
performance metrics of Smooth Aliquem DRR and Aliquem
DRR tend to coincide. This is because quanta get smaller, and
therefore the probability that a flow is able to send more than
one packet per round decreases. Figure 12 shows two delay
traces, from which the benefits introduced by Aliquem and
Smooth Aliquem are also evident.

C. Delay Variation in a Multi-node Path
In this experiment we show that reducing the frame length

also helps to preserve the traffic profile of a CBR flow in a
multi node path, thus reducing the need for buffering both in
the nodes and at the receiving host. We consider a scenario
consisting of three scheduling nodes connected by 10 Mbps
links. A CBR source sends 125 bytes packets with 10ms pe-
riod across the path, thus occupying 100Kbps. Other traffic
sources (kept in asymptotic conditions) are added as back-

ground traffic along the path, so that the capacity of each link
is fully utilized. On each link, the background traffic consists
of 21 sources sending packets uniformly distributed between
50 and 1500 bytes. Six sources require 0.9 Mbps each, 5
sources require 0.6 Mbps each, the remaining 10 require 0.15
Mbps each. To avoid correlation on the downstream nodes,
background traffic sent from a node to its downstream
neighbor is not re-scheduled. Instead, each node removes the
incoming background traffic and generates new outgoing
background traffic, as shown in Figure 13.

CBR traffic

Background traffic
Figure 13. Simulation scenario

We simulate the network for 350 seconds employing both
Aliquem DRR and Smooth Aliquem DRR as schedulers. We
select the frame length according to (19), which yields

()100 1F q= − Kbytes, and perform experiments with various
values of q , tracing the inter-arrival spacing of the CBR
source packets on the destination host. In an ideal fluid-flow
fair queueing system, the inter-arrival spacing would be con-
stant (and obviously equal to 10ms). In a packet-wise fair-
queueing system, we can expect the inter-arrival spacing to be
distributed in some way around an average value of 10ms: in
this case, the narrower the distribution is, the closer the ideal
case is approximated. Figure 14 shows the probability distri-
bution of the inter-packet spacing (confidence intervals are not
reported, since they are too small to be visible). For small q
values, the distribution tends to be bimodal: this means that
the scheduling on the various nodes has turned the original
CBR traffic injected by the source into bursty on/off traffic at
the destination host. The latter will then need buffering in or-
der to counterbalance the jittering introduced. As q grows,
the curves become narrower around the average value, thus
denoting a smoother traffic profile at the destination. The
same behavior with respect to a variation in the q parameter
can be observed both in Aliquem DRR and in Smooth
Aliquem DRR. However, in the latter the distributions for a

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

20

40

60

80

100
prob. %

time (s)

q=2

q=3

q=5

q=6

q=11

q=21

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

20

40

60

80

100

time (s)

prob. %

q=2

q=3

q=5

q=21

q=6

q=11

Figure 14. Distribution of the inter-packet spacing for the CBR flows for various values of q in Aliquem DRR (left) and Smooth Aliquem DRR (right)

given q value are generally narrower2, due the smoothing
effect.

VIII. CONCLUSIONS
In this paper we have analyzed the Deficit Round-Robin

scheduling algorithm, and we have derived new and exact
bounds on its latency and fairness. Based on these results, we
have proposed an implementation technique, called the Active
Lists Queue Method (Aliquem), which allows DRR to work
with smaller frames while still preserving the ()1O complex-
ity. As a consequence, Aliquem DRR achieves better latency
and fairness. We have proposed several solutions for imple-
menting Aliquem DRR, employing different data structures
and requiring different space occupancy and operational over-
head. We have also presented a variation of Aliquem DRR,
called Smooth Aliquem DRR, which further reduces the out-
put burstiness at the same complexity. We have compared
Aliquem DRR to PDRR and SRR, showing that it either
achieves better performances with the same operational over-
head or provides comparable performances at a lower opera-
tional overhead than either of the other two. Our simulations
showed that Aliquem DRR allows the average delay to be
reduced, and it also lessens the likelihood of bursty transmis-
sion in a multi-hop environment.

REFERENCES
[1] L. Lenzini, E. Mingozzi, and G. Stea, “Aliquem: a Novel DRR

Implementation to Achieve Better Latency and Fairness at O(1)
Complexity”, in Proc. of the 10th International Workshop on Quality of
Service (IWQOS), Miami Beach,USA, May 2002, pp. 77-86.

[2] H. Zhang “Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks”, Proceedings of the IEEE, Vol. 83, No. 10,
pp. 1374-1396, October 1995.

[3] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General Model for
Analysis of Traffic Scheduling Algorithms,” IEEE/ACM Trans. on
Networking, Vol. 6, pp. 675-689, October 1998.

[4] D. Stiliadis and A. Varma, “Latency-Rate Servers: A General Model for
Analysis of Traffic Scheduling Algorithms,” Tech. Rep. CRL-95-38,
University of California at Santa Cruz, USA, July 1995.

[5] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: the Single
Node Case,” IEEE/ACM Trans. on Networking, Vol. 1, pp. 344-357,
June 1993.

[6] S. J. Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband
Applications,” in Proc. of IEEE INFOCOM’94, pp. 636-646, Jun. 14-16,
1994, Toronto, Canada.

[7] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using Deficit
Round Robin,” IEEE/ACM Trans. on Networking, Vol. 4, pp. 375-385,
June 1996.

[8] S. Suri, G. Varghese, and G. Chandranmenon “Leap Forward Virtual
Clock: A New Fair Queueing Scheme With Guaranteed Delay and
Throughput Fairness,” in Proc. of IEEE INFOCOM’97, Apr. 7-11, 1997,
Kobe, Japan.

[9] P. Goyal, H.M. Vin and H. Cheng, “Start-Time Fair Queueing: A
Scheduling Algorithm for Integrated Services Packet Switching
Networks”, IEEE/ACM Trans. on Networking, Vol. 5, No. 5, pp. 690-
704, October 1997.

2 Note that the horizontal scale of the graph related to Smooth Aliquem

DRR is one half of the other

[10] J. Bennett and H. Zhang: “Hierarchical Packet Fair Queueing
Algorithms”, IEEE/ACM Trans. on Networking, Vol. 5, No. 5, pp. 675-
689, October 1997.

[11] F. Toutain, “Decoupled Generalized Processor Sharing: A Fair Queuing
Principle for Adaptive Multimedia Applications”, Proc. 17th IEEE
Infocom ’98, San Francisco, CA, USA, March – April 1998

[12] D. Saha, S. Mukherjee, K. Tripathi: “Carry-Over Round Robin: A
Simple Cell Scheduling Mechanism for ATM Networks”. IEEE/ACM
Trans. on Networking, Vol. 6, No. 6, pp. 779-796, December 1998.

[13] S.-C. Tsao and Y.-D. Lin, “Pre-Order Deficit Round Robin: a new
scheduling algorithm for packet switched networks,” Computer
Networks, Vol. 35, pp. 287-305, February 2001.

[14] G. Chuanxiong, “SRR: An O(1) Time Complexity Packet Scheduler for
Flows in Multi-Service Packet Networks,” in Proc. of ACM
SIGCOMM’01, pp. 211-222, Aug. 27-31, 2001, San Diego, CA, USA.

[15] A. Francini, F. M. Chiussi, R. T. Clancy, K. D. Drucker, and N. E.
Idirene, “Enhanced Weighted Round Robin Schedulers For Accurate
Bandwidth Distribution in Packet Networks,” Computer Networks, Vol.
37, pp. 561-578, Nov. 2001.

[16] S. S. Kanhere, H. Sethu, A. B. Parekh, “Fair and Efficient Packet
Scheduling Using Elastic Round-Robin”, IEEE Trans. on Paral. and
Dist. Systems, Vol. 13, No. 3, March 2002

[17] L. Lenzini, E. Mingozzi, G. Stea, “A unifying service discipline for
providing rate-based guaranteed and fair queueing services based on the
Timed Token Protocol”, IEEE Trans. on Computers, Vol. 51, No. 9 Sept.
2002, pp. 1011-1025.

[18] L. Lenzini, E. Mingozzi, G. Stea, “Packet Timed Token Service
Discipline: a scheduling algorithm based on the dual-class paradigm for
providing QoS in integrated services networks”, Computer Networks
39/4, July 2002, pp.363-384.

[19] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services”, RFC 2475, The Internet
Society, December 1998.

[20] B. Davie et al. “An Expedited Forwarding PHB (Per-Hop Behavior)”,
RFC 3246, The Internet Society, March 2002.

[21] A. Charny et al. “Supplemental Information for the New Definition of
the EF PHB (Expedited Forwarding Per-Hop Behavior)”, RFC 3247,
The Internet Society, March 2002.

[22] P. Van Emde Boas, R. Kaas, and E. Zijlstra, “Design and
Implementation of an Efficient Priority Queue,” Math. Syst. Theory,
Vol. 10, pp. 99-127, 1977.

[23] K. Mehlhorn, “Data Structures and Algorithms 1: Sorting and
Searching”, EATCS Monographs on Theoretical Computer Science,
Springer-Verlag.

[24] A. Brodnik, S. Carlsson, J. Karlsson, J. Ian Munro, “Worst case
Constant Time Priority Queue”, ACM/SIAM 12th Symposium on Discrete
Algorithms 2001, Washington, DC, USA, Jan. 2001, pp. 523-528.

[25] The Network Simulator - ns-2, <http://www.isi.edu/nsnam/ns/>.

IX. APPENDIX

A. Proof of the Theorem 1
Before proving the Theorem 1, let us report the following

lemmas:
Lemma 1

“Let iφ be flow i quantum, and let iL be its maximum
packet length; the service received by flow i in the time inter-
val [)1 2,t t in which it is always backlogged is lower bounded
by:

 1 2(,)i i iv L W t tφ⋅ − <

where v is the number of service opportunities in [)1 2,t t ”.

Proof: see [7].

Lemma 2
“Let flow i be always backlogged since the beginning of

round k . If at least one packet is serviced from flow i during
round k v+ , 1v ≥ , then the deficit value right after the
k v+ th service opportunity is bounded by:

 { }min ,k v
i i iLφ+∆ < .

Proof:
If i iLφ ≥ then the thesis follows straightforwardly from

inequality (1), which proves that i iL∆ < after each service
opportunity. Let us then assume that i iLφ < ; we can express

k v
i
+∆ as:

1 ()k v k v
i i i iS k vφ+ + −∆ = ∆ + − + (26)

where () 0iS k v+ > denotes the service received during the
k v+ th service opportunity. It is easy to prove that

1() k v
i iS k v + −+ > ∆ . Suppose that 1 0k v

i
+ −∆ > (otherwise

1 () ()k v k v
i i i i i iS k v S k vφ φ+ + −∆ = ∆ + − + = − + and the thesis

obviously holds). This implies that a packet which is longer
than 1k v

i
+ −∆ could not be serviced during round 1k v+ − ; let

1k v
iL + −> ∆ be its length. Clearly, ()iS k v L+ ≥ (otherwise no

packet transmission takes place at round k v+), and therefore
1() k v

i iS k v L + −+ ≥ > ∆ . By substituting into (26) we obtain:

1 ()k v k v
i i i i iS k vφ φ+ + −∆ = ∆ + − + <

We are now ready to compute the latency of a DRR sys-

tem. We observe that the following proof process can be eas-
ily adapted in order to compute the latency of other round-
robin LR servers, such as the Packet Timed Token Service
Discipline [17], [18].
Theorem 1

“The latency of DRR is:

 () ()
1

1 1
N

i i i i j
j

F L L
C

φ φ
=

Θ = − + +

∑ . (5)

Proof
Let us denote with 1(,)iW t t the service received by flow i

in the time interval [)1,t t (service curve of flow i). We as-
sume that 1(,)iW t t increases by a quantity equal to the packet
length when the last bit of the packet has been serviced. In
order to derive the DRR latency, we apply the methodology
described in [3], Lemma 7. Specifically, we assume that flow
i is continuously backlogged starting from time 1t and we
prove that, in a generic time interval [)1,t t , it is:

 ()()1 1(,) max 0,i i iW t t f C t t≥ ⋅ − −Θ
 (27)

the latter representing the latency rate curve of flow i . We
then show that the bound is tight by presenting a case in which
the service received is exactly equal to the bound.

As (27) is required to hold in any possible scenario, we can
limit ourselves to proving it when 1(,)iW t t is the lowest possi-
ble. Clearly, this happens in a scenario (hereafter worst-case
scenario) in which:

a) flow i has each service opportunity as late as possible;
b) the service received by flow i after each service op-

portunity is the lowest possible.
Without loss of generality, we will assume 1t =0. Let us

number the rounds from 1 onward starting with the first one in
which flow i has a service opportunity. We will denote with

vT the time instant in which the v th service opportunity for
flow i ends.

Let us distinguish two cases, i iLφ ≥ and i iLφ < .

a) Case 1: i iLφ ≥
When i iLφ ≥ , a backlogged flow can transmit at least one

packet on each service opportunity. For mathematical conven-
ience, we need to define two functions which bound the ser-
vice curve (0,)iW t :
• (0,)iW t , which increases with a C slope whenever flow

i is being serviced. More formally:
- for any instant s in a time interval [) [)1 2, 0,s s t⊆ in

which flow i is not being serviced,
1(0,) (0,)i iW s W s= , i.e. (0,)iW s remains constant;

- for any instant s in a time interval [) [)1 2, 0,s s t⊆ in
which flow i is being serviced,

1 1(0,) (0,) ()i iW s W s C s s= + ⋅ − , i.e. (0,)iW s in-
creases with a C slope;

• (0,)iw t , which increases stepwise with a step equal to the
received service at the end of a time interval in which
flow i is being serviced and remains constant elsewhere.

Clearly, for any time instant t , the following relationship
holds:
• (0,) (0,) (0,)i i iw t W t W t≤ ≤ whenever i is being serviced
• (0,) (0,) (0,)i i iw t W t W t= = whenever i is not being ser-

viced.
Figure 15 shows the three curves. For the sake of readabil-

ity, the channel capacity is assumed to be equal to 1 in the fig-
ures, so that both the horizontal and vertical axis have the same
scale.

se
rv

ic
e

ti not being serviced i being serviced

),0(tW i

(0,)iw t

i not being serviced

),0(tWi

Figure 15. Bounds on the service curve for

i i
Lφ ≥

In this case, according to assumption b) and Lemma 1, we
can assert that, after v service opportunities, the worst-case
service curve reaches a height:

 (0,)i i iW t v Lφ= ⋅ − (28)

This implies that (0,)iW t increases by a step equal to iφ at
each time instant vT , 1v > 3. In a finite capacity system, the
service curve cannot increase by a step greater than the maxi-
mum length packet; therefore we can then obtain a tighter
lower bound on the service curve than (0,)iw t by considering:

 { }' (0,) max (0,), (0,)i i i iw t w t W t L= −

The curve ' (0,)iw t is shown in Figure 16.

se
rv

ic
e

t

),0(tW i),0(tWi

vTvs

' (0,)iw t

(0,)iw t

iL C

Figure 16. Improved bounds on the service curve for

i i
Lφ ≥

We will denote by vs the time instant that lies ()i iL Cφ −
units of time before vT (note that v vT s= if i iLφ =).

Each time instant vT comes “as late as possible” (i.e. con-
dition a) holds) under the following conditions:

• each flow is always backlogged;

3 When 1v = , (0,)

i
w t increases by a step equal to

i i
Lφ − .

• each flow h i≠ starts with the maximum deficit
h hL∆ ≅ 4;

• each flow h i≠ always transmits packets in such a
way that its quantum is always fully exploited (i.e. no
deficit is carried over onto subsequent rounds);

• every flow h i≠ is serviced before flow i gets its
first service opportunity.

Under the above conditions, we have:

1

1

1 ()

1 2

h h i i
h i h i

N

h i
h

T L L
C

F L L
C

φ φ
≠ ≠

=

 = + + −

 = + −

∑ ∑

∑

 (29)

 2 1
1

1 1 2 2
N

h i h i
h i h

T T F L L
C C

φ φ
≠ =

 = + + = + −

∑ ∑ (30)

 1
1

1 1 2
N

k k h i h i
h i h

T T k F L L
C C

φ φ−
≠ =

 = + + = ⋅ + −

∑ ∑ (31)

We observe that, for 1k > ,

' '
1

1

(0,) (0,)i k i k i
i

k k

w s w s C
f C

s s F
φ+

+

− ⋅
= = ⋅

−
 (32)

which confirms that the normalized rate allocated to flow i is
in fact if C C⋅ ≤ . This also implies that the line that joins
points ()', (0,)v i vs w s , 1v > , has a slope if C⋅ , (as shown in
Figure 17). We will prove that this line is the latency-rate
curve for flow i .

' (0,)iw t

2T2s
1T time

se
rv
ic
e

3T3siΘ

i iLφ −

2 i iLφ −

3 i iLφ −

Figure 17. Latency computation for

i i
Lφ ≥

Let us define:

 2 2
i i i i i i

i
i i

L L L
s T

f C C f C
φ φ φ− − −

Θ = − = − −
⋅ ⋅

 (33)

4 We observe that it is not possible for the deficit variable to assume the

value of the maximum length packet, since inequality holds into Lemma 1.
However, the deficit can be arbitrarily close to the maximum packet length.

iΘ marks the intersection of the latency-rate curve with
the time axis. By substituting (30) into (33), after a few alge-
braic manipulations we obtain expression (5). According to
the methodology described in [3-4], we need to prove that

' (0,) ()i i iw t f C t≥ ⋅ −Θ .
Let us first prove that ' (0,) ()i k i k iw s f C s= ⋅ −Θ , 1k∀ > .

By definition we have ' (0,) (1)i k i iw s k Lφ= − − , whilst:

 2() () (1)i k i i k i i i if C s f C s s L k Lφ φ⋅ −Θ = ⋅ − + − = − − ;

this proves the equality.
We then prove that ' (0,) ()i i iw t f C t≥ ⋅ −Θ when kt s≠ ,
1k > . Suppose that (],k kt s T∈ , 1k > . In these regions, the

curve ' (0,)iw t increases with a slope which is at least C 5,
whilst the latency-rate curve increases with a constant slope

if C C⋅ ≤ . This implies that ' (0,) ()i i iw t f C t≥ ⋅ −Θ for any
(],k kt s T∈ , 1k > , since ' (0,) ()i k i k iw s f C s= ⋅ −Θ .
Suppose then that ()1,k kt T s +∈ , 1k > . Since the curve

' (0,)iw t has a step in kT , we can assert that
' (0,) ()i k i k iw T f C T> ⋅ −Θ . We also know that
'

1 1(0,) ()i k i k iw s f C s+ += ⋅ −Θ . Since in ()1,k kt T s +∈ , 1k > ,
both curves have a constant slope (which is null for ' (0,)iw t
and 0if > for the latency-rate curve), we conclude that

' (0,) ()i i iw t f C t> ⋅ −Θ when ()1,k kt T s +∈ , 1k > .
Suppose now that [)20,t s∈ . When [)0, it∈ Θ the la-

tency-rate curve is null, and therefore the assertion holds;
when [)2,it s∈ Θ two sub-cases are given:
1. 1i TΘ ≥ ;

in this case we have ' (0,) () 0i i i i iw f CΘ ≥ ⋅ Θ −Θ = and
'

2 2(0,) ()i i iw s f C s= ⋅ −Θ ; in the time interval [)2,i sΘ
both curves have a constant slope and therefore

' (0,) ()i i iw t f C t≥ ⋅ −Θ when [)2,it s∈ Θ ;
2. 1i TΘ < ;

by using (29), (30) and (33), after a few algebraic manipu-
lations it is possible to prove that this condition is equiva-
lent to:

1
2i

i i i
i

f
L L

f
φ +
> ≥ (34)

 This implies that the curve ' (0,)iw t has the profile shown
in Figure 18. By using (29), (30) and (33), it is also easy to
prove that (34) implies *

1 (2)i i it T L CφΘ ≥ = − − . There-
fore the same considerations used for the former cases also
apply to this sub-case.

5 Note that at time

k
T the curve has a step.

se
rv
ic
e

iΘ 1T*t

iL
2i iLφ −

i iLφ −

Figure 18. Latency for sub-case 2

This proves that, when i iLφ ≥ , ' (0,) ()i i iw t f C t≥ ⋅ −Θ ,
and therefore that iΘ is an upper bound to the latency of
DRR. We will now show that iΘ is a tight bound.

In order to prove that the latency bound (5) is tight, we
need to prove that there exists a scenario in which the service
curve is arbitrarily close to the sloped segment of the latency-
rate curve. We prove that it is possible to find a packet se-
quence for flow i , such that point ()'

2 2, (0,)is w s (which be-
longs to the latency-rate curve) is arbitrarily close to point
()2 2, (0,)is W s .

δi

iφ

not transmitted in
the first round

iL iLiLiL

modi iLφ

Figure 19. Packets queued at flow i

Let us assume that flow i becomes backlogged at time 0,
and at that time 0

j j jL δ∆ = − with an arbitrarily small jδ for
any j i≠ . Since packets can be of arbitrary length, it is possi-
ble to assume that each flow j i≠ fully exploits its quantum
on each round, carrying a null deficit onto the subsequent
round. Assume that flow i has the following packet length
sequence: one small packet of length iδ , one packet of length

modi iLφ 6, and then i iLφ
 packets of length iL (as shown

in Figure 19). In this case, flow i will not be able to transmit
the last packet of length iL at the first service opportunity,
and will therefore accumulate a deficit equal to 1

i i iL δ∆ = − .
Let us compute time 1T :

0 1
1

1 1

1 () ()

1 2 (2)

h h i i
h i

N N

h i h i
h h

T
C

F L L
C

φ φ

δ δ

≠

= =

 = + ∆ + − ∆

 = + − − −

∑

∑ ∑

At time 1T the service curve of flow i reaches a height of
1(0,)i i i iW T Lφ δ= − + . At the second service opportunity, flow

i will be able to transmit the remaining maximum length

6 This can be null if the quantum contains an integer number of maxi-

mum length packets.

packet. Since we have assumed that the service curve only
increases when the last bit of a packet has been serviced,

1(0,) (0,)i i i i iW t W T Lφ δ= = − + until the last bit of the grayed
packet is transmitted. Let us compute the time instant 't at
which the gray packet is transmitted.

' 1
1 2

21
N

h ih
h i

h i
t T L s

C C
δ δ

φ =

≠

− = + + = −

∑
∑

Therefore, point

1
2

2
,

N
h ih

i i is L
C
δ δ

φ δ=
 −
 − − +

∑

belongs to the worst-case service curve. This point can be
made arbitrarily close to ()2 , i is Lφ − (which belongs to the
latency-rate curve) by choosing appropriately small jδ values.
This proves that the latency bound derived for i iLφ ≥ is tight.

b) Case 2: i iLφ <
In this case, flow i is not guaranteed (as it was for case 1)

to transmit packets on each service opportunity.
According to Lemma 1, we can bound the service received

by flow i after v service opportunities as follows:

 { }(0,) max 0,i i iW t v Lφ≥ ⋅ − (35)

Let *
i iv L φ = : expression (35) ensures that, after the

*v th service opportunity, flow i has transmitted at least one
packet.

vTtime

se
rv
ic
e

iΘ

(1) i iv Lφ− −

(1) iv φ−

Figure 20. Latency computation for

i i
Lφ <

Let us assume that flow i transmits a packet during ser-
vice opportunity *v v> . Then, by Lemma 2, right after time

vT , the curve (0,)iW t reaches a height which is greater than
()1 iv φ− , as shown in Figure 20. Since packet lengths are up-
per bounded by iL , at time vT we have:

 ()(0,) 1 (0,)i v i i i vW T v L w Tφ> − − =
 (36)

The time instant vT comes “as late as possible” under the
same conditions expressed for case 1. Under such conditions,
each flow h i≠ receives a service equal h hv Lφ + in [)0, vT ,
whilst flow i is serviced for a time ()1 iv φ− in the same in-
terval. Therefore we have:

() ()

1

1 1

1 ()

v h h i
h i

N

h i i
h

T v L v
C

v F L L
C

φ φ

φ

≠

=

 = + + −

 = ⋅ + − +

∑

∑

 (37)

For any *v v> in which flow i transmits a packet, the fol-
lowing relationship holds:

1

1

(0,) (0,)i v i v i
i

v v

w T w T
C f C

T T F
φ+

+

−
= ⋅ = ⋅

−

which implies that the points (), (0,)v i vT w T are joined by a
line of slope if C⋅ , which we will prove to be the latency-rate
curve. Let us denote with iΘ the intersection of the above-
mentioned line with the time axis. We have:

()1 i i
i v

i

v L
T

f C
φ− −

Θ = −
⋅

By substituting (37) into the above expression, after a few
algebraic manipulations we obtain expression (5). According
to the methodology described in [3-4], we need to prove that:

 (0,) ()i i iW t f C t≥ ⋅ −Θ (38)

In a worst-case scenario, flow i transmits no packet until
time *v

T . Let us then prove that *i v
TΘ > as a first step.

() ()

()

*
*

*

1

1 1

1 1

h h h iv
h i h i

N

h i
h

T L v L
C

L v F f
C

φ φ
≠ ≠

=

 ≤ + + − +

 = + −

∑ ∑

∑

We also know that:

* 1i i i iv L Lφ φ = < +

Therefore:

 () ()*

1

1 1 1
N

h i i i iv
h

T L L F f
C

φ
=

 < + + − = Θ

∑

This implies that, for any []0, it∈ Θ , (38) holds. We now
prove that (38) also holds when it > Θ .

Since (0,)iW t may increase only during a service opportu-
nity, we can assume as a worst case that it remains constant
until the end of the subsequent service opportunity (say, the

n th) following time t , i.e. at time nT t≥ . Therefore, we only
need to prove that (39) holds right before the end of each ser-
vice opportunity7, i.e.:

 (0,) ()i n i n iW T f C T≥ ⋅ −Θ (40)

Note that it > Θ also implies *n v> .
If flow i has transmitted a packet at the n th service oppor-

tunity, we can apply Lemma 2, which ensures that (40) holds.
Let us then assume that flow i has transmitted no packets at
the n th service opportunity, and let us denote with m the last
round before round n at which flow i has transmitted a
packet. Let m

i∆ be the deficit value of flow i right after the
m th service opportunity. We have *v m n≤ < by hypothesis,
and Lemma 1 ensures that ()n m

i i i in m Lφ∆ = ∆ + − < . There-
fore we can assert the following:

1
m m

i i i i

i i

L L
n m

φ φ
 − ∆ − ∆

− < < +

 (41)

Since no transmission takes place after round m , we have:

 (0,) m
i n i iW T m φ= ⋅ − ∆ . (42)

If every flow h i≠ always transmits for the maximum time
allowed by DRR, the time instant nT is upper bounded by:

()
1

1

1

m
n h h i i

h i h i

N
m

h i i i
h

T L n m
C

L L nF n m
C

φ φ

φ

≠ ≠

=

 = + + ⋅ − ∆

 = − + − − − ∆

∑ ∑

∑

 (43)

Let us compute the difference n iT −Θ :

 ()()1 m
n i i i i i iT n m F mF F L f

C
φ φ −Θ = − − + − ∆ − + −

By substituting (41) into the above expression, after some
algebraic manipulations we obtain:

1 m
i

n i i
i

T mF L
C f
 ∆

−Θ < − −

 (44)

and therefore:

7 Note that we have assumed that the service curve increases right after

the end of a packet transmission, and therefore right after the end of a service
opportunity.

 () m
i n i i i i if C T m f Lφ⋅ −Θ < −∆ −

 (45)

By putting (45) and (42) together we obtain:

 ()(0,) m m
i n i i i i i i i n iW T m m f L f C Tφ φ= ⋅ − ∆ > − ∆ − > ⋅ −Θ

and therefore (40) holds. This proves that expression (5) is an
upper bound to the latency when i iLφ < . In order to prove that
(5) is a tight bound, we need to build a scenario in which a point
of the service curve can be arbitrarily close to a point of the
sloped segment of the latency-rate curve.

Let us assume that flow i becomes backlogged at time 0,
and at that time j j jL δ∆ = − with an arbitrarily small jδ for
any j i≠ . Since packets can be arbitrarily small, it is possible
to assume that each flow j i≠ fully exploits its quantum on
each round, carrying a null deficit onto the subsequent round.
Let us express iL as i iL k rφ= ⋅ + , with 1k ≥ , 0 ir φ≤ < ,
and let us assume that flow i has the following packet length
sequence:
• 1k + packets of length iφ ;
• one packet of length ()i irφ δ− − ;
• one packet of length iL ;
• one packet of length il φ> .

It is easy to see that, after 2k + service opportunities (i.e.
after the packet of length ()i irφ δ− − has been transmitted),
flow i has a deficit equal to 2k

i ir δ+∆ = − . The subsequent
packet (of length iL) is transmitted during the 2 3k + th ser-
vice opportunity, after which flow i has a deficit equal to

2 3k
i i iφ δ+∆ = − , which is in accord with Lemma 2. Therefore,

we can assert that:

 () ()2 3(0,) 2i k i iW T k rφ δ+ = + − −
 (46)

We will show that point ()2 3 2 3, (0,)k i kT W T+ + can be arbi-
trarily close to the latency-rate curve. Let us compute the time
instant 2 3kT + :

 () () ()2 3
1

1 2 2 3 1
N

k h h i i
h

T L k F k r
C

δ δ φ+
=

 = − + + + − + −

∑ (47)

We can then compute the latency-rate curve value at time
2 3kt T += , i.e. expression ()2 3i k if C T +⋅ −Θ :

 () ()2 3
1

2 2
N

i k i i i h i
h

f C T k r fφ δ δ+
=

 ⋅ −Θ = + − + − +

∑ (48)

By comparing (46) and (48) it clearly emerges that, by
choosing arbitrarily small hδ , points ()2 3 2 3, (0,)k i kT W T+ + and
()2 3 2 3, ()k i k iT f C T+ +⋅ −Θ can be made arbitrarily close. This
proves that the latency bound (5) is tight when i iLφ < .

